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1. Given sufficient training data T, with labels y = 1 for 
objects of class C1 and y = 0 for objects of class C2, and 

2. given a sufficiently flexible function f (x, w), we can 
approximate

𝑝 𝐶1	|	𝑥 = ((*)
( * 	, -.( * /0

, 				A = p(C1) / p(C2), 
where 

𝐷 𝑥 =
𝑝(𝑥|C1)

𝑝 𝑥 C1 + 𝑝(𝑥|C2)
by minimizing the quadratic risk.

3. This conclusion is independent of the function class.

Recap
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4. If your goal is to classify objects with the fewest errors, then 
the Bayes classifier, 𝑝 𝐶1	|	𝑥 , is the optimal solution. 

5. Consequently, if you have a classifier known to be close to 
the Bayes limit (the smallest possible error rate) it is clear 
that any other classifier, however sophisticated it might be, 
cannot possibly do much better. 

6. All classification methods, such as the ones in TMVA, are 
different numerical approximations of some function of the 
Bayes classifier.

Recap



SUPPORT VECTOR MACHINES
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Support Vector Machines

In 1992, Boser, Guyon and Vapnik created an interesting non-
linear generalization of the Fisher discriminant (SVM).

Basic Idea
Data that are non-separable in d-dimensions may be better 

separated if mapped into a space of higher (usually, 
infinite) dimension 

ℎ:	ℝ7 → ℝ9

Instead of constructing a plane in the original space ℝ7	one 
constructs a plane  

𝑓 𝑥 = 𝑤 < ℎ 𝑥 + 𝑐
in the space ℝ9	that partitions the space into signal and 
background rich regions. 
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Support Vector Machines
Consider separable data in ℝ9:

red plane: w.h(x1)+ c = +1
green plane: w.h(x) + c = 0
blue plane: w.h(x2)+ c = –1

subtract blue from red
w.[h(x1) – h(x2)] = 2

and normalize the normal
vector w
ŵ.[h(x1) – h(x2)] = 2/||w||

h(x1)

h(x2)

w

Introduction to Machine Learning                                       Harrison B. Prosper                        DESY, 2017



8

Support Vector Machines
The quantity m = ŵ.[h(x1) – h(x2)], the distance between the red
and blue planes, is called the margin. The best separation occurs 
when the margin is as large as possible. 

But note: because m ~ 1/||w||, 
maximizing the margin is 
equivalent to minimizing

||w||2
This is the loss function!h(x1)

h(x2)

w
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Label the red dots y = +1 and the blue dots y = –1. The task is to 
minimize ||w||2 subject to the constraints

C = yi (w.h(xi) + c) ≥ 1, i = 1 … N

that is, the task is to minimize 

𝐿 𝑤, 𝑐, 𝛼 = -
@ A B	

−∑ 𝛼E 𝑦E 𝑤 < ℎ 𝑥E + 𝑐 − 1G
EH-

where the α are Lagrange multipliers

9

Support Vector Machines

x1

x2

w
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Support Vector Machines
When L(w,c,α) is minimized with respect to w and c, the function 
L(w,c,α) can be transformed into the quadratic form:

1 1 1
( ) ( )1( )

2

N N N

i i j i j i
i i j

jh x h xE y ya a aa
= = =

×= -å åå

At the minimum of E(α), the only non-zero coefficients α are 
those corresponding to points on the red and blue planes: that is, 
the so-called support vectors. The key idea is to replace the scalar 
product h(xi).h(xj) between two infinite dimensional vectors by a 
kernel function K(xi, xj). SVMs can work very well, but there is 
an unsolved problem: it is not known how to choose the correct 
kernel for a given problem.
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NEURAL NETWORKS: 
SHALLOW, DEEP, BAYESIAN

Introduction to Machine Learning                                       Harrison B. Prosper                        DESY, 2017 11



12

(One version of Problem 13): Prove
that it is impossible to do the following:

f(x1,…,xn) = F( g1(x1),…, gn(xn))
In 1957, Kolmogorov proved that it was possible with n = 3.
In 1989, it was shown that functions of the form

𝑓 𝑥-, … , 𝑥J = 𝑎 +L𝑏Ntanh 𝑐N +L𝑑NE𝑥E

J

EH-

T

NH-

can provide arbitrarily accurate approximations of
real functions of I real variables.
(Hornik, Stinchcombe, and White, Neural Networks 2, 359-366 (1989))

A Bit of History: Hilbert’s 13th Problem
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Shallow Neural Networks

n(x, w)

x1

x2

cj

a )],(exp[1
1),(

wxf
wxn

-+
=

f is used for regression
n is used for classification
w = a, b, c, d are free 
parameters to be fitted.

bj

dji
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𝑓 𝑥,𝑤	 = 𝑎 +L𝑏Ntanh 𝑐N +L𝑑NE𝑥E

J

EH-

T

NH-



Recall that our goal is to classify wines as good or bad using the 
variables below:

variables description
acetic acetic acid
citric citric acid
sugar residual sugar
salt NaCl
SO2free free sulfur dioxide
SO2tota total sulfur dioxide
pH pH
sulfate potassium sulfate       http://www.vinhoverde.pt/en/history-of-vinho-verde

alcohol alcohol content
quality (between 0 and 1)

Example 2: Wine Tasting
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Example 2: Wine Tasting

We consider the same two variables SO2tota and alcohol and 
the NN function shown here:

The training data comprise 500 good 
wines and 500 bad wines.

Introduction to Machine Learning                                       Harrison B. Prosper                        DESY, 2017 15



Example 2: Wine Tasting

To construct the NN, we minimize the
quadratic risk function

𝑅 𝑤 = 1/2 L 𝑦E − 𝑛(𝑥E, 𝑤) @
-XXX

EH-
where x = (SO2tota, alcohol),

y = 1 for good wines and
y = 0 for bad wines.

As shown yesterday, this procedure yields an 
approximation to

𝐷 𝑥 =
𝑝(𝑥|𝑔𝑜𝑜𝑑)

𝑝 𝑥 𝑔𝑜𝑜𝑑 + 𝑝(𝑥|𝑏𝑎𝑑)
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Example 2: Wine Tasting – Results
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Shown are the distributions of D(x) and the ROC curve. In 
this example, the ROC curve shows the fraction f of each 
class of wine accepted.



Results
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Actual
p(good | x)

Best fit 
NN



DEEP NEURAL NETWORKS
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Deep Neural Networks

A deep neural network (DNN) is a multi-layer neural network! 
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input layer hidden layer 1   hidden layer 2 output layer

x h1(b1 + W1x)
h2(b2 + W2h1)

o = h3(b3 + W3h2)



Deep Neural Networks

Many of the remarkable breakthroughs in tasks such as face 
recognition use a type of DNN called a convolutional neural 
network (CNN). 

CNNs are functions that compress data in a clever way and 
classify objects using their compressed representations via a 
standard fully connected NN. The compression reduces the 
dimensionality of the space to be searched.

Source: https://www.clarifai.com/technology
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Deep Neural Networks

A CNN comprises three types of processing layers: 1. 
convolution, 2. pooling, and 3. classification.
1. Convolution layers

The input layer is “convolved” with one or more matrices 
using element-wise products that
are then summed. In this example,
since the sliding matrix fits 9
times, we compress the input from
5 x 5 to a to 3 x 3 matrix.
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2. Pooling Layers
After convolution, and a pixel by pixel non-linear 
transformation (using, e.g., the function y = max(0, x) –
ReLU) a coarse-graining of the layer is performed 
called max pooling in which the maximum 
values within a series of small windows
are selected and become the output of
a pooling layer.

Deep Neural Networks
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3. Classification Layers
After an alternating sequence of convolution and pooling 
layers, the outputs go to a standard neural network, either 
shallow or deep. The final outputs correspond to the 
different classes. In spite of the complexity, a CNN 
approximates the same thing as any other classifier, namely,

𝑝 𝐶[ 𝑥 = 𝑝 𝑥 𝐶[ 𝑝(𝐶[)/ L 𝑝 𝑥 𝐶\ 𝑝(𝐶\)
]

\H-

Deep Neural Networks
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h In 2014, a machine learning competition (HiggsML) was 
conducted (https://higgsml.lal.in2p3.fr) in which the goal was 
to separate ATLAS simulated 𝐻 → 𝜏,𝜏. events from 
simulated background. 

hThe competition was won by Gabor Melis (Franz Inc., 
Fixnum Services, Hungary) who created a classifier using the 
average of 70 DNNs, each with architecture 
(35,600,600,600,2), i.e., 35 inputs, 3 hidden layers of 600 
nodes each, and 2 outputs. This is a classifier with more than 
70 million fitted parameters! 

Deep Neural Networks
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h In 2006, University of Toronto researchers Hinton, Osindero, 
and Teh (HOT*) finally succeeded in training a deep neural 
network. Each layer was trained to produce a representation 
of its inputs that served as the training data for the next layer. 
Then the entire network was tweaked using gradient descent. 

hThis breakthrough seemed to provide compelling evidence 
that the training of deep neural networks requires careful 
initialization of parameters and sophisticated machine 
learning algorithms. 

Deep Neural Networks
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* Hinton, G. E., Osindero, S. and Teh, Y. (HOT), A fast learning algorithm 
for deep belief nets, Neural Computation 18, 1527-1554. 



hBut, in 2010, Ciresan et al.* showed that such cleverness was 
not needed! The authors succeeded in training a DNN with 
architecture (784, 2500, 2000, 1500, 1000, 500, 10) that 
classified the hand-written digits in the MNIST database.

hThe database comprises 60,000 28×28 = 784 pixel images 
for training and validation, and 10,000 for testing.

hThe error rate of their ~12-million parameter DNN was 35
images out of 10,000. The misclassified images are shown on 
the next slide.

Deep Neural Networks
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* Cire ̧san DC, Meier U, Gambardella LM, Schmidhuber J. , Deep, big, 
   simple neural nets for handwritten digit recognition. Neural Comput. 2010 Dec;
   22 (12): 3207-20. http://yann.lecun.com/exdb/mnist/



Deep Neural Networks
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the two most likely predictions (bottom, from left to right) and the correct label accord-

ing to MNIST (top, right).

the very competitive MNIST handwriting benchmark, single precision floating-point

GPU-based neural nets surpass all previously reported results, including those obtained

by much more complex methods involving specialized architectures, unsupervised pre-

training, combinations of machine learning classifiers etc. Training sets of sufficient

size are obtained by appropriately deforming images. Of course, the approach is not

limited to handwriting, and obviously holds great promise for many visual and other

pattern recognition problems.
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Deep Neural Networks

Question: 
how is it possible to fit a 12 million-parameter function, in a 
matter of hours, with a mere 60,000 images, avoid overfitting, 
and beat the most sophisticated methods (as of 2010)? 

Answer: 
1. brute force: use lots of computing power, e.g., GPUs, and
2. a clever trick: generate a limitless amount of training data 

by randomly deforming the images every training cycle.

By deforming the images, the original 60,000 images could 
be used as the validation set!
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BAYESIAN NEURAL 
NETWORKS
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Recap: Bayesian Learning

Choose
Function space F = { f (x, w) }
Likelihood p(T | w), training set T = {(y, x)}
Loss function L
Prior p(w)

Method
Use Bayes’ theorem to assign a probability (density)

p(w |T)= p(T | w) p(w) / p(T)
= p(y | x, w) p(x | w) p(w) / p(y | x) p(x)  
~ p(y | x, w) p(w) (assuming p(x | w) = p(x))

to every function in the function space, where p(y | x, w) is
the product of the likelihoods p(yi | xi, w) for each (yi, xi).
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Recap: Bayesian Learning

Given, the posterior density p(w | T), and some new data x one 
can compute the predictive distribution of y

In general, a different L, will yield a different estimate of f (x).

( | , ) ( | , ) ( | )p y x T p y x pw w T wd= ò
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Bayesian Neural Networks

For regression, the likelihood p(y | x, w) for a given (y, x) is 
typically assumed to be Gaussian

𝑝 𝑦 𝑥,𝑤 = 𝐴exp − -
@
𝑦	 − 𝑓 𝑥,𝑤 @/𝜎@

For classification one uses
𝑝 𝑦 𝑥,𝑤 = [𝑛 𝑥,𝑤 ]g[1 − 𝑛 𝑥,𝑤 ] -.g, y = 0	or	1

Setting y = 1, in 𝑝 𝑦 𝑥, 𝑇 = ∫𝑝 𝑦 𝑥,𝑤 	𝑝 𝑤 𝑇)𝑑𝑤�
�

gives 𝑝 𝑦 = 1 𝑥, 𝑇 = ∫𝑛(𝑥,𝑤)	𝑝 𝑤 𝑇)𝑑𝑤�
�

which is an estimate of the probability that the object 
characterized by x belongs to the class for which  y = 1. 
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Bayesian Neural Networks

In practice, the high dimensional integral 

𝑝 𝑦 = 1 𝑥, 𝑇 = ∫𝑛(𝑥,𝑤)	𝑝 𝑤 𝑇)𝑑𝑤�
�

≈
1
𝑀 L 𝑛(𝑥,𝑤\)

]

\H-
is approximated using Markov Chain Monte Carlo (MCMC) 

integration in which the parameters w are sampled from the 
posterior density 𝑝 𝑤 𝑇). 

Pros: Automatically obtain an uncertainty estimate and the 
averaging makes the function estimates more robust.

Cons: Training times can be very long.
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Example 1: Higgs to ZZ to 4 Leptons
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Example 2: Wine Tasting

To construct the BNN, we sample points w from the posterior 
density 𝑝 𝑤 𝑇) using the
Hybrid Monte Carlo method
implemented in the Flexible
Bayesian Modeling package
by statistician Radford Neal.

This sampling generates an ensemble of neural networks,
just as in the 1-D example on the previous 
slide.
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Example 2: Wine Tasting – Results

Introduction to Machine Learning                                       Harrison B. Prosper                        DESY, 2017 37

Shown ares the distributions of D(x) (using the average of 
100 NNs) and the ensemble of ROC curves, one for each 
NN. 
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<NN>Actual
p(good | x)



Comparing ROCs!

We see that if good and bad 
wines are equally likely and
we are prepared to accept 
40% of bad wines, while
accepting 80% of good ones, 
then the BDT does slightly
better. 
But, if we lower the
acceptance rate of bad 
wines, all three methods 
work equally well.
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REGRESSION
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Function Approximation

Now that the Higgs boson has been found, our primary goal 
at the LHC is to look for, and if we’re lucky, discover new 
physics.

There are two basic strategies:
1. Look for any deviation from the 

predictions of our current theory of 
particles (the Standard Model).

2. Look for the specific deviations predicted by theories of 
new physics, such as those based on supersymmetry.
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Function Approximation

While finishing a
CMS paper related to 
his PhD dissertation, my
former student Sam Bein
had to approximate  a
likelihood function 
L(θ ) = p(x | θ), which was
a function of the 19
parameters θ
of the pMSSM.
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Function Approximation

This is what I suggested he try. 
1. Write the likelihood function to be approximated as 

𝐿 𝜃 = 𝐶 𝜃 ∏ 𝑔E 𝜃E-s
EH-

2. Approximate each 1-D density gi(θi) using, e.g., a NN.

3. Use a neural network to approximate
𝐷 𝜃 = t u

t u 	,	∏ vw uwxy
wzx

	

where the “background” is sampled from the 1-D 
functions and the “signal” is the original distribution of 
points sampled from the pMSSM parameter space. 
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Function Approximation

4. Finally, approximate the function L using

𝐿 𝜃 =
𝐷(𝜃)

1 − 𝐷(𝜃){𝑔E 𝜃E

-s

EH-
The idea here is that much of the dependence of L on θ is 

captured by the product function, leaving (we hoped!) a 
gentler 19-dimensional function to be approximated.

The next slide shows the neural network approximations of a 
few of the g functions. Of course, 1-D functions can be 
approximated using a wide variety of methods. The point 
here is to show the flexibility of a single class of NNs.
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gi(θi)
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Hot off the Press: CMS Jet Response
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Summary

hMachine learning can be applied to many aspects of data 
analysis, including classification and regression. There are 
hundreds of methods, but almost all are numerical 
approximations of the same mathematical quantity.

hWe considered random grid searches, decision trees, 
boosted decision trees, neural networks, shallow, deep, and 
Bayesian. 

hNo method is best for all problems. Therefore, it is good 
practice to try a few of them, say BDTs and NNs, and 
check that they give approximately the same results. 
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