

Bundesministerium für Bildung und Forschung

LHC Higgs results Bethe Forum: *"Beyond the standard Higgs-system"* Bonn, Nov 2016 Will Davey

Outline

- Run 1 SM Higgs: discovery and properties
- Run 2 SM Higgs: rare decays, differential measurements, etc...
- BSM Higgs searches (Run1+Run2): MSSM, 2HDM, Di-Higgs, Exotic decays,...

Check out attached pdf with links to all results in this talk

h(125) production

Decays of a 125 GeV Standard-Model Higgs boson

h(125) summary

- Couplings consistent with SM Higgs boson
- $m_h = 125.09 \pm 0.24$ GeV, JP = 0+ strongly favoured

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07}$ (stat) $^{+0.04}_{-0.04}$ (expt) $^{+0.03}_{-0.03}$ (thbgd) $^{+0.07}_{-0.06}$ (thsig)

LHC Run 2

Month in Year

Mean Number of Interactions per Crossing

$H \rightarrow \gamma \gamma$

- Fit sharp $m_{\gamma\gamma}$ peak over falling background ($\gamma\gamma$, γ j, jj)
- Target ggF, VBF, VH (only ATLAS), ttH modes by categorising events
- Dominant systematics: photon energy, background model choice

$H \rightarrow \gamma \gamma$

Fiducial cross sections

Fiducial region	Measured cross section (fb)	SM prediction (fb)	
Baseline	$43.2 \pm 14.9 (\text{stat.}) \pm 4.9 (\text{syst.})$	$62.8^{+3.4}_{-4.4}$	$[N^{3}LO + XH]$
VBF-enhanced	$4.0 \pm 1.4 (\text{stat.}) \pm 0.7 (\text{syst.})$	2.04 ± 0.13	[NNLOPS + XH]
single lepton	$1.5 \pm 0.8 (\text{stat.}) \pm 0.2 (\text{syst.})$	0.56 ± 0.03	[NNLOPS + XH]

Production strengths ATLAS Preliminary ⊢ Total √s = 13 TeV, 13.3 fb⁻¹ $\mu_{ttH}^{} = -0.25 \ ^{+1.26}_{-0.99}$ μ_{ttH} = 0.23 + 1.27 - 1.05 μ_{VH} μ_{VH} +0.80 μ_{VBF} $\mu_{VBF} = 2.24$ -0.71 μ_{ggH} = 0.59 +0.29 μ_{ggH} • - 0.28 +0.22 μ_{Run-2} = 0.85 μ_{Run-2} Heri - 0.20 +0.28 μ_{Run-1} $\boldsymbol{\mu}_{\text{Run-1}}$ = 1.17 -0.26 -2 2 0 З 5 _1 Signal Strength

Differential cross sections

Extracting c-quark coupling?

9

$H \rightarrow ZZ \rightarrow 4I$

- Fit sharp m₄₁ peak over tiny flat background
- Target ggF, VBF, VH, ttH modes by categorising events
- Dominant systematics: luminosity, lepton efficiency

 $H \rightarrow ZZ \rightarrow 4$

Fiducial cross section

 $\sigma_{\rm fid.} = 2.29^{+0.74}_{-0.64}(\text{stat.})^{+0.30}_{-0.23}(\text{sys.})^{+0.01}_{-0.05}(\text{model dep.}) \text{ fb}$

$$\sigma_{
m fid.}^{
m SM}=$$
 2.53 \pm 0.13 fb.

Production strengths

Differential cross sections

ttΗ

- Direct probe of top Yukawa coupling (probes via ggF assume no BSM coupling)
- Small signal cross section, large tt background!

Divide and conquer

Channel	BR [%]	
bb	58	
WW	21	
ZZ	2.6	
тт	6.3	
ΥY	0.23	

ttH multileptons

Same-sign dilepton

=2 SS leptons (e/µ) ≥4 jets (≥1 b-tag) moderate MET Z-mass veto (ee channel) Trilepton≥3 leptons (e/µ)≥2 jets (≥1 b-tag)moderate MET or ≥4 jetsZ-mass veto

Categorise: Th presence, b-tag quality, lepton charge sum

W

Η

h→WW

g 700000

g 000000

ttH combination

b

b

W/Z

 ν

 \mathcal{V}

VH(→bb)

W, Z

0 lepton MET>150 GeV b-jets not back-to-back b-jets recoil against MET MET not from jet mismeasure

1 lepton

MET > 30 (e-channel)

MET trigger (µ-channel)

 $p_{T}(V) > 150 \text{ GeV}$

2 lepton

Opposite sign (µ-channel) Z-mass window Split: p_T(V) [0, 150] [150, ∞] GeV

Categorise: presence of additional jets

VH(→bb)

Dominant systematics: b-tagging efficiency Z+bb normalisation

BSM Higgs

BSM Higgs

 While h(125) compatible with SM, also compatible with many BSM models:

• Extended Higgs Sectors:

additional light/heavy charged/neutral higgs bosons (eg. 2HDM, singlets, triplets...)

- Modified Higgs Sectors: invisible/BSM/LFV decays, ...
- Can be probed via:
 - Constraints from h(125)
 - **Direct searches** (many performed at LHC)

Google: "ATLAS (CMS) public higgs results"

SM like searches

- High-mass SM like searches: WW, ZZ, γγ, bb, ττ
 - In general, techniques very similar to SM searches
 - They show no deviations from SM (X750 in backup)
 - Won't cover in detail
- Exceptions:
 - ττ particularly important for MSSM

 $H \pm \rightarrow TV$

 1τ, ≥4 jets (≥1 b-jet), no leptons, large MET

MSSM (low tan β)

2HDM

- 14→7 params (avoid CPV):
 m_h, m_H, m_A, m_{H±}, α, β, m₁₂.
- H, A, H± should be roughly degenerate (pert., unit, vac.)

 $\cos(\beta - \alpha)$

	2HDM		hMSSM
	type I	type II/MSSM	
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\frac{s_d + s_u \tan \beta}{\sqrt{1 + \tan^2 \beta}}$
κ_u	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$s_u \frac{\sqrt{1+\tan^2\beta}}{\tan\beta}$
κ_d	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$s_d \sqrt{1 + \tan^2 \beta}$

24

 $A \rightarrow Zh$

 $A \rightarrow Zh \rightarrow \ell\ell b\overline{b}$ ($\ell = e,\mu$) L = 19.7 fb⁻¹ (8 TeV)

Intermediate mass

Data

SM Higgs Z+jets Z+b

MC statesyst

m,= 300 GeV m_= 325 GeV

n,= 350 GeV

Z+bБ t, tŤ vv

Data / Bkg = 1.062 ± 0.049

500

550

Data

600

 $A \rightarrow Zh (\sigma=113 fb$

=600 GeV

W+(bb,bc.cc.bl

900

m(Vh) [GeV]

800

Z+(bb,bc,cc) Uncertainty Pre-fit backgrou

Z+(bl,cl)

650

m_{éébb} [GeV]

700

300 - CMS

250

300

350

400

500

600

700

400

450

weighted

250

200

150

Typically dominant for $m_h+m_Z < m_A < 2m_t$

$A \rightarrow Zh$

Cross section limits

2HDM limits

H→ZA

- large H-A mass splitting favour EW phase transition required for baryogengesis
- In this case $A \rightarrow ZH/H \rightarrow ZA$ dominant
- Basically proceed as for A→Zh, but drop h(125) mass constrain on m_{bb}.

Run 1 excess in 2b2y (see backup)

29

Kinematic fit: assign jets, reject non tt topologies, improve Higgs mass resolution

H→tt

 $\mu \cdot S + \sqrt{\mu} \cdot I + B = \sqrt{\mu} \cdot (S + I) + (\mu - \sqrt{\mu}) \cdot S + B,$

H±±

- LR, Higgs triplet, See-saw, ...
- H^{±±}→I[±]I[±] dominant for low triplet vev (else W[±]W[±])
- Search for same-sign dielectrons
- Charge misidentification measured from data

800

1200

m(H^{±±}) [GeV]

1000

 $\sigma(pp \rightarrow H^{++}H^{-} \rightarrow e^{\pm}e^{\pm}e^{\mp}e^{\mp}) [fb]$

10

400

600

Exotic Higgs/decays

NMSSM: light pseudo scalar

NMSSSM: light pseudo scalar

Lepton Flavour Violation

- BR(h \rightarrow eµ) < O(10⁻⁸) from µ \rightarrow eγ
- Limits on $h \rightarrow e\tau/\mu\tau$ much weaker O(1%)
- Simplified H→ττ analysis with good mass resolution

LFV: µt excess

No excess in et, eµ channels!

- B(h→φγ) = O(10⁻⁶) in SM: find BSM physics, probe Yukawa coupling to u, d, s
- Similar search for $h \rightarrow J/\psi/Y + \gamma$ (cf c-quark)

Summary

- We've learnt lots about the Higgs with current LHC data
- A few interesting excesses to keep an eye on
- Many plans for further measurements and searches for Run 2 and beyond!
- Much more to learn with more data: Run 2, Run 3, HL-LHC
- Check out links in attached pdf for more details

Thanks for your attention

h(125) mass

h(125) spin-CP

J^P = 0⁺ strongly favoured

EFT approach

• Alternate to kappa approach accounting for impact on differential distributions, demonstrated using $H \rightarrow \gamma \gamma$

 $\mathcal{L}_{\text{eff}} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB}$ $+ \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB},$

\sqrt{s} dependence

H→μμ

- **Goal:** probe Yukawa mass dependence, 2nd gen. coupling, lepton coupling
- Signature: very clean dimuon final state but overwhelming irreducible Z/γ*→µµ
- Strategy: $cf H \rightarrow \gamma \gamma$

"X(750)" appears

"X(750)" disappears

$H \rightarrow CS$

Dominant for low mass higgs with tanb < 1 in MSSM (and some 2HDM parameter space)

2HDM BRs

$X \rightarrow hh \rightarrow bb\gamma\gamma$

"Similar strategy to 4b with some tricks from SM $h \rightarrow \gamma \gamma$ analysis"

Low mass pseudo scalar ditau

- Exclusion of 2HDM type II, wrong-sign Yukawa coupling, high tan β

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	~	t- b	κ_g^2	$1.06\cdot\kappa_t^2+0.01\cdot\kappa_b^2-0.07\cdot\kappa_t\kappa_b$
$\sigma(\text{VBF})$	_	_		$0.74\cdot\kappa_W^2+0.26\cdot\kappa_Z^2$
$\sigma(WH)$	_	_		κ_W^2
$\sigma(qq/qg \to ZH)$	_	_		κ_Z^2
$\sigma(gg \to ZH)$	~	t-Z		$2.27\cdot\kappa_Z^2 + 0.37\cdot\kappa_t^2 - 1.64\cdot\kappa_Z\kappa_t$
$\sigma(ttH)$	_	_		κ_t^2
$\sigma(gb \to tHW)$	—	t–W		$1.84\cdot\kappa_t^2+1.57\cdot\kappa_W^2-2.41\cdot\kappa_t\kappa_W$
$\sigma(qq/qb \rightarrow tHq)$	_	t–W		$3.40\cdot\kappa_t^2+3.56\cdot\kappa_W^2-5.96\cdot\kappa_t\kappa_W$
$\sigma(bbH)$	_	_		κ_b^2
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
Γ^{WW}	_	_		κ_W^2
$\Gamma^{\gamma\gamma}$	~	t–W	κ_{γ}^2	$1.59\cdot\kappa_W^2 + 0.07\cdot\kappa_t^2 - 0.66\cdot\kappa_W\kappa_t$
$\Gamma^{\tau\tau}$	_	_		$\kappa_{ au}^2$
Γ^{bb}	_	_		κ_b^2
$\Gamma^{\mu\mu}$	_	_		κ_{μ}^{2}
Total width $(B_{BSM} = 0)$				
				$0.57\cdot\kappa_b^2 + 0.22\cdot\kappa_W^2 + 0.09\cdot\kappa_g^2 +$
Γ_H	✓	_	κ_{H}^{2}	$0.06\cdot\kappa_\tau^2+0.03\cdot\kappa_Z^2+0.03\cdot\kappa_c^2+$
				$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z\gamma)}^2 +$
				$0.0001\cdot\kappa_s^2+0.00022\cdot\kappa_\mu^2$

Coll.	Dataset	Cite
ATLAS	20fb-1(8TeV)	PRD 89, 032002 (2014)
CDF	9fb-1(2TeV)	PRL 110, 121801 (2013)

- BDT to discriminate against ttbar using event kinematics
- Dominant Systematics: b-tag eff., jet energy, ttbar norm.
- Almost sensitive to SM-strength production

CMS: $H \rightarrow hh / A \rightarrow Zh$

- Assume m_h=126 GeV
- If $m_H > 2m_h$, then $H \rightarrow hh$ possible
- If $2m_h < m_A < 2m_t$, $A \rightarrow Zh$ dominant
- Search for:
 - Multileptons: ≥3 leptons (≤1 ⊤) (estimate fake leptons/conversions with lepton fake-factors, others MC +corrections)
 - Diphotons: 2γ + 1/2 leptons (m_{γγ} sideband fit)
 - Counting experiment in categories: number of τs, b-jets, OSSF pairs, on/off Z, MET

Note: $h \rightarrow WW/ZZ$ or $\gamma\gamma$

CMS: Results

t→Hc

- FCNC highly suppressed by GIM in SM, but can be larger in BSM models.
- $B(t \rightarrow c(u)Z) < 0.07\%$ from CMS

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$			$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1 \cdot 10^{-4}$			$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$		10^{-5}
$t \rightarrow c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	~ 10 ⁻⁶	~ 10 ⁻⁹	$2 \cdot 10^{-6}$
$t \rightarrow cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	- 10-7	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$(1.5 \cdot 10^{-3})$	$\sim 10^{-5}$	10^{-5}

Coll.	Dataset	Cite
ATLAS	25fb-1(7+8TeV)	arXiv:1403.6293 [hep-ex]
CMS	20fb-1(8TeV)	CMS-PAS-HIG-13-034

ATLAS/CMS: Results

- Search for excess in diphoton mass spectrum:
 - **B(t→Hc)< 0.83%** (0.53%)
 - $\lambda_{tHc/u} < 0.17 (0.14)$
- CMS reinterpretation of diphoton+multileptons searches:
 - B(t→Hc)<0.56% (0.65%)
 - $\lambda_{tHc/u} < 0.14$

Run 2 update: ATLAS-CONF-2016-104 Run 1 tHc excess

2.5

NMSSM

- 2 Doublets (H_u,H_d) + 1 Singlet (S)
 alleviates µ-problem of MSSM
- h→a₁a₁ dominant (h→bb greatly reduced)

	a→µµ	a→hadrons	a→T	T
Ma1	2m _μ (0.2) 3m _π	(0.4) 21	 m _τ (3.55)	2m _b (9) [GeV]
Coll.	Channel	m _a range [GeV]	Dataset	Cite
CMS	h→2a→4µ	0.25 - 3.55	21fb-1(8TeV)	CMS-PAS-HIG-13-010
D0	h→2a→4µ/2µ2τ	0.2 - 20	4fb-1(2TeV)	PRL 103, 061801 (2009)
ATLAS	h→2a→4γ	0.1 - 0.4	5fb-1(7TeV)	ATLAS-CONF-2012-079
CMS	a→2µ	5.5 -14	1fb-1(7TeV)	PRL 109, 121801 (2012)
CDF	t→H+b→Wa(→ττ)b	9 4 - 9	3fb-1(2TeV)	<u>CDF Note 10104</u>

CMS: $h \rightarrow 2a \rightarrow 4\mu$

2 Isolated OS muon pairs with compatible masses

<u>Signal</u>

CMS Prelim. 2012 (s = 8 TeV L_{int} = 20.65) Events / (0.05 GeV/c²) <u>Background: B and J/ψ pair production</u> 3µ CR

a

m_{μμ} [GeV/c²] Estimation: BB from 3μ CR, J/ ψ from MC+data correction

4000

2000

2.5

1.5

3

CMS: Results

Invisible Higgs

q

- Search for Higgs decaying into new weakly interacting particles
- SM B(H \rightarrow inv.)~1.2E-3 (H \rightarrow ZZ \rightarrow 4v)
- Indirect Limits: from vis. decay modes ATLAS 60%, CMS 64%

Direct Searches				
Coll.	Channel	Dataset	Cite	
CMS	VBF	20fb-1(8TeV)		
CMS	Z(→II)H	25fb-1(7+8TeV)		
CMS	Z(→bb)H	19fb-1(8TeV)	<u>arxiv: 1404. 1344 [nep-ex]</u>	
CMS	Comb.	19-25fb-1		
ATLAS	Z(→II)H	25fb-1(7+8TeV)	arXiv:1402.3244 [hep-ex]	
CDF	Z(→II)H	10fb-1(2TeV)	CDF Note 11068	

CMS: VBF Invisible

CMS: $Z(\rightarrow vv)+2$ jet background

CMS: $Z \rightarrow \mu \mu$ to $Z \rightarrow \nu \nu$ embedding

- Estimate $Z \rightarrow vv$ using $Z(\rightarrow \mu\mu)+2$ jet
- Remove muon from event and recalc. MET \bullet
- Scale by $\sigma \varepsilon$ ratio $(Z \rightarrow vv/Z \rightarrow \mu\mu)$

Events / 5 GeV

80E

50

CMS Preliminary

s = 8 TeV L = 19.6 fb

Observed

DY+jets

tt+VV

CMS: Results

Dominant Systematic

 $Z\mu\mu$ emb. stat. ± 30 events

Summary of Direct Searches			
Coll.	Channel	Limit B(H→inv.)	
CMS	VBF	69% (53%)	
CMS	Z(→II)H	75% (91%)	
CMS	Z(→bb)H	(1.8 x σSM)	
CMS	Comb.	58% (44%)	
ATLAS	Z(→II)	65% (62%)	

Comparison to direct dark-matter detection

 B(H→inv.) limits constrain DM-nucleon scattering in Higgs portal models.

CMS Run 1+2

