Introduction to Mathematica and FORM

Thomas Hahn

Max-Planck-Institut für Physik München

http://wwwth.mpp.mpg.de/members/hahn/mmaform.pdf

Computer Algebra Systems

- Commercial systems: Mathematica, Maple, Matlab/MuPAD, MathCad, Reduce, Derive...
- Free systems: FORM, GiNaC, Maxima, Axiom, Cadabra, Fermat, GAP, Singular, Sage...
- Generic systems: Mathematica, Maple, Matlab/MuPAD, Maxima, MathCad, Reduce, Axiom, Sage, GiNaC...
- Specialized systems: Cadabra, Singular, Magma, CoCoA,
 GAP...
- Many more...

Mathematica vs. FORM

Mathematica

- Much built-in knowledge,
- 'Big and slow' (esp. on large problems),
- Very general,
- GUI, add-on packages...

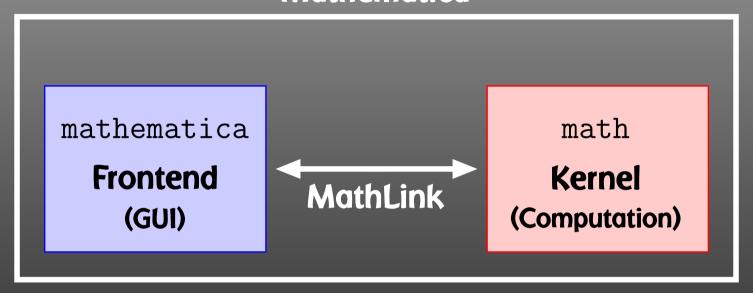
FORM

- Limited mathematical knowledge,
- 'Small and fast' (also on large problems),
- Optimized for certain classes of problems,
- Batch program (edit-run cycle).

Mathematica

Mathematica Components

"Mathematica"



http://wwwth.mpp.mpg.de/members/hahn/intro_math.pdf

<rant>Why I hate the Frontend</rant>

FRONTEND:

- Nice formatting
- Documentation
- Ease of use
- No obvious relation between screen and definitions
- Always interactive
- Slow startup

KERNEL:

- Text interface
- No pretty-printing
- 1-to-1 relation to definitions
- Interactive and non-interactive
- Scriptable
- Fast startup

Expert Systems

In technical terms, Mathematica is an Expert System. Knowledge is added in form of Transformation Rules. An expression is transformed until no more rules apply.

Example:

```
myAbs[x_] := x /; NonNegative[x]
myAbs[x_] := -x /; Negative[x]
```

We get:

Immediate and Delayed Assignment

Transformations can either be

added "permanently" in form of Definitions,

• applied once using Rules:

$$a + b + c /. a -> 2 c b + 3 c$$

Transformations can be Immediate or Delayed. Consider:

Mathematica is one of those programs, like TeX, where you wish you'd gotten a US keyboard for all those braces and brackets.

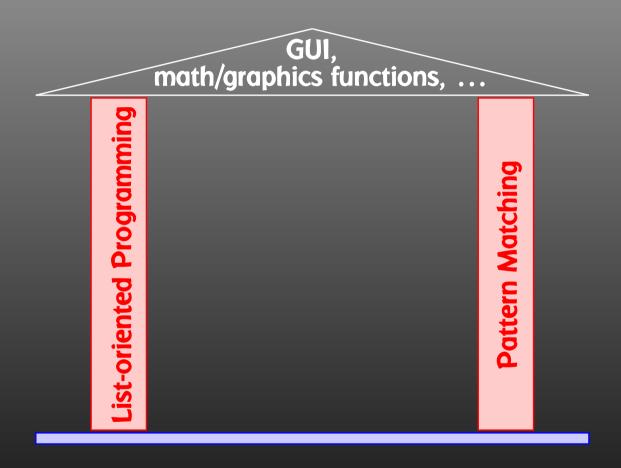
Almost everything is a List

All Mathematica objects are either Atomic, e.g.

```
Head[133] 🖙 Integer
Head[a] 🖙 Symbol
```

or (generalized) Lists with a Head and Elements:

The Pillars of Mathematica



List-oriented Programming

Using Mathematica's list-oriented commands is almost always of advantage in both speed and elegance.

Consider:

```
tab = Table[Random[], {10^7}];

test1 := Block[ {sum = 0},
    Do[ sum += tab[[i]], {i, Length[tab]} ];
    sum ]

test2 := Apply[Plus, tab]
```

Here are the timings:

```
Timing[test1][[1]]  8.29 Second Timing[test2][[1]]  1.75 Second
```

Map, Apply, and Pure Functions

Map applies a function to all elements of a list:

Apply exchanges the head of a list:

```
Apply[Plus, {a, b, c}]  a + b + c
Plus 00 {a, b, c}  a + b + c — short form
```

Pure Functions are a concept from formal logic. A pure function is defined 'on the fly':

```
(# + 1) \& /0 \{4, 8\} \Leftrightarrow \{5, 9\}
```

The # (same as #1) represents the first argument, and the & defines everything to its left as the pure function.

List Operations

Flatten removes all sub-lists:

```
Flatten[f[x, f[y], f[f[z]]]] \Leftrightarrow f[x, y, z]
```

Sort and Union sort a list. Union also removes duplicates:

Prepend and Append add elements at the front or back:

```
Prepend[r[a, b], c]  r[c, a, b]
Append[r[a, b], c]  r[a, b, c]
```

Insert and **Delete** insert and delete elements:

More Speed Bumps

Consider:

```
tab = Table[Random[], {10^5}];

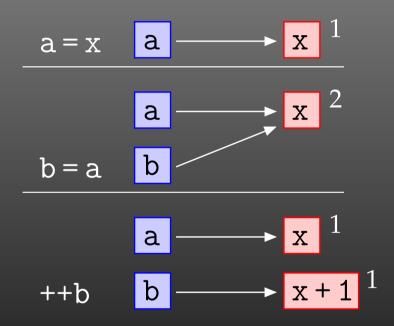
test1 := Block[ {res = {}},
    Do[ AppendTo[res, tab[[i]]], {i, Length[tab]} ];
    res ]

test2 := Block[ {res = {}},
    Do[ res = {res, tab[[i]]}, {i, Length[tab]} ];
    Flatten[res] ]
```

The timings:

Reference Count

Assignments that don't change the content make no copy but just increase the Reference Count.



Reference Count and Speed

```
test1 := ...
     ... AppendTo[res, tab[[i]]] ...
     res
   test2 :=
     ... res = {res, tab[[i]]} ...
     Flatten[res]
test1 has to re-write the list every time an element is added:
                \{1, 2\}
                              \{1,2,3\}
   {}
test2 does that only once at the end with Flatten:
     {{},1} {{{},1},2} {{{{},1},2},3} ...
```

Patterns

One of the most useful features is Pattern Matching:

```
matches one object
matches one or more objects
matches zero or more objects
matches zero or more objects
named pattern (for use on the r.h.s.)
named pattern with head h
pattern with head h
default value
conditional pattern
x /; x > 0
conditional pattern
```

Patterns take function overloading to the limit, i.e. functions behave differently depending on *details* of their arguments:

```
Attributes[Pair] = {Orderless}
Pair[p_Plus, j_] := Pair[#, j]& /@ p
Pair[n_?NumberQ i_, j_] := n Pair[i, j]
```

Attributes

Attributes characterize a function's behavior before and while it is subjected to pattern matching. For example,

The Hold... attributes are needed to pass variables by reference:

```
Attributes[listadd] = {HoldFirst}
listadd[x_, other_] := x = Flatten[{x, other}]
```

This would not work if x were expanded before invoking listadd, i.e. passed by value.

Memorizing Values

For longer computations, it may be desirable to 'remember' values once computed. For example:

Note that Mathematica places more specific definitions before more generic ones.

Decisions

Mathematica's If Statement has three entries: for True, for False, but also for Undecidable. For example:

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ, MatchQ, OrderedQ, ... These functions have no undecided state: in case of doubt they return False.

Conditional Patterns are usually faster:

Equality

Just as with decisions, there are several types of equality, decidable and undecidable:

```
a == b  a == b
a === b  False
a == a  True
a === a  True
```

The full name of '===' is SameQ and works as the Q indicates: in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with '==':

Solve
$$[x^2 == 1, x] \Leftrightarrow \{\{x -> -1\}, \{x -> 1\}\}$$

Needless to add, '=' is a definition and quite different:

$$x = 3$$
 — assign 3 to x

Selecting Elements

Select selects elements fulfilling a criterium:

```
Select[\{1, 2, 3, 4, 5\}, \# > 3 \& ] \Leftrightarrow \{4, 5\}
```

Cases selects elements matching a pattern:

```
Cases[\{1, a, f[x]\}, _Symbol] \Leftrightarrow \{a\}
```

Using Levels is generally a very fast way to extract parts:

Mathematical Functions

Mathematica is equipped with a large set of mathematical functions, both for symbolic and numeric operations.

Some examples:

```
Sum[i, {i,50}]
Series [Sin[x], \{x,1,5\}]
Simplify [(x^2 - x y)/x]
Together [1/x + 1/y]
Inverse[mat]
Eigenvalues[mat]
PolyLog[2, 1/3]
LegendreP[11, x]
Gamma [.567]
```

- integral
- derivative
- sum
- series expansion
- simplify
- put on common denominator
- matrix inverse
- eigenvalues
- polylogarithm
- Legendre polynomial
- Gamma function

Graphics

Mathematica has formidable graphics capabilities:

```
Plot[ArcTan[x], {x, 0, 2.5}]

ParametricPlot[{Sin[x], 2 Cos[x]}, {x, 0, 2 Pi}]

Plot3D[1/(x^2 + y^2), {x, -1, 1}, {y, -1, 1}]

ContourPlot[x y, {x, 0, 10}, {y, 0, 10}]
```

Output can be saved to a file with Export:

```
plot = Plot[Abs[Zeta[1/2 + x I]], {x, 0, 50}]
Export["zeta.eps", plot, "EPS"]
```

[?] Hint: To get a high-quality plot with proper LATEX labels, don't waste your time fiddling with the Plot options. Use the psfrag LATEX package.

Numerics

Mathematica can express Exact Numbers, e.g.

Sqrt[2], Pi,
$$\frac{27}{4}$$

It can also do Arbitrary-precision Arithmetic, e.g.

N[Erf[28/33], 25] © 0.7698368826185349656257148

But: Exact or arbitrary-precision arithmetic is fairly slow!

Mathematica uses Machine-precision Reals for fast arithmetic.

N[Erf[28/33]] © 0.769836882618535

Arrays of machine-precision reals are internally stored as Packed Arrays (this is invisible to the user) and in this form attain speeds close to compiled languages on certain operations, e.g. eigenvalues of a large matrix.

Compiled Functions

Mathematica can 'compile' certain functions for efficiency.

This is not compilation into assembler language, but rather a strong typing of an expression such that intermediate data types do not have to be determined dynamically.

```
fun[x_] := Exp[-((x - 3)^2/5)]

cfun = Compile[{x}, Exp[-((x - 3)^2/5)]]

time[f_] := Timing[Table[f[1.2], {10^5}]][[1]]

time[fun] \approx 2.4 Second

time[cfun] \approx 0.43 Second
```

Compile is implicit in many numerical functions, e.g. in Plot.

In a similar manner, Dispatch hashes long lists of rules beforehand, to make the actual substitution faster.

Blocks and Modules

Block implements Dynamical Scoping

A local variable is known everywhere, but only for as long as the block executes ("temporal localization").

Module implements Lexical Scoping

A local variable is known only in the block it is defined in ("spatial localization"). This is how scoping works in most high-level languages.

In C: Only Modules

Most languages have only Lexical Scoping:

```
#include <stdio.h>
static int a = 7;
static void printa() {
  printf("%d\n", a);
int main() {
  int a = 5;
  printa();
  return 0;
```

DownValues and UpValues

Definitions are usually assigned to the symbol being defined: this is called DownValue.

For seldomly used definitions, it is better to assign the definition to the next lower level: this is an UpValue.

This is better than assigning to Plus directly, because Plus is a very common operation.

In other words, Mathematica "looks" one level inside each object when working off transformations.

Output Forms

Mathematica knows some functions to be Output Forms. These are used to format output, but don't "stick" to the result:

{{1, 2}, {3, 4}}//MatrixForm
$$\Rightarrow$$
 $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ Head[%] \Rightarrow List — not MatrixForm

Some important output forms:

InputForm, FullForm, Shallow, MatrixForm, TableForm, TeXForm, CForm, FortranForm.

MathLink

The MathLink API connects Mathematica with external C/C++ programs (and vice versa). J/Link does the same for Java.

```
:Begin:
:Function:
               copysign
               CopySign[x_?NumberQ, s_?NumberQ]
:Pattern:
:Arguments: {N[x], N[s]}
:ArgumentTypes: {Real, Real}
:ReturnType: Real
:End:
#include "mathlink.h"
double copysign(double x, double s) {
 return (s < 0) ? -fabs(x) : fabs(x);
int main(int argc, char **argv) {
  return MLMain(argc, argv);
```

For more details see arXiv:1107.4379.

Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh's Here documents:

```
#! /bin/sh ...... Shell Magic
math << \_EOF_ .... start Here document (note the \)
   AppendTo[$Echo, "stdout"];
   << FeynArts'
   top = CreateTopologies[...];
   ...
_EOF_ .... end Here document</pre>
```

Everything between "<< \tag" and "tag" goes to Mathematica as if it were typed from the keyboard.

Note the "\" before tag, it makes the shell pass everything literally to Mathematica, without shell substitutions.

Scripting Mathematica

- Everything contained in one compact shell script, even if it involves several Mathematica sessions.
- Can combine with arbitrary shell programming, e.g. can use command-line arguments efficiently:

 Can easily be run in the background, or combined with utilities such as make.

Debugging hint: -x flag makes shell echo every statement,

```
#! /bin/sh -x
```

Commercial Software?

Mathematica licenses cost money (\sim 5 k \in /license). While your Mathematica program runs, it blocks one license, so don't 'just' leave your Mathematica session open.

- Parallelize
- Script, Distribute, Automate
- Crunch numbers outside Mathematica

But: don't overdo it. If your calculation takes 5 min in total, don't waste time improving.

Parallel Kernels

Mathematica has built-in support for parallel Kernels:

```
LaunchKernels[];
ParallelNeeds["mypackage'"];

data = << mydata;
ParallelMap[myfunc, data];</pre>
```

Parallel Kernels count toward Sublicenses.

Sublicenses = $8 \times \#$ interactive Licenses.

Parallel Functions

More functions:

ParallelArray ParallelEvaluate ParallelNeeds
ParallelSum ParallelCombine ParallelTable
ParallelDo ParallelProduct ParallelTry
ParallelMap ParallelSubmit
DistributeDefinitions DistributeContexts

- Automatic parallelization (so-so success): Parallelize [expr]
- 'Intrinsic' functions (e.g. Simplify) not parallelizable.
- Multithreaded computation partially automatic (OMP) for some numerical functions, e.g. Eigensystem.
- Take care of side-effects of functions.
- Usual concurrency stuff (write to same file, etc).

Crunch Numbers outside Mathematica

- Conversion of Mathematica expression to Fortran/C painless.
- Optimized output can easily run faster than in Mathematica.
- Showstopper: Functions not available in Fortran/C, e.g. NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).
- Mathematica has built-in C-code generator, e.g.

```
myfunc = Compile[{{x}}, x^2 + Sin[x^2]];
Export["myfunc.c", myfunc, "C"]
```

But no standalone code: shared object for use with Mathematica (i.e. also needs license).

 FormCalc's code-generation functions produce optimized standalone code.

Code-generation Functions

FormCalc's code-generation functions are public and disentangled from the rest of the code. They can be used to write out an arbitrary Mathematica expression as optimized Fortran or C code:

- handle = OpenCode ["file.F"]
 opens file.F as a Fortran file for writing,
- WriteExpr[handle, {var -> expr, ...}]
 writes out Fortran code which calculates expr and stores the result in var,
- Close [handle] closes the file again.

Code generation

Traditionally: Output in Fortran.

Code generator is meanwhile rather sophisticated, e.g.

Expressions too large for Fortran are split into parts, as in

```
var = part1
var = var + part2
...
```

- High level of optimization, e.g. common subexpressions are pulled out and computed in temporary variables.
- Many ancillary functions make code generation versatile and highly automatable, such that the resulting code needs few or no changes by hand:

```
VarDecl, ToDoLoops, IndexIf, FileSplit, ...
```

C Output

 Output in C99 makes integration into C/C++ codes easier:

SetLanguage["C"]

Code structured by e.g.

- Loops and tests handled through macros, e.g. LOOP(var, 1, 10, 1) ... ENDLOOP(var)
- Introduced data types RealType and ComplexType for better abstraction, can e.g. be changed to different precision.

Mathematica ↔ Fortran

Mathematica \rightarrow Fortran:

- Get FormCalc from http://feynarts.de/formcalc
- Write out arbitrary Mathematica expression:

```
h = OpenCode["file"]
WriteExpr[h, {var -> expr, ...}]
Close[h]
```

Fortran \rightarrow Mathematica:

- Get http://feynarts.de/formcalc/FortranGet.tm
- Compile: mcc -o FortranGet FortranGet.tm
- Load in Mathematica: Install["FortranGet"]
- Read Fortran code: FortranGet["file.F"]

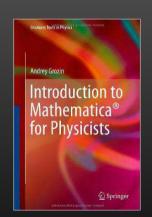
Mathematica Summary

- Mathematica makes it wonderfully easy, even for fairly unskilled users, to manipulate expressions.
- Most functions you will ever need are already built in.
 Many third-party packages are available at MathSource, http://library.wolfram.com/infocenter/MathSource.
- When using its capabilities (in particular list-oriented programming and pattern matching) right, Mathematica can be very efficient.
 - Wrong: FullSimplify[veryLongExpression].
- Mathematica is a general-purpose system, i.e. convenient to use, but not ideal for everything.
 For example, in numerical functions, Mathematica usually selects the algorithm automatically, which may or may not be a good thing.

Books

Michael Trott
 The Mathematica Guidebook for {Programming, Graphics, Numerics, Symbolics} (4 vol)
 Springer, 2004–2006.

Andrei Grozin
 Introduction to Mathematica for Physicists
 Springer, 2013.



FORM

FORM Essentials

- A FORM program is divided into Modules.
 Simplification happens only at the end of a module.
- FORM is strongly typed all variables have to be declared:
 Symbols, Vectors, Indices, (N)Tensors, (C)Functions.
- FORM works on one term at a time:
 Can do "Expand[(a + b)^2]" (local operation) but
 not "Factor[a^2 + 2 a b + b^2]" (global operation).
- FORM is mainly strong on polynomial expressions.
- FORM program + documentation + course available from http://nikhef.nl/~form.

A Simple Example in FORM

```
Symbols a, b, c, d;
Local expr = (a + b)^2;
id b = c - d;
print;
.end
```

Running this program gives:

```
Symbols a, b, c, d;
Local expr = (a + b)^2;
id b = c - d;
print;
.end

Time = 0.00 sec Generated terms = 6
expr Terms in output = 6
Bytes used = 104

expr =
d^2 - 2*c*d + c^2 - 2*a*d + 2*a*c + a^2;

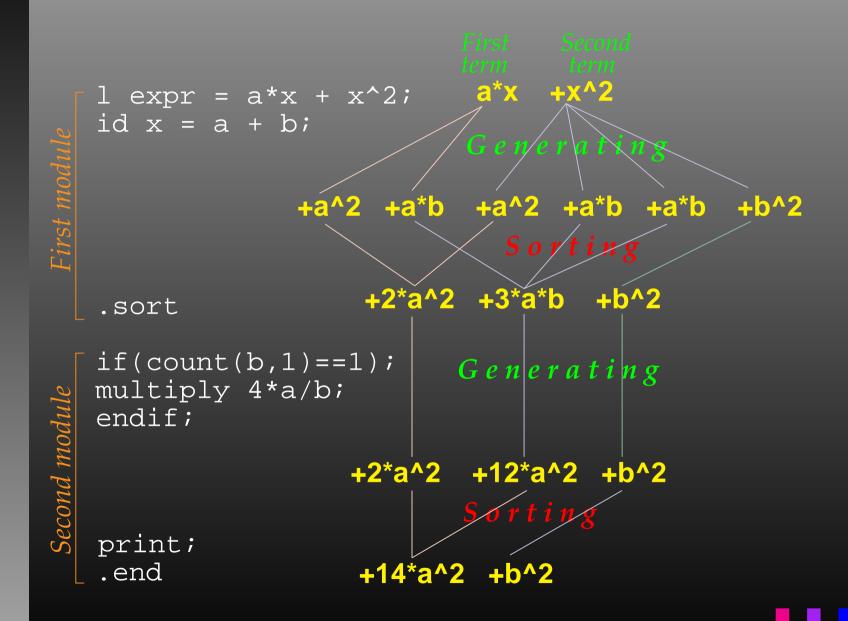
0.00 sec out of 0.00 sec
```

Module Structure

A FORM program consists of Modules. A Module is terminated by a "dot" statement (.sort, .store, .end, ...)

- Generation Phase ("normal" statements)
 During the execution of "normal" statements terms are only generated. This is a purely local operation only one term at a time needs to be looked at.
- Sorting Phase ("dot" statements):
 At the end of the module all terms are inspected and similar terms collected. This is the only 'global' operation which requires FORM to look at all terms 'simultaneously.'

Sorting and Generating



Id-Statement

The central statement in FORM is the id-Statement:

id does not, by default, match negative powers:

```
x + 1/x

id x = y; x^{-1} + y

id x^n? = y^n; y^{-1} + y — wildcard exponent
```

Patterns

Patterns are possible, too:

```
f(a, b, c) + f(1, 2, 3)

explicit match

wildcard match

group-wildcard match

id f(a?int_{,}?a) = a; @ 1 + f(a, b, c)

    constrained wildcard

alternatives
```

Bracketing, Collecting

bracket puts specified items outside the bracket.
antibracket puts specified items inside the bracket.
collect moves the bracket contents to a function.

```
.sort
     expr = a*c + a*d + b*c + b*d;
bracket a, b;
print;
.sort
     expr = + a * (c + d)
           + b * (c + d);
CFunction f;
collect f;
bracket f;
print;
.end
     expr = + f(c + d) * (a + b);
```

Preprocessor

FORM has a Preprocessor which operates before the compiler.

Many constructs are familiar from C, but the FORM preprocessor can do more:

- #define, #undefine, #redefine,
- #if{,def,ndef} ... #else ... #endif,
- #switch ... #endswitch,
- #procedure ... #endprocedure, #call,
- #do ... #enddo,
- #write, #message, #system.

The preprocessor works across modules, e.g. a do-loop can contain a .sort statement.

Dollar Variables

- Not strongly typed, can contain 'everything.'
- Preserved across module boundaries.
- Can be operated on during preprocessing (#\$X = ...) and normal operation (\$X = ...).
- Can receive matched pattern: once f(x?\$var) = ...
- No arrays.

```
s a, b;
L F = (a + b)^6;
#$n = 0;
term 1 is + a^6
term 2 is + 6*a^5*b
term 3 is + 15*a^4*b^2
term 4 is + 20*a^3*b^3
print "term % is %t", $n;
term 5 is + 15*a^2*b^4
term 6 is + 6*a*b^5
term 7 is + b^6
```

Special Commands for High-Energy Physics

- Gamma matrices: g_, g5_, g6_, g7_.
- Fermion traces: trace4, tracen, chisholm.
- Levi-Civita tensors:
 contract.
- Index properties: { ,anti,cycle} symmetrize.
- Dummy indices: sum, replaceloop. (e.g. $\sum_i a_i b_i + \sum_j a_j b_j = 2 \sum_i a_i b_i$)
- Very efficient combinatorics: dd_, distrib_.

FORM Summary

- FORM is a freely available Computer Algebra System with some specialization on High Energy Physics.
- Programming in FORM takes more 'getting used to' than in Mathematica. Also, FORM has no GUI or other programming aids.
- FORM programs are module oriented with global
 (= costly) operations occurring only at the end of module.
 A strategical choice of these points optimizes performance.
- FORM is much faster than Mathematica on polynomial expressions and can handle in particular huge (GB) expressions.

FORM ↔ Mathematica

Mathematica \rightarrow FORM:

- Get FormCalc from http://feynarts.de/formcalc
- After compilation the ToForm utility should be in the executables directory (e.g. Linux-x86-64):

```
ToForm < file.m > file.frm
```

FORM \rightarrow Mathematica:

- Get http://feynarts.de/formcalc/FormGet.tm
- Compile it with mcc -o FormGet FormGet.tm
- Load it in Mathematica with Install["FormGet"]
- Read a FORM output file: FormGet["file.out"]
 Pipe output from FORM: FormGet["!form file.frm"]

Exercise

Write a Mathematica function that works somewhat similar to Select. It should, however, not just give back the list of items for which the test function is true, but

{ list of items for which test is True, list of items for which test is False}

Try to find a version in which the test function is not evaluated more than once per item!

```
http://wwwth.mpp.mpg.de/members/hahn/mmaform.pdf
http://wwwth.mpp.mpg.de/members/hahn/intro_math.pdf
http://wwwth.mpp.mpg.de/members/hahn/mmaform.tar.gz
```