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INTRODUCTION
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Introduction

In these lectures, I shall illustrate a few key ideas in machine 
learning using the following examples: 

hExample 1: Higgs to ZZ to 4 leptons vs. ZZ to 4 leptons

hExample 2: Wine Tasting
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Example 1: Higgs to ZZ to 4 Leptons
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Signal Background
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Example 2: Wine Tasting

Wine tasting is big business. But, can it be automated?
In principle, yes, if we can establish the
physical attributes that define “good” wine,
such as this one for $117,000 a bottle!
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Introduction: What is Machine Learning?

The use of computer-based algorithms for constructing useful 
models of data.

Machine learning algorithms fall into four broad categories:
1. Supervised Learning
2. Semi-supervised Learning
3. Unsupervised Learning
4. Reinforcement Learning

The two lectures and the tutorials are about supervised 
learning.
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Introduction: Approaches

Sometimes people distinguish between:
Machine Learning

Given training data T = (y, x) = (y1, x1),… (yN, xN), a 
class of functions { f  }, and some constraint C on these 
functions, find the best approximation to the unknown 
mapping 

y = f (x)

Bayesian Learning
This is similar, except the goal is to assign a 

probability density to each function  f (x) in the space of 
functions.

10
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Introduction: Machine Learning

Choose
Function space F = { f (x, w) }
Constraint C
Loss function* L

Method
Find f (x) by minimizing the average loss, sometimes 
referred to as the empirical risk

𝑅 𝑤 =
1
𝑁.𝐿 𝑦1, 𝑓 𝑥1, 𝑤 + 𝐶(𝑤)

9

1:;

*The loss function is a measure of the cost of making a bad choice.

F

f (x, w*)
C(w)
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Introduction: Bayesian Learning

Choose
Function space F = { f (x, w) }
Likelihood p(T | w), T = (y, x)
Loss function L
Prior p(w)

Method
Use Bayes’ theorem to assign a probability density

p(w |T)= p(T | w) p(w) / p(T)
= p(y | x, w) p(x | w) p(w) / p(y | x) p(x)  
~ p(y | x, w) p(w) (assuming p(x | w) = p(x))

to every parameter point, and therefore every function in the 
function space. 

F



THEORY 
WHAT YOU WANTED TO KNOW BUT WERE 
AFRAID TO ASK!
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Minimization via Gradient Descent
The empirical risk defines a “landscape” in the space of 

parameters, or equivalently in the space of functions. 
The goal is to find the lowest point in the landscape, usually 

by moving in the direction of the local negative gradient:

𝑤1 ← 𝑤1 − 𝜌
𝜕𝑅(𝑤)
𝜕𝑤1

Most minimization algorithms are variations on this theme, 
the most popular of which is called
Stochastic Gradient Descent (SGD). This
uses constantly changing subsets 
of the training data to provide noisy
estimates of the gradient.

14
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Machine Learning

Quadratic Empirical Risk
Many methods (decision trees, random forests, neural 

networks, deep neural networks…) use the 
quadratic loss function

𝐿 𝑦, 𝑓 = (𝑦 − 𝑓)@

and choose a function f (x, w*) by minimizing 

𝑅 𝑤 =
1
𝑁.(𝑦1 − 𝑓 𝑥1, 𝑤 )@	+	𝐶(𝑤)

9

1:;
The quadratic loss is popular because it is mathematically 

convenient. However, it is sensitive to outliers. If outliers 
are a problem 𝐿 𝑦, 𝑓 = (𝑦 − 𝑓)@� may be a better choice.
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Machine Learning

Consider the quadratic risk function in the limit 𝑁 → ∞

𝑅 𝑤 =
1
𝑁.(𝑦1 − 𝑓 𝑥1, 𝑤 )@	+	𝐶(𝑤)

9

1:;

→ ∫𝑑𝑥 ∫𝑑𝑦 𝑦 − 𝑓 𝑥,𝑤 @𝑝(𝑦, 𝑥)�
�

�
�

	= ∫ 𝑑𝑥	𝑝(𝑥) ∫ 𝑑𝑦 𝑦 − 𝑓 @𝑝(𝑦|𝑥)�
�

�
�

where 𝑝 𝑦|𝑥 = 𝑝(𝑦, 𝑥)/𝑝(𝑥) and where we have assumed 
that the influence of the constraint (in this limit) is 
negligible. Notice that R is a functional R[ f ] of f (x, w), 
that is, R depends on (infinitely) many values of f.
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Machine Learning

If we change the function f by a small arbitrary function 𝛿𝑓 a
small change
	𝛿𝑅 = 2∫𝑑𝑥	𝑝(𝑥)𝛿𝑓 ∫𝑑𝑦(𝑦 − 𝑓)𝑝(𝑦|𝑥)�

�
�
�

will be induced in R. In general, 𝛿𝑅 ≠ 0. 

But, if the function f is flexible enough we shall be able to 
reach the minimum of R, where	𝛿𝑅 = 0. 

We want this to hold for all variations 𝛿𝑓 and for all values of 
x. The only way that can happen is if the quantity in 
brackets is zero. This implies

𝑓(𝑥) = L𝑦	𝑝 𝑦 𝑥 𝑑𝑦
�

�



Machine Learning: Classification

Suppose that y has only two values, 1 and 0, associated with two 
distinct classes, s and b, respectively. Then

𝑓 𝑥 = ∫𝑦	𝑝 𝑦 𝑥 𝑑𝑦 = 𝑝(𝑦 = 1|𝑥) ≡ 𝑝(𝑠|𝑥)�
�

See,  Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990);
Wan, IEEE Trans. Neural Networks 4, 303-305 (1990);
Richard and Lippmann, Neural Computation. 3, 461-483 (1991)

We therefore conclude the following:
1. given sufficient training data T, with labels y = 1 for 

objects of class s and y = 0 otherwise, and 
2. given a sufficiently flexible function f (x, w), we can 

approximate p(s | x), by minimizing the quadratic risk. 
Note: this conclusion is independent of the function class!
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Consider the classification rule: if 𝑓 𝑥 > 0 assign the object 
to class s (e.g., the signal class) otherwise assign it to class b
(e.g., the background class). Unless the classes are completely 
separable, misclassifications are inevitable. 

19

Background density
p(x, b) = p(x | b) p(b)

Signal density
p(x, s) = p(x | s) p(s)

x
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(x
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x0

α
b

Machine Learning: Classification



Let Lb and Ls, respectively, be the losses incurred due to 
misclassification. If x is 1-dimensional, the error rate is given by
𝜀 = 𝐿Q ∫𝐻 𝑥, 𝑥R 𝑝 𝑥, 𝑏 𝑑𝑥

�
� +	𝐿T∫[1 − 𝐻 𝑥, 𝑥R ]𝑝 𝑥, 𝑠 𝑑𝑥

�
�

where H(x, x0) = 1 if x > x0, and zero otherwise.

Machine Learning: Classification

20

Background density
p(x, b) = p(x | b) p(b)

Signal density
p(x, s) = p(x | s) p(s)
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Now minimize the error rate with respect to the boundary x0. 
This yields

WX
WY
= exp	(𝜆 𝑥R )

^(T)
^(Q)

, where 𝜆 𝑥 = ln ^ 𝑥 𝑠
^ 𝑥 𝑏 is the 

log likelihood ratio. Defining, the discriminant

𝐷 𝑥 =
exp	(𝜆 𝑥 )

exp	(𝜆 𝑥 ) 	+ 	1 =
𝑝(𝑥|𝑠)

𝑝 𝑥 𝑠 + 𝑝(𝑥|𝑏)

we obtain, finally,

𝑝 𝑠	|	𝑥 =
𝐷(𝑥)

𝐷 𝑥 	+ 1 − 𝐷 𝑥 /𝐴
where A = p(s) / p(b) is the (prior) signal to noise ratio.

Machine Learning: Classification
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We see that the direct minimization of the error rate gives the 
same answer as minimizing the quadratic risk, namely, 

𝑓 𝑥 ≈ 𝑝 𝑠	|	𝑥 =
𝐷(𝑥)

𝐷 𝑥 	+ 1 − 𝐷 𝑥 /𝐴
A = p(s) / p(b)

a result that holds even when x is multidimensional.

In general, different loss functions yield different solutions. 
But the most commonly used loss functions yield solutions 
that can be written in terms of the log likelihood ratio:

𝜆 𝑥 = ln
𝑝 𝑥 𝑠
𝑝 𝑥 𝑏

Machine Learning: Classification

22
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Bayesian Learning

Recall: the goal is to approximate the posterior density p(w | T). 
Given new data x we can compute the predictive distribution

𝑝 𝑦 𝑥, 𝑇 = ∫𝑝 𝑦 𝑥,𝑤 	𝑝 𝑤 𝑇)𝑑𝑤�
� ,

that is, the probability (density) of y given x.
If a definite value for y is needed for every x, we can achieve this 

by minimizing the risk function, 
𝑅 𝑓 = ∫𝐿 𝑦, 𝑓 𝑝 𝑦 𝑥, 𝑇 𝑑𝑦�

� .

For L = (y – f )2,  we get the same answer as before, namely, 
𝑓 𝑥, 𝑇 = ∫𝑦	𝑝 𝑦 𝑥, 𝑇 𝑑𝑦�

� .

Exercise 1: How is f (x) approximated if 𝐿 𝑦, 𝑓 = (𝑦 − 𝑓)@� ? 



PRACTICE
MAKES PERFECT!
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Machine Learning in Practice

Here is a very short list of supervised machine learning 
methods:

hGrid Searches: Uniform, Random
hFisher & Quadratic Discriminants
hDecision Trees: Single, Boosted
hNeural Networks: Shallow, Deep, Bayesian
hNaïve Bayes 
hKernel Density Estimation
hSupport Vector Machines
hRandom Forests

25



GRID SEARCHES
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Example 1:  Higgs to ZZ to 4 Leptons

Consider the task of separating signal from background using 
the variables x = (mZ1, mZ2).

27

Signal Background
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Uniform Grid Search

Given the variables x = (mZ1, mZ2), the simplest way to try to 
separate signal from background is to consider n thresholds 
(cuts) on each variable. In 2 dimensions, we would have to 
try n2 tuples of cuts.

But, suppose we have d variables, and wish to do the same 
thing. Now, we must consider nd d-tuples of cuts! As d
increases, the task becomes computationally prohibitive 
because the number of cuts to be considered grows rapidly. 
This is an example of the “curse of dimensionality”. 

We need to be a bit smarter…

28



Random Grid Search

One way to break the “curse” (or at least to tame it!) is to 
place cuts where they are more likely to do the most good. 

A good place is at the signal points, since it is the signal that 
we wish to extract! 

We shall call 
(x1 CUT-DIR mZ1) AND (x1 CUT-DIR mZ1),

where CUT-DIR: <, >, or ==, a cut-point. In our example, our 
cut-point is a 2-tuple; in d-dimensions, it is a d-tuple.

(Note: we can also combine cut-points, to form “box” cuts.)

The next slide is a graphical representation of the algorithm.
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Random Grid Search (RGS)
Si

gn
al

 fr
ac

tio
n

Background fraction

0
0

1

1

Ntot = # events before cuts
Ncut = # events after cuts
Fraction = Ncut/Ntot

Take each point of
the signal class as 
a cut-point

H.B.P. et al., Proceedings, CHEP 1995

y

x
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Example 1: Higgs to ZZ to 4 Leptons

The red point is the best cut, defined in some “reasonable” way.

Each point here is the result
of applying a different pair
of cut-points, which form
a random box.

Cyan: signal
Magenta: background
Box: best box cut
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Example 1: Higgs to ZZ to 4 Leptons

But what is “reasonable”? 
Let us assume that “reasonable” = minimize average loss. 
But, now, we need a loss function! Define, 

𝐺(𝑥, 𝑠, 𝑏) = 2 ln ^ 𝑥 𝑏 + 𝑠
^ 𝑥 𝑏

where, here, s and b denote the total mean signal and 
background counts, respectively, resulting from the cuts. 

We can think of G(x, s, b) as a negative loss, that is, a gain. 
Minimizing average loss is equivalent to maximizing average 
gain (call it the benefit) 

𝐵(𝑠, 𝑏) = 2L𝑝(𝑥|𝑏 + 𝑠) ln
𝑝 𝑥 𝑏 + 𝑠
𝑝 𝑥 𝑏

�

�

𝑑𝑥
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Example 1: Higgs to ZZ to 4 Leptons

Apart from the factor of 2, the function 

𝐵(𝑠, 𝑏) = 2L𝑝(𝑥|𝑏 + 𝑠) ln
𝑝 𝑥 𝑏 + 𝑠
𝑝 𝑥 𝑏

�

�

𝑑𝑥

is an instance of the Kullback-Leibler divergence, a measure 
of the “dissimilarity” between two densities p(x) and q(x),

𝐷(𝑝| 𝑞 = L𝑝(𝑥) ln
𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥

�

�
or, when x is discrete,

𝐷(𝑝| 𝑞 =. 𝑝(𝑥) ln
𝑝(𝑥)
𝑞(𝑥)

�

h
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Example 1: Higgs to ZZ to 4 Leptons

34

Exercise 2: Show that 𝐵 𝑠, 𝑏 = 2𝑏𝑓 𝑠/𝑏 ,	
where 𝑓 𝑧 = 1 + 𝑧 ln 1 + 𝑧 − 𝑧, when  
𝑝 𝑥 𝑏 + 𝑠 	and	𝑝(𝑥|𝑏) are Poisson
distributions and x = n is an integer. 

Exercise 3: Show that 𝐵 𝑠, 𝑏 = T
Q�
in	the	

limit	𝑠 ≪ 𝑏. 



FISHER & QUADRATIC 
DISCRIMINANTS
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Fisher Discriminant

Suppose we can approximate p(x | s) and p(x | b) by Gaussian 
densities with differing means, but with the same covariance 
matrix, Σ, then the log likelihood ratio 𝜆 𝑥 = ln ^ 𝑥 𝑠

^ 𝑥 𝑏
becomes

𝜆 𝑥 = ln r(h,	sY,	t)	
r(h,	sX	,t)

→ 𝑤 u 𝑥 + 𝑐,
which is linear in x and where
𝑤 = Σ'; 𝜇T − 𝜇Q	

36

decision boundary

w

𝑤 u 𝑥 + 𝑐 < 0

𝑤 u 𝑥 + 𝑐 > 0
Exercise 4: Show that 𝜆 𝑥
is linear in x.



Quadratic Discriminant

If we use different covariance matrices for the signal and the
background densities, we obtain the quadratic discriminant:

𝜆 𝑥 = 𝑥 − 𝜇Q yΣQ'; 𝑥 − 𝜇Q
−	 𝑥 − 𝜇T yΣT'; 𝑥 − 𝜇T

A fixed value defines a curved surface 
in x-space that partitions the space 
into signal-rich and background-rich 
regions.

37

decision
boundary



DECISION TREES
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Decision tree: 
a sequence of if then else
statements.

Basic idea: recursively
partition the x-space into 
regions of diminishing impurity.

Geometrically, a decision tree 
is a d-dimensional histogram 
in which the bins are created
using recursive binary
partitioning.

Decision Trees
root node

leaf node

MiniBoone, Byron Roe

child node

39



Decision Trees

To each bin, we associate the 
value of the function f (x) to 
be approximated.

That way, we arrive at a 
piecewise constant 
approximation of  f (x).

MiniBoone, Byron Roe

0
0 0.4

200

Energy (GeV)

PM
T 

H
its

100

B = 10
S = 9

B = 37
S = 4

B =  1
S = 39

f(x) = 0 f(x) = 1

f(x) = 0

40



Decision Trees

For each variable,  find the
best partition (“cut”), defined 
as the one that yields the 
greatest decrease in impurity

= Impurity (parent bin) 
– Impurity (“left”-bin)
– Impurity (“right”-bin)

Then choose the best partition 
among all partitions, and 
repeat with each child bin.

0
0 0.4

200

Energy (GeV)

PM
T 

H
its

100

B = 10
S = 9

B = 37
S = 4

B =  1
S = 39

f(x) = 0 f(x) = 1

f(x) = 0

41



Decision Trees

The most common impurity 
measure is the Gini index

(Corrado Gini, 1884-1965):

Gini index = p (1 – p)
where p is the purity

p = S / (S + B)

p = 0 or 1 = maximal purity
p = 0.5 = maximal impurity

0
0 0.4

200

Energy (GeV)

PM
T 

H
its

100

B = 10
S = 9

B = 37
S = 4

B =  1
S = 39

f(x) = 0 f(x) = 1

f(x) = 0
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BOOSTED DECISION TREES
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Making a Silk Purse from a Pig’s Ear! 

In 1997, AT&T researchers Freund and Schapire [Journal of 
Computer and  Sys. Sci. 55 (1), 119 (1997)], showed that it 
was possible to build highly effective classifiers by 
combining a large number of mediocre ones! 

The Freund-Schapire algorithm, which they called AdaBoost, 
was the first successful method to boost (i.e., enhance)
the performance of 
poorly performing 
classifiers by 
averaging their outputs.

44
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Averaging Weak Learners

Suppose that you have a collection of classifiers f (x, wk), which, 
individually, perform only marginally better than random 
guessing. Such classifiers are referred to as weak learners.

A decade later, the idea of Freund and Schapire was developed 
further by Friedman and Popescu who showed it is possible to 
build powerful classifiers from mediocre ones through 
different kinds of averaging:

0
1

( ) ( , )
K

k k
k

f x a a f x w
=

= +å
Jerome Friedman & Bogdan Popescu (2008)
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Averaging Weak Learners

The most popular averaging methods (mostly used with decision 
trees as weak learners) are:
hBagging: each tree is trained on a bootstrap* 

sample drawn from the training set

hRandom Forest: bagging with randomized trees

hBoosting: each tree trained on a different 
reweighting of the training set

*A bootstrap sample is a random sample of size N drawn, with replacement, 
from another of the same size. Duplicates can occur and are allowed.
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Each object in the training set is labeled either with
yn = +1 or –1 and has weight w(1),n, where ∑ 𝑤 ; ,{

�
{ = 1.

For k = 1 to K:
1. Create a decision tree f (x, w) using current weights.
2. Compute its error rate ε on the weighted training set.
3. Compute αk = ln (1– ε) / ε
4. Modify training sample:

𝑤 |&; ,{ ← 𝑤 | ,{	exp −}~� h�,� ~ ��
@

and 

normalize weights ∑ 𝑤 |&; ,{
�
{ = 1.

The BDT is the weighted average  f (x) = ∑ αk f (x, w(k))

Y. Freund and R.E. Schapire, Journal of Computer and  Sys. Sci. 55 (1), 119 (1997)

Adaptive Boosting



Example 1: Higgs to ZZ to 4 Leptons

Apply AdaBoost using 
the same variables as before: 

x = (mZ1, mZ2).

Magenta is the 𝑝𝑝 → 𝑍𝑍 → 4𝑙
background and cyan 
the 𝑝𝑝 → 𝐻 → 𝑍𝑍 → 4𝑙
signal.

48



First 6 Decision Trees

49



First 100 Decision Trees

50



Averaging over (a Forest of!) Trees

51



Error Rate vs. Number of Trees

52



Example 1: Higgs to ZZ to 4 Leptons

53

Signal

Background

200 trees with 
a minimum of 
100 counts
per bin (leaf)
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AdaBoost is a rather non-intuitive algorithm. Why it works as 
well as is does remains a matter of debate. 

There is considerable evidence that AdaBoost is highly 
resistant to overtraining. 

Indeed, it is possible for the error rate on the training set to go 
to zero, yet remain roughly constant on the test set. 

Also, AdaBoost does not seem to fit into the theory we 
discussed earlier: in particular, it is not clear what loss 
function, if any, it is minimizing.

AdaBoost: Why Does It Work?
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Soon after its invention, however, Friedman, Hastie, and 
Tibshirani showed that the algorithm is mathematically 
equivalent to minimizing the following risk function

𝑅 𝑓 = ∫exp −𝑦𝐹(𝑥)�
� 𝑝 𝑥, 𝑦 𝑑𝑥𝑑𝑦,

where 𝐹 𝑥 = ∑ 𝛼|𝑓 𝑥,𝑤|�
|:; .

This is interesting because is implies that the BDT output F(x) 
can be mapped to

𝐷 𝑥 = 1/(1 + exp −2𝐹 𝑥
and interpreted as probability!

J. Friedman, T. Hastie and R. Tibshirani, (“Additive logistic regression: a statistical 
view of boosting,” The Annals of Statistics, 28(2), 377-386, (2000))

AdaBoost: Why Does It Work?



Example 2: Wine Tasting

Let’s try our hand at automated “wine tasting” using the wine 
tasting example based on data by Cortez et al.*

http://www.vinhoverde.pt/en/history-of-vinho-verde

* P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. 
Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.
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AdaBoost will be used to build a classifier that can distinguish 
between good wines and bad wines from the Vinho Verde 
area of Portugal
using the data from 
Cortez et al.

We’ll define a good wine as
one with expert rating ≥ 0.7 on a
scale from 0 to 1, where
1 is a wine from Heaven and 0 is a wine from Hell! 

First, let’s look at the training data…

Example 2: Wine Tasting

57



Example 2: Wine Tasting

Data: [Cortez et al., 2009].
variables description
acetic acetic acid
citric citric acid
sugar residual sugar
salt NaCl
SO2free free sulfur dioxide
SO2tota total sulfur dioxide
pH pH
sulfate potassium sulfate
alcohol alcohol content
quality (between 0 and 1)
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Example 2: Wine Tasting

To make visualization easier, we’ll use only two variables:
SO2tota: the total sulfur dioxide content (mg/dm3)
alcohol: alcohol content (% volume)

60



Example 2: Wine Tasting – Results

61

Fraction of bad wine rejected
for a given fraction of good
wine accepted.

BDT Distribution

𝐵𝐷𝑇 𝑥, 𝑦 = .𝛼|𝑓(𝑥, 𝑦, 𝑤|)
��

|:R

x = SO2tota
y = alcohol 



Example 2: Wine Tasting – Results

The upper figures
are density plots of
the training data.

The lower plots are
approximations of
the discriminant

D(x, y)
The left, uses 2-D 
histograms, the right
uses the remapped BDT.

62



Summary

hMachine learning has the reputation of being all about 
creating black boxes that do amazing things, such as 
automatically tag faces on Facebook.

h In fact, machine learning is simply the use of computers to 
build automatically useful models of data.

hAfter a bit of theory, we considered simple examples of 
classification using the random grid search and boosted 
decision trees.

hTomorrow, we consider neural networks.
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