INTRODUCTION
TO
DIFFERENTIAL EQUATIONS
FOR
FEYNMAN INTEGRALS

Oleksandr Gituliar
oleksandr@gituliar.net

UH

i.ti.
N

II. Institut fiir Theoretische Physik
Universitat Hamburg

Computer Algebra in Particle Physics 2017
DESY (Hamburg)

mailto:oleksandr@gituliar.net

Introduction

Feynman Integrals Calculus — became in recent decades a science on its own.

1

a%1y...d%, d%p16(p?)...dp (%) ——— n,€Z
f~—v—~ D} ..D}

loops 11;35
Numerical methods

* Sector Decomposition, Subtraction Schemes, ...

Analytical methods

¢ Feynman/Schwinger/Mellin-Barnes parametrization

¢ | Integration-By-Parts | reduction Chetyrkin, Tkachov 81

— Laporta algorithm Laporta ’00: AIR, FIRE, Reduze
— Symbolic reduction: LiteRed Lee 12

- private implementations

¢ | Method of Differential Equations | Kotikov ’91, Remiddi ’97

- Epsilon Form Henn ’13
— Lee algorithm Lee ’14: Fuchsia, Epsilon

Introduction

Feynman Integrals Calculus — became in recent decades a science on its own.

1
d%1;...d%,, d%p16(p?)...d%p,,6(p%) ———— eZ
f 1 N P1 (Pl) Pm (psz;LIDZk n;

loops legs

Integration-By-Parts ‘ reduction

¢ Integral Families

- integration momenta
* loop —11,...,1, only
* phase-space — p1,...,pm, only
* mixed

- set of denominators (topology)

- master integrals

¢ Reduction

- any integral (from the family) in terms of masters

* | including derivatives

- completely analytical

- highly automated

Plan for Today

You will learn:

¢ Integration-by-Parts Reduction

— LiteRed

Differential Equations in Epsilon Form

— Fuchsia

Examples

1. One-Loop Integral
2. Two-Loop Phase-Space Integral

Partial Fractioning

¢ Expansion of Hypergeometric Functions

Method of Differential Equations

1. Construct System of ODE (medium)

¢ from definition (e.g. special functions)
¢ from IBP rules
- highly automated
— AIR, FIRE, LiteRed, Reduze?2
2. Find Epsilon Form (hard)

e automated

* Lee method: Fuchsia, epsilon

3. Solve System of ODE (easy)

4. Find Constants of Integration (medium)

¢ depends on the problem

Example 1 One-Loop Massive Self-Energy

=I1" (p®,m) =845 (p"p" - g"'p%) N(p?,m)

I-p
H(p2,m)=fdan(p,l,m)

* Arguments: from vectors to scalars

F(p,l,m) — F(2, I-p, p%, m)

* In general, the number of scalar integration variables is given by

another source of growing

L(L+1) .
complexity at higher orders

N(L,E)= LE ~ o0l?% —

where E — number of external momenta, L — number of loop momenta

— 1-loop propagator: N(1,1) =2
— 4-loop propagator: N(4,1) = 14 (ask Jos Vermaseren about details)

Example 1 Integration-by-Parts Reduction

¢ The problem contains two denominators
D1=12-m?> Dy=(-p3-
which map into our integration invariants in a unique way
F(p,l,m) — F(?,1-p, p?, m) — F(D1,D2,p* m)

* One integral family

Flu,ng)= [' DnanZ

<<LiteRed*

SetDim[n] ;
Declare[{m2}, Number, {1,p}, Vector];
NewBasis [$b, {spl[l]-m2, sp[l-p]-m2}, {1}, Directory->"b.ibp"];

GenerateIBP[$b];
AnalyzeSectors[$b];
FindSymmetries[$b];

Example 1 Integration-by-Parts Reduction

In dimensional regularization the integral over a total derivative is zero.

d
d"l;— (¢"F(p1,...,01,...
f dl‘.‘(q (p1 15--2)

1

where g is arbitrary external or internal momenta.

IBP[$b]

Example 1 Master Integrals

SolvejSectors /@ UniqueSectors[$b]
MIs[$b]
> {j[$b,0,1], j[$b,1,11}

¢ We obtain two master integrals

1
(Z—p)2—m2

1
—m2) ((l —p)2 _ mz)

Fy :F(O,l):fd”l Fy :F(l,l):fdnl E
¢ Any other integral is a linear combination of only these two, e.g.,

n—2 N n—-3
2m2(p2 —4m?2) ! p2—4m?2 ?

F(2,1)=

* We can check that since we can do [— [+ p transformation

F(0,1)=F(1,0)

Example 1 Differential Equations

$ds = Dinv[#,splp,pll& /@ MIs[$b] // IBPReduce;
$ode = Coefficient[#, MIs[$bl]l& /@ $ds;

* This code produces a system of differential equations

dp?
dFe 2—2e¢ 2m? —ep?
dp? ~ p2(p%—4m?) 1+p2(p2_4m2)

2

where we work in n =4 — 2¢ space-time dimensions

This system is simple and we could solve it right away using <your favourite> method.
Today, I want to demonstrate you how this and many other systems can be solved throug
using their e-form. As you will see this is a highly automated task.

Exercise
2

Derive another system of differential equations, but this time in m~.
(Hint: use Fromj, D, and Toj functions instead of Dinv).

I. Epsilon Form

¢ (lassical Notation
=Aq1(x,e)F1 +Aq1a(x,6)Fs

ary
dx

dry
dx

=Ag1(x,€)F1 + Aga(x,€)Fa

e Matrix Notation

dF

™ =A(x,e)F where A= Anx,e) Alz(x,e))
X

~\Agi(x,€) Aga(x,e)

It is very convenient to have our system in the epsilon form

e =eBx)G

dx
since in this case we can easily find the solution to any order in ¢ parameter, as we will see
on the next slide.
Some physical examples may lead to systems with ~ 500 equations. Hence, it is very impor-
tant to make this task automatic.

II. A few words on Fuchsia

Input
¢ System of Ordinary Differential Equations A(x,e,...), i.e.,

A Ae...)Flre..)

dx
Output
¢ Equivalent System in the Epsilon Form
dG
— =e€¢B(x,...)G(x,e,...)
dx

¢ Corresponding Basis Transformation

F(x,e,..)=T(x,¢,...)xG(x,€,...)

® Other Operations

— apply custom transformation
— variable change

— "sort" to block-diagonal form

II. A few words on Fuchsia

Based on the Lee algorithm Lee 14

- support additional symbols

- alternative implementation: epsilon

Open-Source and Free Gituliar, Magerya '16 ’17

- http://github.com/gituliar/fuchsia

Implemented in Python

- SageMath
- Maxima

— Maple (optional)

Algorithm
1. Fuchsification (Jordan form)
Get rid of apparent singularities
2. Normalization (eigenvalues, eigenvectors)
Balance eigenvalues to a € form

3. Factorization (solve linear equations)
Reduce to the epsilon form

http://github.com/gituliar/fuchsia

II. A few words on Fuchsia

Example 1 Epsilon Form by Fuchsia

Let us introduce a new variable y, such that

2
2 2 Y
=—4m
p -
The new equations look as
dF
1)
dy
dF 1- 1
2 €p e e 1

— = +
dy ym?2 1m\1= y 1l+y y
With the help of Fuchsia we find a new basis G1, Gg given by the system
4(1-2¢)

Fi=—G
1T 31-e0 !
4 2
Fo=—G1—--G
2= 501 J 2
For this basis the differential equations are the epsilon form
dGg
4G _,
dy
dG 2
e i 5
dy 3m2\1+y 1-y 1-y 14y

III. Solutions

We are looking for the solution of a given system of ordinary differential equations in the

epsilon form
% =e¢B(x)G
dux

as a Laurent series in ¢

G(x,€) = Go(x) + G1(x) e + Ga(x) €2 +. ..

Let us put this "solution" into the initial equation

dGoy dG; dGs ,
+ €+ €

_ 2
I I T +...=e¢B(x) Gy +€“ B(x) G1

we get
dGy dGq dGe dG,
_—= O _— = B G —_— = B G ces
e , i (x)Go, e ()G 1 i

This system can be easily solved (as promised)

=Bx)G,-1

Go=0C), G1 =Cl+fde(x)Co, Go =Cz+fde(x)(Cl +/de(x)Co)

Gp(x)=C, +fde(x)Gn_1

III. Solutions

My implementation of the solution algorithm, which I use to get results for the next slide.

SolveODE[m_, x_, ep_, n_, c_] := Module[
{$i, $j, $n, $sol, $s010, $soll},

$n = Length[m];

$s01[0] = Tablel[c[$j,0], {$j,1,%n}];

For[$i=1, $i<=n, $i++,
$s010 = Tablelc[$j,$il, {$j,1,$n}];
$s0l1l = Integrate[Dot [#,$s0l[$i-1]1],x]1& /@ m;
$s01[$i] = $s0l0 + $s0li;

13

Sum[ep~$i*$sol[$il, {$i,0,n}]

g

Example 1 Solutions

e Master #1 4 4
2\ _ (0) (1) (0)
Fily,m”) =200+ 2 (0= C0)e+ ..
e Master #2
40(0) C(O) e 1-
2y _ *v1 2 1) 2 ~(1) 1 2 ~(0) Y
Fo(y,m®) = 3 Ty +3m2y (4yC1 —-6m*Cy’ +(4C’ —6m=C,)hl(l-l-y))

¢ Finally, we need to find unknown integration constants whcih are
functions of m? and ¢, i.e.

cPm?0), CPVm?e0),

CcP(m2e), CPm?e),

Example 1 Integration Constants #1

Master #1 (from Fuchsia)

Closed-form solution from the literature (see Smirnov’s book)

_qpl=2+6) o9 e p
FO,m)= (D" = (m?)

2
Fl(y,mZ):F(O,l): m_+m2(1—YE—lnm2)+...
€

Result #1

Example 1 Integration Constants #2

Result #1))
cO — m” o = m?(1-yg —Inm?)
e O0F :

Master #2 (with Result #1 substituted)

(0) 2 1-y
1 2y-vey—-2Cy" —ylnm“+In|{
Foly,m?) ==+ (+y)+...
€ Yy

We require that at the limit y — 0 (p? — 0) our result is regular. This leads to the solution

Cc9=0

Result #2

1 1-
Fa(y,m* =~ +2-yp ~Inm” +—1n(24
y 1+y

This is in agreement with T.Riemann Monday’s lecture!

Example 1 Summary

We have seen how to

e generate IBP rules for a given graph
¢ construct differential equations

¢ find epsilon form

¢ solve differential equations

¢ find integration constants

Exercies

* using LiteRed choose some two-loop (massless and massive) propagator
and find corresponding masters

* solve Example #1, but using equations in m? (for help see Smirnov’s book)

Example 2 Splitting Functions from e*e™-annihilation

In this example, I will show how to calculate a gluon-quark splitting function

C1+(1-x)?

P
8q X

Using this technique you will be able to calculate remaining splitting functions P4, Py,
and Pg, as well as higher-order corrections to these quantities.

q1 P1 q1 P1
P3
q2 P2 q2 P2

e"(q1)+e (q2) — q(p1)+d(p2) + g(p3)

Mass-factorization theorem

dO" PL'
LY g +be+...
dx €

where g = g1+ g9 and
q-pi

do; 2
dxl :fdnpl(S(p%)dnp25(p§)dnp35(p§)5(x— q2) U(QlaQZ;I)l,pz’pB)

Example 2 Phase-Space Integrals

By their structure phase-space integrals are very similar to loop integrals (compare to the
one-loop propagator from Example I), except that we apply on-shell conditions 6(p?) to the
cut lines as shown in the following cut graph

do
d—j=fd”p15(p§)d"p25(p§)d”p36(p§)6(x— 253) 0(q1,92,P1,P2,P3)

where))))
(p1-q1)* +(p2-q1)* +(p1:q2)* +(p2-q2)
P1°P3P2:P3

This integration is equivalent to the 2-loop propagator, since we can eliminate one of the
integration momenta using momentum conservation

0(q1,92,p1,p2,p3) =N

q1tq2=p1tp2+ps3

Example 2 Integration by Parts

In order to integrate the cross-section we need a new IBP basis. Let us define one as

NewBasis [$a,{splpl], splp3], splql+q2-p1-p3], s*x-2splql+q2,p3], splpl,p3l},
{p1, p3}, Append -> Truel;

GenerateIBP[$a];
AnalyzeSectors[$a, {___,0,0}, CutDs -> {1,1,1,1,0,0,0}];
FindSymmetries[];

SolvejRules /@ UniqueSectors[$al;

Note additional arguments in AnalyzeSectors routine:

* in { 0,0} 0’s represent invariants which appear in numerators only

—_——

® in CutDs -> {1,1,1,1,0,0,0} 1’s represent "cut" propagators. It means that all
integrals with at least one non-positive indices in these places vanish.

We get only one master integral

20 -
Fi(x,e) = f d”ma(p%)d"p25<p§>d”p36(p§)5(x— ‘f]f 3)

IV. Partial Fractioning

Given a set of denominators, being a linear combination of the kinematic invariants s, ;,
make a partial fraction such that

1 ai as an

—

+ fot———
D,..D, Dy...D, DiDs...D, Diy...D,

All we need is to solve a linear system of equations
aiD{+...+a,D,=N
where the coefficient in front of every s;; is zero and N is some number.

In particaulr, for
1

A:
(x+Dy+Dx+y+1)

we write down
(a1+asg)x+(ag+ag)y+ai+ags+as=N

the solution is
a1 =—ag ag=—as N = —as

which gives
1 1 1

A= i DTy D GiDaiyrD Do D

Example 2 IBP Reduction

Now we can convert the initial cross-section into the j-form and make IBP reduction.

M2 = (splpl,qll~2+splpl,q2]~2+splp2,ql]l~2+spl[p2,q2]~2)/(x*splql,q2]*splpl,p3]

PS2 = x / (splp1l*spl[p3]*splql+q2-p1-p3]*(s*x-2*splql+q2,p31));
jM2 = Tojl[$a, PS2*M2];

jM2 = jM2 // IBPReduce

Pgq = Series[jM2 /. {m -> 4-2*eps}, {eps, 0, -1}]

This gives us

2—2x +x2
Pyg~— 35— Fi@

which contains one x factor more in the denominator than we expect.

Maybe F'1(x) ~ x? Let us check. ..

Example 2 Differential Equations

F1 = j[$a, 1, 1, 1, 1, 0, 0, 0];

dF1 = Toj[$a, D[Fromj[$F1], x]1] // IBPReduce;

This code produces the following equation

dFl_(€ 1-2¢

o= F
dx)1

1-x X

Of course we could use Fuchsia and find the e-form, but we can solve this in a closed form
Fi1=C(e)(1—x) x172%¢

which confirms our assumption from the previous slide.
The final result is

2 — 2x + x2

P, ~
89 x

Example 2 Summary

Now you also now how to calculate phase-space integrals.

Exercise

Redefine x as

e 2q-p1
q2
and find a well-known result
p 1+x2
9= 7,

for the quark-quark splitting function.

V. Holonomic Functions

A function f = f(x) is called holonomic if there exist polynomials a,(x), ..., ag(x) such that
an@f " =an-1(0) f" 7V~ —agx) f =0
holds for all x. Hence, the holonomic function is uniquely defined by
¢ the differential equation
* anumber of initial values f(xo), f(x0), ..., ™ V(xo)
Examples of holonomic functions:

* all algebraic functions

o ‘ Generalized Hypergeometric functions ‘

— polylogarythms
— Elliptic functions

Bessel functions

Airy functions

Legendre and Chebyshev polynomials

Heun functions

¢ and many others that have no name and no closed form

V. Holonomic Functions

A function f = f(x) is called holonomic if there exist polynomials a,(x), ..., ag(x) such that
an@f —an 1) f" V- —ag@) f =0
holds for all x. Hence, the holonomic function is uniquely defined by

¢ the differential equation

* anumber of initial values f(xg), f(x0), ..., ™ D(xo)

Conclusion

* simple representation

— polynomials

— ordinary differential equations
* define many complicated functions

- no closed form

- non-trivial integration representation

¢ represent Feynman integrals

¢ alternative for direct integration

V. Holonomic Functions

We can easily rewrite a n'-order linear ODE given by

¥ —a1@) y" P - —an)y=0 (1)
as an n x n system of the form
dy
= — Alx) ¥
dx 2
where
0 1 0 0 y
0 0 0 0 y
Ax) = : : : : and y= :
0 o - 0 1 yn=2
[an(x) an-1(x) - as®) ai(®)] yb

However, the inverse opperation is not as easy anymore.

VI. Hypergeometric Functions

The Generalized Hypergeometric Function

ag, az, ..., ap+1
+]_F X =
PHEPL by by, by

P I'(b;) 127N (1 - gy)
FiT@)Tb;—a)Jo (L—xty...tp)e
is a solution to the differential equation

[DD+b1-1)--(D+b,-1) —x(D+a1) - (D+ap+1)] y=0

where

Exercise

Using your favourite CAS write a routine which for a given Generalized Hypergeometric
Function, defined by the list {a1,...,ap+1,b01,...,b,}, returns a corresponding ODE, defined
by the list {a1(x),...,a,(x)}, in accordance with notation of eq. (1).

Reading List

¢ Feynman Integral Calculus by V. Smirnov
¢ Lectures on Differential Equations for Feynman Integrals by J. Henn

¢ Formal Power Series and Linear Systems of
Meromorphic Ordinary Differential Equations by W. Balser

¢ Computer Algebra in Particle Physics by S. Weinzierl
¢ Introduction to Loop Calculations by G. Heinrich

¢ Structure and Interpretation of Computer Programs
by H. Abelson and G. Sussman with J. Sussman

