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List of Examples

• Antisymmetric Tensor
Built-in in FORM, easy in Mathematica.

• Application of Momentum Conservation
Easy in Mathematica, complicated in FORM.

• Abbreviationing
Easy in Mathematica, new in FORM.

• Simplification of Color Structures
Different approaches.

• Calculation of a Fermion Trace
Built-in in FORM, complicated in Mathematica.

• Tensor Reduction
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Reference Books, Formula Collections

• V.I. Borodulin et al.
CORE (Compendium of Relations)
arXiv:1702.08246.

• Herbert Pietschmann
Formulae and Results in Weak Interactions
Springer (Austria) 2nd ed., 1983.

• Andrei Grozin
Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.
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Antisymmetric Tensor

The Antisymmetric Tensor in n dimensions is denoted by
εi1i2...in . You can think of it as a matrix-like object which has

either −1, 0, or 1 at each position.

For example, the Determinant of a matrix, being a completely
antisymmetric object, can be written with the ε-tensor:

det A =
n

∑
i1,...,in=1

εi1i2...in Ai11Ai22 · · · Ainn

In practice, the ε-tensor is usually contracted, e.g. with vectors.
We will adopt the following notation to avoid dummy indices:

εµνρσ pµqνrρsσ = ε(p, q, r, s) .
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Antisymmetric Tensor in Mathematica

Eps[___, p_, ___, p_, ___] := 0

(* implement linearity: *)

Eps[a___, p_Plus, b___] := Eps[a, #, b]&/@ p

Eps[a___, n_?NumberQ r_, b___] := n Eps[a, r, b]

(* otherwise sort the arguments into canonical order: *)

Eps[args__] := Signature[{args}] Eps@@ Sort[{args}] /;

!OrderedQ[{args}]
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Momentum Conservation

Problem: Proliferation of terms in expressions such as

d =
1

(p1 + p2 − p3)2 + m2

=
1

p2
1 + p2

2 + p2
3 + 2p1 p2 − 2p2 p3 − 2p1 p3 + m2

,

whereas if p1 + p2 = p3 + p4 we could have instead

d =
1

p2
4 + m2

.

In Mathematica: just do d /. p1 + p2 - p3 -> p4.
Problem: FORM cannot replace sums.
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Momentum Conservation in FORM

Idea: for each expression x, add and subtract a zero, i.e. form

{x, y = x+ 0, z = x− 0}, where e.g. 0 = p1 + p2− p3− p4 ,

then select the shortest expression. But: how to select the
shortest expression (in FORM)?

Solution: add the number of terms of each argument, i.e.

{x, y, z} → {
1

x,
2

y,
3

z,
4

nx,
5

ny,
6

nz} .

Then sort nx, ny, nz, but when exchanging na and nb,

exchange also a and b:

symm ‘foo’ (4,1) (5,2) (6,3);

This unconventional sort statement is rather typical for FORM.
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Momentum Conservation in FORM

#procedure Shortest(foo)

id ‘foo’([x]?) = ‘foo’([x], [x] + ‘MomSum’, [x] - ‘MomSum’);

* add number-of-terms arguments

id ‘foo’([x]?, [y]?, [z]?) = ‘foo’([x], [y], [z],

nterms_([x]), nterms_([y]), nterms_([z]) );

* order according to the nterms

symm ‘foo’ (4,1) (5,2) (6,3);

* choose shortest argument

id ‘foo’([x]?, ?a) = ‘foo’([x]);

#endprocedure
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Abbreviationing

One of the most powerful tricks to both reduce the size of an
expression and reveal its structure is to substitute
subexpressions by new variables.

The essential function here is Unique with which new symbols
are introduced. For example,

Unique["test"]

generates e.g. the symbol test1, which is guaranteed not to
be in use so far.

The Module function which implements lexical scoping in fact
uses Unique to rename the symbols internally because
Mathematica can really do dynamical scoping only.
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Abbreviationing in Mathematica

$AbbrPrefix = "c"

abbr[expr_] := abbr[expr] = Unique[$AbbrPrefix]

(* abbreviate function *)

Structure[expr_, x_] := Collect[expr, x, abbr]

(* get list of abbreviations *)

AbbrList[] := Cases[DownValues[abbr],

_[_[_[f_]], s_Symbol] -> s -> f]

(* restore full expression *)

Restore[expr_] := expr /. AbbrList[]
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Abbreviationing in FORM

* collect w.r.t. some function

b Den;

.sort

collect acc;

* introduce abbreviations for prefactors

toPolynomial onlyfunctions acc;

.sort

* print abbreviations & abbreviated expr

#write "%X"

print +s;
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Color Structures

In Feynman diagrams four types of Color structures appear:
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Unified Notation

The SUNF’s can be converted to SUNT’s via

f abc = 2i
[

Tr(TcTbTa)− Tr(TaTbTc)
]

.

We can now represent all color objects by just SUNT:

• SUNT[i, j] = δi j

• SUNT[a,b, . . .,i, j] = (TaTb · · · )i j

• SUNT[a,b, . . .,0,0] = Tr(TaTb · · · )

This notation again avoids unnecessary dummy indices.
(Mainly namespace problem.)

For purposes such as the “large-Nc limit” people like to use
SU(N) rather than an explicit SU(3).
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Fierz Identities

The Fierz Identities relate expressions with different orderings
of external particles. The Fierz identities essentially express
completeness of the underlying matrix space.

They were originally found by Markus Fierz in the context of
Dirac spinors, but can be generalized to any
finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (color) reordering, we need

Ta
i jT

a
kℓ =

1

2

(

δiℓδk j −
1

N
δi jδkℓ

)

.
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Cvitanovich Algorithm

For an Amplitude:
i

j

k

ℓ
M

• convert all color structures to
(generalized) SUNT objects,

• simplify: apply Fierz identity on
all internal gluon lines,

• expect SUNT with indices of
external particles to remain.

For a Squared Amplitude:

i

j

k

ℓ
M

k

ℓ

i

j
M∗

• use the Fierz identity to get rid
of all SUNT objects,

• expect SUNT to vanish, color
factors (numbers) only.

For “hand” calculations, a pictorial version of this algorithm
exists in the literature.
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Color Simplify in FORM

* introduce dummy indices for the traces

repeat;

once SUNT(?a, 0, 0) = SUNT(?a, DUMMY, DUMMY);

sum DUMMY;

endrepeat;

* take apart SUNTs with more than one T

repeat;

once SUNT(?a, [a]?, [b]?, [i]?, [j]?) =

SUNT(?a, [a], [i], DUMMY) * SUNT([b], DUMMY, [j]);

sum DUMMY;

endrepeat;

* apply the Fierz identity

id SUNT([a]?, [i]?, [j]?) * SUNT([a]?, [k]?, [l]?) =

1/2 * SUNT([i], [l]) * SUNT([j], [k]) -

1/2/(‘SUNN’) * SUNT([i], [j]) * SUNT([k], [l]);
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Translation to Color-Chain Notation

In color-chain notation we can distinguish two cases:

a) Contraction of different chains:

〈A| Ta |B〉 〈C| Ta |D〉 =
1

2

(

〈A|D〉 〈C |B〉 −
1

N
〈A|B〉 〈C |D〉

)

,

b) Contraction on the same chain:

〈A| Ta |B| Ta |C〉 =
1

2

(

〈A |C〉 Tr B−
1

N
〈A| B |C〉

)

.
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Color Simplify in Mathematica

(* same-chain version *)

sunT[t1___, a_Symbol, t2___, a_, t3___, i_, j_] :=

(sunT[t1, t3, i, j] sunTrace[t2] -

sunT[t1, t2, t3, i, j]/SUNN)/2

(* different-chain version *)

sunT[t1___, a_Symbol, t2___, i_, j_] *

sunT[t3___, a_, t4___, k_, l_] ^:=

(sunT[t1, t4, i, l] sunT[t3, t2, k, j] -

sunT[t1, t2, i, j] sunT[t3, t4, k, l]/SUNN)/2

(* introduce dummy indices for the traces *)

sunTrace[a__] := sunT[a, #, #]&[ Unique["col"] ]
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Fermion Trace

Leaving apart problems due to γ5 in d dimensions, we have as
the main algorithm for the 4d case:

Trγµγνγργσ · · · = + gµν Trγργσ · · ·

− gµρ Trγνγσ · · ·

+ gµσ Trγνγρ · · ·

This algorithm is recursive in nature, and we are ultimately
left with

Tr 1l = 4 .

(Note that this 4 is not the space-time dimension, but the
dimension of spinor space.)
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Fermion Trace in Mathematica

Trace4[mu_, g__] :=

Block[ {Trace4, s = -1},

Plus@@ MapIndexed[

((s = -s) Pair[mu, #1] Drop[Trace4[g], #2])&,

{g} ]

]

Trace4[] = 4
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Tensor Reduction

The loop integrals corresponding to closed loops in a
Feynman integral in general have a tensor structure due to
integration momenta in the numerator. For example,

Bµν(p) =
∫

ddq
qµqν

(

q2 −m2
1

)(

(q− p)2 −m2
2

) .

Such tensorial integrals are rather unwieldy in practice,
therefore they are reduced to linear combinations of
Lorentz-covariant tensors, e.g.

Bµν(p) = B00(p) gµν + B11(p) pµpν .

It is the coefficient functions B00 and B11 which are
implemented in a library like LoopTools.
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Tensor Reduction Algorithm

The first step is to convert the integration momenta in the
numerator to an actual tensor, e.g. qµqν → Nµν . FORM has
the special command totensor for this:

totensor q1, NUM;

The next step is to take out gµν ’s in all possible ways. We do
this in form of a sum:

Nµ1 ...µn =
n

∑
i=0,2,4, . . .

π(0)i ∑
all {ν1 ,...,νi}
∈{µ1,...,µn}

gν1ν2 · · · gνi−1νi
Nµ1 ...µn\ν1 ...νi

The π(0)i keeps track of the indices of the tensor coefficients,
i.e. it later provides the two zeros for every gµν in the index,
as in D0012.
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Tensor Reduction Algorithm

To fill in the remaining π(i)’s, we start off by tagging the
arguments of the loop function, which are just the momenta.
For example:

C(p1, p2, . . .)→ τ
(

π(1)p1 + π(2)p2

)

C(p1, p2, . . .)

The temporary function τ keeps its argument, the ‘tagged’
momentum p, separate from the rest of the amplitude.

Now add the indices of Nµ1 ...µn to the momentum in τ:

τ(p) Nµi ...µn = pµi
· · · pµn .

Finally, collect all π ’s into the tensor-coefficient index.
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Tensor Reduction in FORM

totensor q1, NUM;

* take out 0, 2, 4... indices for g_{mu nu}

id NUM(?b) = sum_(DUMMY, 0, nargs_(?b), 2,

pave(0)^DUMMY * distrib_(1, DUMMY, dd_, NUM, ?b));

* construct tagged momentum in TMP

id C0i([p1]?, [p2]?, ?a) = TMP(pave(1)*[p1] + pave(2)*[p2]) *

C0i(MOM([p1]), MOM([p2] - [p1]), MOM([p2]), ?a);

* expand momentum

repeat id TMP([p1]?) * NUM([mu]?, ?a) =

d_([p1], [mu]) * NUM(?a) * TMP([p1]);

* collect the indices

chainin pave;
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Tensor Reduction in Mathematica

tens[i_, p_][mu_, nu___] :=

Block[ {tens},

(* take out g *)

{ MapIndexed[g[mu, #1] Drop[tens[{i,0,0}, p][nu], #2]&, {nu}],

(* take out p *)

(#1[mu] tens[{i,#2}, p][nu])&@@@ p }

]

tens[i_, _][] := C@@ Sort[Flatten[i]]

FindTensors[mu_, p_] :=

Block[ {tenslist},

tenslist = tens[{}, MapIndexed[List, p]]@@ mu;

Collect[Plus@@ Flatten[tenslist], _C]

]
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More Complex Calculations

Often special requirements:

• Resummations (e.g. hbb in MSSM),

• Approximations (e.g. gaugeless limit),

• K-factors,

• Nontrivial renormalization.

Software design so far:

• Mostly ‘monolithic’ (one package does everything).

• Often controlled by parameter cards, not easy to use
beyond intended purpose.

• May want to/must use other packages.
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Example: O(α2
t ) MSSM Higgs-mass corrections

Hollik, Paßehr 2014

Shopping List for the Diagrammatic Calculation:

➀ Unrenormalized 2L self-energies

Σ
(2)
hh , Σ

(2)
hH , Σ

(2)
hA , Σ

(2)
HH , Σ

(2)
HA, Σ

(2)
AA, Σ

(2)
H+H−

in gaugeless approximation at p2 = 0 at O(α2
t ).

➁ 1L diagrams with insertions of 1L counterterms.

➂ 2L counterterms for ➀.

➃ 2L tadpoles T
(2)
h , T

(2)
H , T

(2)
A at O(α2

t ) appearing in ➂.
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Template for Calculations

• Break calculation into several steps.

• Implement each step as independent program
(invoked from command line).

• In lieu of ‘in vivo’ debugging keep detailed logs.

• Coordinate everything through a makefile.
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Steps of the Calculation

Calculation split into 7 (8) steps:

FeynArts ⇒ 1-amps
diagram generation

→ 2-prep
preparation for

tensor reduction

→ 3-calc
tensor reduction

⇐ TwoCalc
⇐ FormCalc

↑ ↓

0-glmod
model file preparation

⇐ MSSMCT.mod 4-simp
simplification

↓

FormCalc ⇒ 7-code
code generation

← 6-comb
combination of results

← 5-rc
calculation of

renorm. constants

⇐ FormCalc
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Script Structure

• Shell scripts (/bin/sh), run from command line as e.g.
./1-amps arg1 arg2

• arg1 = h0h0, h0HH, h0A0, HHHH, HHA0, A0A0, HmHp (self-energies),
h0, HH, A0 (tadpoles).

• arg2 = 0 for virtual 2L diagrams,
1 for 1L diagrams with 1L counterterms.

• Inputs/outputs defined in first few lines, e.g.

in=m/$1/2-prep.$2

out=m/$1/3-calc.$2

• Symbolic output + log files go to ‘m’ subdirectory.
Log file = Output file + .log.gz

• Fortran code goes to ‘f’ subdirectory.

T. Hahn, Symbolic Programming by Example – p.30



Step 0: Gaugeless Limit

Gaugeless approximation:

➀ Set gauge couplings g, g′ = 0 ⇒ MW , MZ = 0.

➁ Keep finite weak mixing angle.

➂ Keep
δM2

W

M2
W

and
δM2

Z

M2
Z

finite.

Must set mb = 0 so that O(α2
t ) corrections form

supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not ➂, though):

• Load MSSMCT.mod model file.

• Modify couplings, remove zero ones.

• Write out MSSMCTgl.mod model file.

T. Hahn, Symbolic Programming by Example – p.31



Step 1: Diagram Generation

• Generate 2L virtual and 1L+counterterm diagrams using
wrappers for FeynArts functions.

Simple diagram selection functions, e.g.

one of hi , χ̃,

t, t̃, b, b̃

sel[0][S[_] -> S[_]] = {

t[3] && htb[6],

t[3] && tb[6],

t[3] && tb[6],

t[3] && t[4] && htb[5],

t[3] && htb[5|6],

t[3] && htb[5],

t[3] && t[5],

t[5] && ht[3|4],

t[3|4|5] && ht[3|4|5] }

T1

1 2

3

4 5

6

T2

1 2

3

4

5

6

T3

1 2

34

5

6

T4

1

2

3 4

5

6 7

T5

1 2

3

4

5

6

7

T6

1 2

3 4

5

T7

1

2

3

4 5

6

T8

1 2

3

4

5 6

T9

1

2

3

4

5
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Step 2: Preparation for Tensor Reduction

• Take p2 → 0 limit.

• Simplify ubiquitous sfermion mixing matrices Ui j,

mostly by exploiting unitarity (∼ 50% size reduction).
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Efficiently Exploit Unitarity in Mathematica

Unitarity of 2 x 2 matrix: UU† = U†U = 1l, i.e.

U11U∗11 + U12U∗12 = 1, U11U∗21 + U12U∗22 = 0,

U21U∗21 + U22U∗22 = 1, U21U∗11 + U22U∗12 = 0,

U11U∗11 + U21U∗21 = 1, U11U∗12 + U21U∗22 = 0,

U12U∗12 + U22U∗22 = 1, U12U∗11 + U22U∗21 = 0.

Problem: Simplify will rarely arrange the U’s in just the way
that these rules can be applied directly.

Solution: Introduce auxiliary symbols which immediately
deliver the r.h.s. once Simplify considers the l.h.s., i.e.
increase the ‘incentive’ for Simplify to use the r.h.s.

But: Upvalues work only one level deep.
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Efficiently Exploit Unitarity in Mathematica

Introduce

USf[1, j] USfC[1, j]→ UCSf[1, j],

USf[2, j] USfC[2, j]→ UCSf[2, j],

USf[1, j] USfC[2, j]→ UCSf[3, j], + ditto for 1 st index

and formulate unitarity for the UCSf:

UCSf[2,1] = UCSf[1,2]; UCSf[3,2] = -UCSf[3,1];

UCSf[2,2] = UCSf[1,1]; UCSfC[3,2] = -UCSfC[3,1];

UCSf[2,3] = -UCSf[1,3];

... UCSfC[2,3] = -UCSfC[1,3];
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Step 3: Tensor Reduction

• Relatively straightforward application of TwoCalc and
FormCalc for tensor reduction.

• Observe: Need two Mathematica sessions since TwoCalc
and FormCalc cannot be loaded into one session, easily
accomodated in shell script.
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Step 4: Simplification

• Tensor reduction traditionally increases # of terms most.

• Step 4 reduces size before combination of results.

• Empirical simplification recipe.

• ‘DiagMark’ trick (D. Stöckinger):

• Introduce DiagMark[mi] where mi = masses in loop
in FeynArts output.

• Few simplifications can be made between parts with
different DiagMark⇒ Can apply simplification as

Collect[amp, _DiagMark, simpfunc]

• Much faster.
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Step 5: Calculation of Renormalization Constants

• Compute 1L renormalization constants (RC) with
FormCalc.

• Substitute explicit mass dependence in

dMVsq1→ MV2 dMVsq1MV2 (V = W, Z)

such that gaugeless limit can be taken safely.

• Expand in ε, collect powers for easier handling later, e.g.

{ dMf1[3,3] -> RC[-1, dMf1[-1,3,3]] +

RC[0, dMf1[0,3,3]],

{dMf1[-1,3,3] -> ...,

dMf1[0,3,3] -> ...} }

expansion

actual expressions for ε-coeffs
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Step 6: Combination of Results

• Expand amplitude in ε (similar as RC).

• Insert RCs.

• Add genuine 2L counterterms (hand-coded).

• Pick only ε0 term (unless debug flag set).

• Perform final simplification.
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Step 7: Code Generation

• Introduce abbreviations to shorten code.

• Write out Fortran code using FormCalc’s code-generation
functions.

• Add static code which computes e.g. the necessary
parameters for the generated code.

• Total final code size: 350 kBytes.

More details in arXiv:1508.00562.
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Exercise

Devise programs in Mathematica and FORM which apply the
Dirac equation to a suitably defined spinor, i.e.

/pi |ui〉 = mi |ui〉

/pi |vi〉 = −mi |vi〉

http://wwwth.mpp.mpg.de/members/hahn/sym.pdf

http://wwwth.mpp.mpg.de/members/hahn/sym.tar.gz
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