INTRODUCTION

TO

Differential Equations

FOR
 FEYNMAN InTEGRALS

Oleksandr Gituliar
oleksandr@gituliar.net

UH

II. Institut für Theoretische Physik

Universität Hamburg
Computer Algebra in Particle Physics 2017
DESY (Hamburg)

Introduction

Feynman Integrals Calculus - became in recent decades a science on its own.

$$
\int \underbrace{\mathrm{d}^{d} l_{1} \ldots \mathrm{~d}^{d} l_{n}}_{\text {loops }} \underbrace{\mathrm{d}^{d} p_{1} \delta\left(p_{1}^{2}\right) \ldots \mathrm{d}^{d} p_{m} \delta\left(p_{m}^{2}\right)}_{\text {legs }} \frac{1}{D_{1}^{n_{1}} \ldots D_{k}^{n_{k}}} \quad n_{i} \in Z
$$

Numerical methods

- Sector Decomposition, Subtraction Schemes, ...

Analytical methods

- Feynman/Schwinger/Mellin-Barnes parametrization
- Integration-By-Parts reduction Chetyrkin, Tkachov '81
- Laporta algorithm Laporta '00: AIR, FIRE, Reduze
- Symbolic reduction: LiteRed Lee '12
- private implementations
- Method of Differential Equations Kotikov '91, Remiddi '97
- Epsilon Form Henn '13
- Lee algorithm Lee '14: Fuchsia, Epsilon

Introduction

Feynman Integrals Calculus - became in recent decades a science on its own.

$$
\int \underbrace{\mathrm{d}^{d} l_{1} \ldots \mathrm{~d}^{d} l_{n}}_{\text {loops }} \underbrace{\mathrm{d}^{d} p_{1} \delta\left(p_{1}^{2}\right) \ldots \mathrm{d}^{d} p_{m} \delta\left(p_{m}^{2}\right)}_{\text {legs }} \frac{1}{D_{1}^{n_{1}} \ldots D_{k}^{n_{k}}} \quad n_{i} \in Z
$$

Integration-By-Parts reduction

- Integral Families
- integration momenta
* loop $-l_{1}, \ldots, l_{n}$ only
* phase-space $-p_{1}, \ldots, p_{m}$ only
* mixed
- set of denominators (topology)
- master integrals
- Reduction
- any integral (from the family) in terms of masters
* including derivatives
- completely analytical
- highly automated

Plan for Today

You will learn:

- Integration-by-Parts Reduction
- LiteRed
- Differential Equations in Epsilon Form
- Fuchsia
- Examples

1. One-Loop Integral
2. Two-Loop Phase-Space Integral

- Partial Fractioning
- Expansion of Hypergeometric Functions

Method of Differential Equations

1. Construct System of ODE (medium)

- from definition (e.g. special functions)
- from IBP rules
- highly automated
- AIR, FIRE, LiteRed, Reduze2

2. Find Epsilon Form (hard)

- automated
- Lee method: Fuchsia, epsilon

3. Solve System of ODE (easy)
4. Find Constants of Integration (medium)

- depends on the problem

$$
\Pi\left(p^{2}, m\right)=\int \mathrm{d}^{n} l F(p, l, m)
$$

- Arguments: from vectors to scalars

$$
F(p, l, m) \rightarrow F\left(l^{2}, l \cdot p, p^{2}, m\right)
$$

- In general, the number of scalar integration variables is given by

$$
N(L, E)=\frac{L(L+1)}{2}+L E \sim \mathscr{O}\left(L^{2}\right) \leftarrow \begin{aligned}
& \text { another source of growing } \\
& \text { complexity at higher orders }
\end{aligned}
$$

where E - number of external momenta, L - number of loop momenta

- 1-loop propagator: $N(1,1)=2$
- 4-loop propagator: $N(4,1)=14$ (ask Jos Vermaseren about details)

Example 1

- The problem contains two denominators

$$
D_{1}=l^{2}-m^{2} \quad D_{2}=(l-p)^{2}-m^{2}
$$

which map into our integration invariants in a unique way

$$
F(p, l, m) \rightarrow F\left(l^{2}, l \cdot p, p^{2}, m\right) \rightarrow F\left(D_{1}, D_{2}, p^{2}, m\right)
$$

- One integral family

$$
F\left(n_{1}, n_{2}\right)=\int \mathrm{d}^{n} l \frac{1}{D_{1}^{n_{1}} D_{2}^{n_{2}}}
$$

<<LiteRed ${ }^{\text {‘ }}$

SetDim[n];
Declare[\{m2\}, Number, \{l,p\}, Vector];
NewBasis[\$b, \{sp[l]-m2, sp[l-p]-m2\}, \{l\}, Directory->"b.ibp"];
GenerateIBP [\$b] ;
AnalyzeSectors [\$b];
FindSymmetries [\$b];

Example 1

In dimensional regularization the integral over a total derivative is zero.

$$
\int \mathrm{d}^{n} l_{i} \frac{\mathrm{~d}}{\mathrm{~d} l_{i}^{\mu}}\left(q^{\mu} F\left(p_{1}, \ldots, l_{1}, \ldots\right)\right)
$$

where q is arbitrary external or internal momenta.

IBP [\$b]

Example 1

SolvejSectors /@ UniqueSectors [\$b]

MIs [\$b]

> $\{j[\$ \mathrm{~b}, 0,1], \mathrm{j}[\$ \mathrm{~b}, 1,1]\}$

- We obtain two master integrals

$$
F_{1}=F(0,1)=\int \mathrm{d}^{n} l \frac{1}{(l-p)^{2}-m^{2}} \quad F_{2}=F(1,1)=\int \mathrm{d}^{n} l \frac{1}{\left(l^{2}-m^{2}\right)\left((l-p)^{2}-m^{2}\right)}
$$

- Any other integral is a linear combination of only these two, e.g.,

$$
F(2,1)=\frac{n-2}{2 m^{2}\left(p^{2}-4 m^{2}\right)} F_{1}+\frac{n-3}{p^{2}-4 m^{2}} F_{2}
$$

- We can check that since we can do $l \rightarrow l+p$ transformation

$$
F(0,1)=F(1,0)
$$

Example 1

Differential Equations

```
$ds = Dinv[#,sp[p,p]]& /@ MIs[$b] // IBPReduce;
$ode = Coefficient[#, MIs[$b]]& /@ $ds;
```

- This code produces a system of differential equations

$$
\begin{aligned}
& \frac{\mathrm{d} F_{1}}{\mathrm{~d} p^{2}}=0 \\
& \frac{\mathrm{~d} F_{2}}{\mathrm{~d} p^{2}}=\frac{2-2 \epsilon}{p^{2}\left(p^{2}-4 m^{2}\right)} F_{1}+\frac{2 m^{2}-\epsilon p^{2}}{p^{2}\left(p^{2}-4 m^{2}\right)} F_{2}
\end{aligned}
$$

where we work in $n=4-2 \epsilon$ space-time dimensions

This system is simple and we could solve it right away using <your favourite> method. Today, I want to demonstrate you how this and many other systems can be solved throug using their ϵ-form. As you will see this is a highly automated task.

Exercise

Derive another system of differential equations, but this time in m^{2}. (Hint: use Fromj, D, and Toj functions instead of Dinv).

I. Epsilon Form

- Classical Notation

$$
\begin{aligned}
\frac{\mathrm{d} F_{1}}{\mathrm{~d} x} & =A_{11}(x, \epsilon) F_{1}+A_{12}(x, \epsilon) F_{2} \\
\frac{\mathrm{~d} F_{2}}{\mathrm{~d} x} & =A_{21}(x, \epsilon) F_{1}+A_{22}(x, \epsilon) F_{2}
\end{aligned}
$$

- Matrix Notation

$$
\frac{\mathrm{d} \bar{F}}{\mathrm{~d} x}=A(x, \epsilon) \bar{F} \quad \text { where } \quad A=\left(\begin{array}{ll}
A_{11}(x, \epsilon) & A_{12}(x, \epsilon) \\
A_{21}(x, \epsilon) & A_{22}(x, \epsilon)
\end{array}\right) \quad \text { and } \quad \bar{F}=\binom{F_{1}}{F_{2}}
$$

It is very convenient to have our system in the epsilon form

$$
\frac{\mathrm{d} G}{\mathrm{~d} x}=\epsilon B(x) G
$$

since in this case we can easily find the solution to any order in ϵ parameter, as we will see on the next slide.
Some physical examples may lead to systems with ~ 500 equations. Hence, it is very important to make this task automatic.

II. A few words on Fuchsia

Input

- System of Ordinary Differential Equations $A(x, \epsilon, \ldots)$, i.e.,

$$
\frac{\mathrm{d} F}{\mathrm{~d} x}=A(x, \epsilon, \ldots) F(x, \epsilon, \ldots)
$$

Output

- Equivalent System in the Epsilon Form

$$
\frac{\mathrm{d} G}{\mathrm{~d} x}=\epsilon B(x, \ldots) G(x, \epsilon, \ldots)
$$

- Corresponding Basis Transformation

$$
F(x, \epsilon, \ldots)=T(x, \epsilon, \ldots) \times G(x, \epsilon, \ldots)
$$

- Other Operations
- apply custom transformation
- variable change
- "sort" to block-diagonal form

II. A few words on Fuchsia

- Based on the Lee algorithm Lee '14
- support additional symbols
- alternative implementation: epsilon
- Open-Source and Free Gituliar, Magerya '16 '17
- http://github.com/gituliar/fuchsia
- Implemented in Python
- SageMath
- Maxima
- Maple (optional)
- Algorithm

1. Fuchsification (Jordan form)

Get rid of apparent singularities
2. Normalization (eigenvalues, eigenvectors)

Balance eigenvalues to $\alpha \epsilon$ form
3. Factorization (solve linear equations)

Reduce to the epsilon form
II. A few words on Fuchsia

Example 1

Let us introduce a new variable y, such that

$$
p^{2}=-4 m^{2} \frac{y^{2}}{1-y^{2}}
$$

The new equations look as

$$
\begin{aligned}
\frac{\mathrm{d} F_{1}}{\mathrm{~d} y} & =0 \\
\frac{\mathrm{~d} F_{2}}{\mathrm{~d} y} & =\frac{1-\epsilon}{y m^{2}} F_{1}+\left(\frac{\epsilon}{1-y}-\frac{\epsilon}{1+y}-\frac{1}{y}\right) F_{2}
\end{aligned}
$$

With the help of Fuchsia we find a new basis G_{1}, G_{2} given by the system

$$
\begin{aligned}
& F_{1}=\frac{4(1-2 \epsilon)}{3(1-\epsilon)} G_{1} \\
& F_{2}=\frac{4}{3 m^{2}} G_{1}-\frac{2}{y} G_{2}
\end{aligned}
$$

For this basis the differential equations are the epsilon form

$$
\begin{aligned}
& \frac{\mathrm{d} G_{1}}{\mathrm{~d} y}=0 \\
& \frac{\mathrm{~d} G_{2}}{\mathrm{~d} y}=\frac{2}{3 m^{2}}\left(\frac{\epsilon}{1+y}+\frac{\epsilon}{1-y}\right) G_{1}-\left(\frac{\epsilon}{1-y}-\frac{\epsilon}{1+y}\right) G_{2}
\end{aligned}
$$

III. Solutions

We are looking for the solution of a given system of ordinary differential equations in the epsilon form

$$
\frac{\mathrm{d} G}{\mathrm{~d} x}=\epsilon B(x) G
$$

as a Laurent series in ϵ

$$
G(x, \epsilon)=G_{0}(x)+G_{1}(x) \epsilon+G_{2}(x) \epsilon^{2}+\ldots
$$

Let us put this "solution" into the initial equation

$$
\frac{\mathrm{d} G_{0}}{\mathrm{~d} x}+\frac{\mathrm{d} G_{1}}{\mathrm{~d} x} \epsilon+\frac{\mathrm{d} G_{2}}{\mathrm{~d} x} \epsilon^{2}+\ldots=\epsilon B(x) G_{0}+\epsilon^{2} B(x) G_{1}
$$

we get

$$
\frac{\mathrm{d} G_{0}}{\mathrm{~d} x}=0, \quad \frac{\mathrm{~d} G_{1}}{\mathrm{~d} x}=B(x) G_{0}, \quad \frac{\mathrm{~d} G_{2}}{\mathrm{~d} x}=B(x) G_{1} \quad \ldots \quad \frac{\mathrm{~d} G_{n}}{\mathrm{~d} x}=B(x) G_{n-1}
$$

This system can be easily solved (as promised)

$$
G_{0}=C_{0}, \quad G_{1}=C_{1}+\int \mathrm{d} x B(x) C_{0}, \quad G_{2}=C_{2}+\int \mathrm{d} x B(x)\left(C_{1}+\int \mathrm{d} x B(x) C_{0}\right) \quad \ldots
$$

$$
G_{n}(x)=C_{n}+\int \mathrm{d} x B(x) G_{n-1}
$$

III. Solutions

My implementation of the solution algorithm, which I use to get results for the next slide.

```
SolveODE[m_, x_, ep_, n_, c_] := Module[
    {$i, $j, $n, $sol, $sol0, $sol1},
    $n = Length[m];
    $sol[0] = Table[c[$j,0], {$j,1,$n}];
    For[$i=1, $i<=n, $i++,
        $sol0 = Table[c[$j,$i], {$j,1,$n}];
        $sol1 = Integrate[Dot[#,$sol[$i-1]],x]& /@ m;
        $sol[$i] = $sol0 + $sol1;
    ];
    Sum[ep^$i*$sol[$i], {$i,0,n}]
];
```


Example 1

- Master \#1

$$
F_{1}\left(y, m^{2}\right)=\frac{4}{3} C_{1}^{(0)}+\frac{4}{3}\left(C_{1}^{(1)}-C_{1}^{(0)}\right) \epsilon+\ldots
$$

- Master \#2

$$
F_{2}\left(y, m^{2}\right)=\frac{4 C_{1}^{(0)}}{3 m^{2}}-\frac{C_{2}^{(0)}}{y}+\frac{\epsilon}{3 m^{2} y}\left(4 y C_{1}^{(1)}-6 m^{2} C_{2}^{(1)}+\left(4 C_{1}^{(1)}-6 m^{2} C_{2}^{(0)}\right) \ln \left(\frac{1-y}{1+y}\right)\right)
$$

- Finally, we need to find unknown integration constants whcih are functions of m^{2} and ϵ, i.e.

$$
\left.\begin{array}{ll}
C_{1}^{(0)}\left(m^{2}, \epsilon\right), & C_{1}^{(1)}\left(m^{2}, \epsilon\right),
\end{array}\right] .
$$

Example 1

Master \#1 (from Fuchsia)

$$
F_{1}\left(y, m^{2}\right)=\frac{4}{3} C_{1}^{(0)}+\frac{4}{3}\left(C_{1}^{(1)}-C_{1}^{(0)}\right) \epsilon+\ldots
$$

Closed-form solution from the literature (see Smirnov's book)

$$
\begin{gathered}
F(0, n)=(-1)^{n} \frac{\Gamma(n-2+\epsilon)}{\Gamma(n)}\left(m^{2}\right)^{2-\epsilon-n} \\
F_{1}\left(y, m^{2}\right)=F(0,1)=\frac{m^{2}}{\epsilon}+m^{2}\left(1-\gamma_{E}-\ln m^{2}\right)+\ldots
\end{gathered}
$$

Result \#1

$$
C_{1}^{(0)}=\frac{3 m^{2}}{4 \epsilon} \quad C_{1}^{(1)}=\frac{3 m^{2}\left(2-\gamma_{E}-\ln m^{2}\right)}{4 \epsilon}
$$

Example 1

Result \#1

$$
C_{1}^{(0)}=\frac{m^{2}}{\epsilon} \quad C_{1}^{(1)}=\frac{m^{2}\left(1-\gamma_{E}-\ln m^{2}\right)}{\epsilon}
$$

Master \#2 (with Result \#1 substituted)

$$
F_{2}\left(y, m^{2}\right)=\frac{1}{\epsilon}+\frac{2 y-\gamma_{E} y-2 C_{2}^{(0)}-y \ln m^{2}+\ln \left(\frac{1-y}{1+y}\right)}{y}+\ldots
$$

We require that at the limit $y \rightarrow 0\left(p^{2} \rightarrow 0\right)$ our result is regular. This leads to the solution

$$
C_{2}^{0}=0
$$

Result \#2

$$
F_{2}\left(y, m^{2}\right)=\frac{1}{\epsilon}+2-\gamma_{E}-\ln m^{2}+\frac{1}{y} \ln \left(\frac{1-y}{1+y}\right)+\ldots
$$

This is in agreement with T.Riemann Monday's lecture!

Example 1

We have seen how to

- generate IBP rules for a given graph
- construct differential equations
- find epsilon form
- solve differential equations
- find integration constants

Exercies

- using LiteRed choose some two-loop (massless and massive) propagator and find corresponding masters
- solve Example \#1, but using equations in m^{2} (for help see Smirnov's book)

Example 2

Splitting Functions from $e^{+} e^{-}$-annihilation

In this example, I will show how to calculate a gluon-quark splitting function

$$
P_{g q}=\frac{1+(1-x)^{2}}{x}
$$

Using this technique you will be able to calculate remaining splitting functions $P_{q q}, P_{q g}$, and $P_{g g}$ as well as higher-order corrections to these quantities.

$$
e^{+}\left(q_{1}\right)+e^{-}\left(q_{2}\right) \rightarrow q\left(p_{1}\right)+\bar{q}\left(p_{2}\right)+g\left(p_{3}\right)
$$

Mass-factorization theorem

$$
\frac{\mathrm{d} \sigma_{i}}{\mathrm{~d} x}=\frac{P_{i q}}{\epsilon}+a_{i}+b_{i} \epsilon+\ldots
$$

where $q=q_{1}+q_{2}$ and

$$
\frac{\mathrm{d} \sigma_{i}}{\mathrm{~d} x}=\int \mathrm{d}^{n} p_{1} \delta\left(p_{1}^{2}\right) \mathrm{d}^{n} p_{2} \delta\left(p_{2}^{2}\right) \mathrm{d}^{n} p_{3} \delta\left(p_{3}^{2}\right) \delta\left(x-\frac{2 q \cdot p_{i}}{q^{2}}\right) \sigma\left(q_{1}, q_{2}, p_{1}, p_{2}, p_{3}\right)
$$

Example 2

By their structure phase-space integrals are very similar to loop integrals (compare to the one-loop propagator from Example I), except that we apply on-shell conditions $\delta\left(p_{i}^{2}\right)$ to the cut lines as shown in the following cut graph

$$
\frac{\mathrm{d} \sigma_{g}}{\mathrm{~d} x}=\int \mathrm{d}^{n} p_{1} \delta\left(p_{1}^{2}\right) \mathrm{d}^{n} p_{2} \delta\left(p_{2}^{2}\right) \mathrm{d}^{n} p_{3} \delta\left(p_{3}^{2}\right) \delta\left(x-\frac{2 q \cdot p_{3}}{q^{2}}\right) \sigma\left(q_{1}, q_{2}, p_{1}, p_{2}, p_{3}\right)
$$

where

$$
\sigma\left(q_{1}, q_{2}, p_{1}, p_{2}, p_{3}\right)=N \frac{\left(p_{1} \cdot q_{1}\right)^{2}+\left(p_{2} \cdot q_{1}\right)^{2}+\left(p_{1} \cdot q_{2}\right)^{2}+\left(p_{2} \cdot q_{2}\right)^{2}}{p_{1} \cdot p_{3} p_{2} \cdot p_{3}}
$$

This integration is equivalent to the 2-loop propagator, since we can eliminate one of the integration momenta using momentum conservation

$$
q_{1}+q_{2}=p_{1}+p_{2}+p_{3}
$$

Example 2

Integration by Parts

In order to integrate the cross-section we need a new IBP basis. Let us define one as

```
NewBasis[$a,{sp[p1], sp[p3], sp[q1+q2-p1-p3], s*x-2sp[q1+q2,p3], sp[p1,p3]},
    {p1, p3}, Append -> True];
GenerateIBP[$a];
AnalyzeSectors[$a, {___,0,0}, CutDs -> {1,1,1,1,0,0,0}];
FindSymmetries[];
SolvejRules /@ UniqueSectors[$a];
```

Note additional arguments in AnalyzeSectors routine:

- in $\left\{{ }_{z}, 0,0,0\right\}$ 0's represent invariants which appear in numerators only
- in CutDs -> $\{1,1,1,1,0,0,0\}$ 1's represent "cut" propagators. It means that all integrals with at least one non-positive indices in these places vanish.

We get only one master integral

$$
F_{1}(x, \epsilon)=\int \mathrm{d}^{n} p_{1} \delta\left(p_{1}^{2}\right) \mathrm{d}^{n} p_{2} \delta\left(p_{2}^{2}\right) \mathrm{d}^{n} p_{3} \delta\left(p_{3}^{2}\right) \delta\left(x-\frac{2 q \cdot p_{3}}{q^{2}}\right)
$$

IV. Partial Fractioning

Given a set of denominators, being a linear combination of the kinematic invariants $s_{i j}$, make a partial fraction such that

$$
\frac{1}{D_{1} \ldots D_{n}} \rightarrow \frac{a_{1}}{D_{2} \ldots D_{n}}+\frac{a_{2}}{D_{1} D_{3} \ldots D_{n}}+\ldots+\frac{a_{n}}{D_{1} \ldots D_{n-1}}
$$

All we need is to solve a linear system of equations

$$
a_{1} D_{1}+\ldots+a_{n} D_{n}=N
$$

where the coefficient in front of every $s_{i j}$ is zero and N is some number.
In particaulr, for

$$
A=\frac{1}{(x+1)(y+1)(x+y+1)}
$$

we write down

$$
\left(a_{1}+a_{3}\right) x+\left(a_{2}+a_{3}\right) y+a_{1}+a_{2}+a_{3}=N
$$

the solution is

$$
a_{1}=-a_{3} \quad a_{2}=-a_{3} \quad N=-a_{3}
$$

which gives

$$
A=\frac{1}{(y+1)(x+y+1)}+\frac{1}{(x+1)(x+y+1)}-\frac{1}{(x+1)(y+1)}
$$

Example 2

IBP Reduction

Now we can convert the initial cross-section into the j-form and make IBP reduction.

```
M2 = (sp[p1,q1]~2+sp[p1,q2]^2+sp[p2,q1]^2+sp[p2,q2]~2)/(x*sp[q1,q2]*sp[p1,p3]
PS2 = x / (sp[p1]*sp[p3]*sp[q1+q2-p1-p3]*(s*x-2*sp[q1+q2,p3]));
jM2 = Toj[$a, PS2*M2];
jM2 = jM2 // IBPReduce
Pgq = Series[jM2 /. {m -> 4-2*eps}, {eps, 0, -1}]
```

This gives us

$$
P_{g q} \sim \frac{2-2 x+x^{2}}{x^{2}} F_{1}(x)
$$

which contains one x factor more in the denominator than we expect.
Maybe $F_{1}(x) \sim x$? Let us check. . .

Example 2

Differential Equations

```
F1 = j[$a, 1, 1, 1, 1, 0, 0, 0];
dF1 = Toj[$a, D[Fromj[$F1], x]] // IBPReduce;
```

This code produces the following equation

$$
\frac{\mathrm{d} F_{1}}{\mathrm{~d} x}=\left(\frac{\epsilon}{1-x}+\frac{1-2 \epsilon}{x}\right) F_{1}
$$

Of course we could use Fuchsia and find the ϵ-form, but we can solve this in a closed form

$$
F_{1}=C(\epsilon)(1-x)^{\epsilon} x^{1-2 \epsilon}
$$

which confirms our assumption from the previous slide.
The final result is

$$
P_{g q} \sim \frac{2-2 x+x^{2}}{x}
$$

Example 2

Now you also now how to calculate phase-space integrals.
Exercise
Redefine x as

$$
x=\frac{2 q \cdot p_{1}}{q^{2}}
$$

and find a well-known result

$$
P_{q q}=\frac{1+x^{2}}{1-x}
$$

for the quark-quark splitting function.

V. Holonomic Functions

A function $f=f(x)$ is called holonomic if there exist polynomials $a_{n}(x), \ldots, a_{0}(x)$ such that

$$
a_{n}(x) f^{(n)}-a_{n-1}(x) f^{(n-1)}-\ldots-a_{0}(x) f=0
$$

holds for all x. Hence, the holonomic function is uniquely defined by

- the differential equation
- a number of initial values $f\left(x_{0}\right), f^{\prime}\left(x_{0}\right), \ldots, f^{(n-1)}\left(x_{0}\right)$

Examples of holonomic functions:

- all algebraic functions
- Generalized Hypergeometric functions
- polylogarythms
- Elliptic functions
- Bessel functions
- Airy functions
- Legendre and Chebyshev polynomials
- Heun functions
- and many others that have no name and no closed form

V. Holonomic Functions

A function $f=f(x)$ is called holonomic if there exist polynomials $a_{n}(x), \ldots, a_{0}(x)$ such that

$$
a_{n}(x) f^{(n)}-a_{n-1}(x) f^{(n-1)}-\ldots-a_{0}(x) f=0
$$

holds for all x. Hence, the holonomic function is uniquely defined by

- the differential equation
- a number of initial values $f\left(x_{0}\right), f^{\prime}\left(x_{0}\right), \ldots, f^{(n-1)}\left(x_{0}\right)$

Conclusion

- simple representation
- polynomials
- ordinary differential equations
- define many complicated functions
- no closed form
- non-trivial integration representation
- represent Feynman integrals
- alternative for direct integration

V. Holonomic Functions

We can easily rewrite a $n^{\text {th }}$-order linear ODE given by

$$
\begin{equation*}
y^{(n)}-a_{1}(x) y^{(n-1)}-\ldots-a_{n}(x) y=0 \tag{1}
\end{equation*}
$$

as an $n \times n$ system of the form

$$
\frac{\mathrm{d} \bar{y}}{\mathrm{~d} x}=A(x) \bar{y}
$$

where

$$
A(x)=\left[\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
a_{n}(x) & a_{n-1}(x) & \cdots & a_{2}(x) & a_{1}(x)
\end{array}\right] \quad \text { and } \quad \bar{y}=\left(\begin{array}{c}
y \\
y^{\prime} \\
\vdots \\
y^{(n-2)} \\
y^{(n-1)}
\end{array}\right)
$$

However, the inverse opperation is not as easy anymore.

VI. Hypergeometric Functions

The Generalized Hypergeometric Function

$$
\left.{ }_{p+1} F_{p}\binom{a_{1}, a_{2}, \ldots, a_{p+1}}{b_{1}, b_{2}, \ldots, b_{p}} x\right)=\prod_{i=1}^{p} \frac{\Gamma\left(b_{i}\right)}{\Gamma\left(a_{i}\right) \Gamma\left(b_{i}-a_{i}\right)} \int_{0}^{1} \frac{t_{i}^{a_{i}-1}\left(1-t_{i}\right)^{b_{i}-a_{i}-1}}{\left(1-x t_{1} \ldots t_{p}\right)^{a_{p+1}}} \mathrm{~d} t_{i}
$$

is a solution to the differential equation

$$
\left[D\left(D+b_{1}-1\right) \cdots\left(D+b_{p}-1\right)-x\left(D+a_{1}\right) \cdots\left(D+a_{p+1}\right)\right] y=0
$$

where

$$
D=x \frac{\mathrm{~d}}{\mathrm{~d} x}
$$

Exercise

Using your favourite CAS write a routine which for a given Generalized Hypergeometric Function, defined by the list $\left\{a_{1}, \ldots, a_{p+1}, b_{1}, \ldots, b_{p}\right\}$, returns a corresponding ODE, defined by the list $\left\{a_{1}(x), \ldots, a_{p}(x)\right\}$, in accordance with notation of eq. (1).

Reading List

- Feynman Integral Calculus by V. Smirnov
- Lectures on Differential Equations for Feynman Integrals by J. Henn
- Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations by W. Balser
- Computer Algebra in Particle Physics by S. Weinzierl
- Introduction to Loop Calculations by G. Heinrich
- Structure and Interpretation of Computer Programs by H. Abelson and G. Sussman with J. Sussman

