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 The Archetypical Statistics Problem 
 Example: Is the die fair? 

 Most Famous Answer: Pearson 𝑋2   
 Pearson’s Reasoning 
 Hypothesis Testing Basics 

 Another Derivation of 𝑋2    
 Mendel-Fisher Controversy 
 Monte Carlo Simulation 
 Fisherian Significance Testing vs Neyman-

Pearson  



 Overfitting 

 Continuous Data 

 EDF Methods 

 Kolmogorov-Smirnov 

 𝑋2  vs K-S 

 Probability Plots 

 Smooth Tests 

 Multidimensional Data 

 Special Cases 

 2 Sample Problem 

 GOFer - Online Goodness-of-Fit Testing 

 



 There is a theory 

 

 

 There is data from an experiment 

 

 

 Does the data agree with the theory?  



Theory: die is fair (𝑝𝑖 = 1
6 ) 

Experiment: roll die 1000 times 
 If die is fair one would expect 1000*1/6 = 167 
1’s, 2’s and so on 
Data: 

 
 

 
 

 Good fit? 
 

  1   2   3   4   5   6 

187 168 161 147 176 161 



Sir Karl Pearson 1900,  

“On the criterion that a 
given system of 
deviations from the 
probable in the case of 
correlated system of 
variables is such that it 
can be reasonably 
supposed to have arisen 
from random sampling”, 
Phil. Mag (5) 50, 157-175 



Use as measure of deviations 

                           𝑋2= 
(𝑂−𝐸)2

𝐸
 

O: observed counts 

E: expected counts 

Agreement is bad if 𝑋2 is large 

 

But why  
(𝑂−𝐸)2

𝐸
, why not (say)  

(𝑂−𝐸)2

𝑂
 or  

 |𝑂 − 𝐸| or max 𝑂 − 𝐸  ? 



 
 
 
 
 
 
 
Is 5.72 “large”? 
If die is fair and rolled 1000 times, how large 
would 𝑋2 typically be? 
 

  1   2   3   4   5   6 

O 187 168 161 147 176 161 

E 167 167 
 

167 
 

167 
 

167 
 

167 
 

𝑋2 =
(187 − 167)2

167
+. . +

161 − 167 2

167
= 5.72 



   

 

 

 

 

 

 

 
 





Pearson: 𝑋2 has a chi square distribution with k-1 
degrees of freedom (k=number of categories) 
 
Here: mean of χ2 5 = 5 
 
So our 𝑋2 = 5.72 is not unusually large, die is fair. 
 
In the derivation of the distribution of 𝑋2 we used the 
CLT approximation, so this needs a sufficiently large 
sample size. But how large does it have to be? 
 
Famous answer: 𝐸 ≥ 5 
 
William G. Cochran  The [chi-squared] test of goodness 
of fit. Annals of Mathematical Statistics 1952; 25:315–
345. 
 
Seems to have picked 5 for no particular reason. Later 
research showed this is quite conservative. 
  



 Type I error: reject true null hypothesis  

 Type II error: fail to reject false null hypothesis 

 

1: A HT has to have a true type I error probability 
no higher than the nominal one 

 

2: The probability of committing the type II error 
should be as low as possible (subject to 1) 

 

Historically 1 was achieved either by finding an 
exact test or having a large enough sample. 

 



Neyman, Jerzy; Pearson, 
Egon S. (1933). "On the 
Problem of the Most 
Efficient Tests of 
Statistical Hypotheses". 
Philosophical 
Transactions of the Royal 
Society A: Mathematical, 
Physical and Engineering 
Sciences. 231 (694–706): 
In a test of a simple vs 
simple hypotheses 
likelihood ratio test is 
most powerful  
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Samuel S. Wilks: “The Large-Sample Distribution 
of the Likelihood Ratio for Testing Composite 
Hypotheses”, The Annals of Mathematical 
Statistics, Vol. 9, No. 1 (Mar., 1938), pp. 60-62 

 

 
−2𝑙𝑜𝑔Λ~χ2 𝑘 − 1  





Not  

     𝐻0: 𝐹 = 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)     (simple hypothesis) 

but  

     𝐻0: 𝐹 = 𝑁𝑜𝑟𝑚𝑎𝑙               (composite hypothesis) 

Idea: find estimates of parameters, use those.  

Any change in test? Pearson said no. 

In 1915 Greenwood and Yule publish an analysis of 
a 2x2 table and note that there is a problem. 

In 1922, 1924 and 1926 Sir Karl Fisher published 
several papers showing that Pearson was wrong. 



If m parameters are estimated  
𝑋2~χ2(𝑘 − 1 − 𝑚) 

The 1922 paper is the first ever to use 
the term “degrees of freedom”. 
 
In some ways this is an astonishing 
result: it does not seem to matter how 
well one can estimate the parameter 
(aka what sample size is used) 
 
Does it matter what method of 
estimation is used? Yes, and it has to 
be minimum chisquare! 
 
Except these days everyone is using 
maximum likelihood, and then this 
result can be wrong 
 
Pearson didn’t acknowledge Fisher 
was right until 1935! 
 

 



Mendel, J.G. (1866). "Versuche über 
Pflanzenhybriden", Verhandlungen des 
naturforschenden Vereines in Brünn, Bd. IV 
für das Jahr, 1865, Abhandlungen: 3–47 
 
Discovery of Mendelian inheritance 
 
Immediate impact on Science: ZERO! 
 
Darwin could have used this when he wrote 
On The Origin of Species. 
His cousin Francis Galton (inventor of 
regression!) could have told him. 

 



Around 1900, Hugo de Vries and Carl Correns 

 first independently repeat some of Mendel’s  

experiments and then rediscover Mendel's 

 writings and laws. 
 

Finally Mendel becomes the “Father of Genetics” 

 

Fisher, R.A. (1936). "Has Mendel's work been 
rediscovered?" . Annals of Science. 1 (2): 115–137. 
 
Fisher re-analyzed Mendel’s data and applied the 𝑋2 
test to all of them together. He finds an (almost) 
perfect agreement. But inheritance is intrinsically 
random, the agreement should not be that good. 

 

Fisher’s words: “to good to be true” 

https://en.wikipedia.org/wiki/Hugo_de_Vries
https://en.wikipedia.org/wiki/Hugo_de_Vries
https://en.wikipedia.org/wiki/Hugo_de_Vries
https://en.wikipedia.org/wiki/Carl_Correns
https://en.wikipedia.org/wiki/Carl_Correns
https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15123/1/144.pdf
https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15123/1/144.pdf


𝑋2 large (blue area) 

→ difference between O 
and E to large 

→ theory doesn’t agree 
with data 

 

𝑋2  small (red area) 

→ difference between O 
and E to small 

→ Cheating! 

 



More than 50 papers published since 1936 have 
tried to figure out what happened. 

 

For a long time: it was the Gardener! 

 

Another explanation, which seems to have gained 
momentum in recent years: It was early in the 
history of experimentation, modern ideas of how to 
avoid (even unconscious) biases were not yet 
developed. 

 

Allan Franklin, A. W. F. Edwards, Daniel J. Fairbanks, 
Daniel L. Hartl and Teddy Seidenfeld.  “Ending the 
Mendel-Fisher Controversy”, University of 
Pittsburgh Press, 2008.  



Question used to be: which converges fastest 
to χ2? 

But these day null distribution can be found 
most easily using Monte Carlo simulation! 



function(B=1e4) { 

    O<-c(187,168,161,147,176,161) 

    E<-rep(1,6)/6*1000 

    TS.Data<-rep(0,5) 

    TS.Data[1]<-sum( (O-E)^2/E) 

    TS.Data[2]<-2*sum(O*log(O/E)) 

    TS.Data[3]<-4*sum( (sqrt(O)-sqrt(E))^2) 

    TS.Data[4]<-sum( (O-E)^2/O)     

    TS.Data[5]<-2*sum(E*log(E/O)) 

    TS.Sim<-matrix(0,B,5) 

    for(i in 1:B) { 

        O<-table(sample(1:6,size=1000,replace=T)) 

        TS.Sim[i,1]<-sum( (O-E)^2/E) 

        TS.Sim[i,2]<-2*sum(O*log(O/E)) 

        TS.Sim[i,3]<-4*sum( (sqrt(O)-sqrt(E))^2) 

        TS.Sim[i,4]<-sum( (O-E)^2/O)     

        TS.Sim[i,5]<-2*sum(E*log(E/O)) 

    } 

    list(TS.Data,apply(TS.Sim,2,quantile,0.95)) 

} 

 



function(B=1e4) { 

    crit95<-c(10.95, 10.97, 10.95, 11.08, 
11.00) 

    E<-rep(1,6)/6*1000 

    TS.Sim<-matrix(0,B,5) 

    for(i in 1:B) { 

        O<-
table(sample(1:6,size=1000,replace=T, 

            prob=c(1.25,1,1,1,1,1))) 

        TS.Sim[i,1]<-sum( (O-E)^2/E) 

        TS.Sim[i,2]<-2*sum(O*log(O/E)) 

        TS.Sim[i,3]<-4*sum( (sqrt(O)-sqrt(E))^2) 

        TS.Sim[i,4]<-sum( (O-E)^2/O)     

        TS.Sim[i,5]<-2*sum(E*log(E/O)) 

    } 

    power<-rep(0,5) 

    for(i in 1:5) power[i]<-         s    
sum(TS.Sim[,i]>crit95[i])/B 

    power 

} 

 



Fisher’s question: does data agree with theory? 
 
Neyman-Pearson’s question: should one reject the null 
hypothesis in favor of some specific alternative? 
 
Main advantage of Neyman-Pearson style test: can 
decide which method is better (aka has a higher power) 
 
Today’s procedure is a hybrid of both 
 
GOF testing much closer to Fisherian significance 
testing, except when we have a specific alternative in 
mind 



George Box: All models are wrong, but some 
are useful 

 

Probability models are theoretical constructs, 
one can not expect them to be perfect fits in 
real life (“there is no perfect circle in nature”) 

 

→ how close an agreement between null and 
data is needed depends on context 

 

→ related to choice of type I error probability ɑ, 
5%? 1%? 5σ (I hope not!) 



Usual question: is our theory a good enough 
model for the data? 

 

We also should worry about: is our model better 
than it should be? 

 

  Overfitting! 



Exponential Model - 
Good Fit? 

 

χ2  (6 bins): p value = 
0.111 

 

KS test: p value = 
0.117 

 



Typical procedure (especially for background 
fits): 

 

Start with low degree polynomial 

 

Add higher degrees until fit looks good 

 

If GOF done by “visual inspection” quite likely 
leads to overfitting. 

 

Additional problem: Version of “look-elsewhere 
effect” (aka simultaneous inference) 

 

 



Need to bin the data 

In principle any binning is ok 

 

Two Questions:  

 

1) What kind of bins? 

2) How many bins? 



                  Equi-distant – Equi-probable 



Most studies suggest equi-probable is better 

 

One advantage: E=1/k >> 5 for all bins, no 
need to adjust binning 

 

Major advantage: In general leads to tests with 
higher power 

 

Bins can be found easily as quantiles of F or as 
quantiles of data 



Textbook answer: 𝑘 = 2𝑛2/5 

D’Agostini and Stephens (1986) “Goodness-of-
Fit Techiques” 

 

But: really depends on alternative 

Example: 𝐻0: 𝑋~𝑈 0,1  𝑣𝑠 𝐻𝑎: 𝑋~𝐿𝑖𝑛𝑒𝑎𝑟 

Optimal k: k=2! 



EDF: Empirical Distribution Function 

 

 

 

𝐹 𝑥 → 𝐹 𝑥  uniformly (Glivenko-Cantelli lemma) 

 

so 

𝐷{𝐹 𝑥 , 𝐹 𝑥 } 

where D is some distance measure on function 
space can be used for goodness-of-fit test.  

 



Theorem: (Probability Integral Transform) 
Let X be a continuous random variable with 
distribution function F, then the random 
variable  
Y = F(X) has a uniform (0,1) distribution. 
 
Consequence: D is distribution free, aka does 
not depend on F. 
 
One table to rule them all! 
 
 Except this does not work if parameters are 
estimated from data! 
 



𝐾𝑆 = 𝑚𝑎𝑥 𝐹 𝑥 − 𝐹 𝑥 ; 𝑥 = 

𝑚𝑎𝑥
𝑖

𝑛
− 𝐹 𝑋(𝑖) , 𝐹 𝑋(𝑖) −

𝑖 − 1

𝑛
 

 
Kolmogorov A (1933). "Sulla 
determinazione empirica di una 
legge di distribuzione". G. Ist. Ital. 
Attuari. 4: 83–91. 
 
Smirnov N (1948). "Table for 
estimating the goodness of fit of 
empirical distributions". Annals of 
Mathematical Statistics. 19: 279–
281 

 



Anderson-Darling 
Anderson, T. W.; Darling, D. A. (1952). 
"Asymptotic theory of certain "goodness-
of-fit" criteria based on stochastic 
processes". Annals of Mathematical 
Statistics. 23: 193–212. 
 
 
Cramer-vonMises 
 Cramér, H. (1928). "On the Composition of 
Elementary Errors". Scandinavian Actuarial 
Journal. 1928 (1): 13–74. 
doi:10.1080/03461238.1928.10416862. 
von Mises, R. E. (1928). Wahrscheinlichkeit, 
Statistik und Wahrheit. Julius Springer. 
 
And more…  
 

Modern theory based on convergence of 𝐹  
to Gaussian process 

 



None of these allows estimation of parameters 
except in some special cases:  
 
𝐻0: 𝑋~𝑁𝑜𝑟𝑚𝑎𝑙  
Hubert Lilliefors (1967), "On the Kolmogorov–
Smirnov test for normality with mean and variance 
unknown", Journal of the American Statistical 
Association, Vol. 62. pp. 399–402. 
 
𝐻0: 𝑋~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙  
Hubert Lilliefors (1969), "On the Kolmogorov–
Smirnov test for the exponential distribution with 
mean unknown", Journal of the American Statistical 
Association, Vol. 64 . pp. 387–389. 
 
But then again, just find null distribution via Monte 
Carlo! 



Uses maximum likelihood to estimate 
parameters and Monte Carlo simulation to 
estimate null distribution 

 

Example: 

> x<-rexp(1000,1) 

> LcKS(x,"pexp")$p.value 

[1] 0.3998 



Later I will show you another way to do GOF 
testing! 



    𝐻0: 𝐹 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1  
 
𝐻𝑎:   𝐹 =  𝐿𝑖𝑛𝑒𝑎𝑟  [0,1] 

 
 
Sample size: n=1000 
 

𝑋2: 32 bins  
(here Equi-distant = 
Equi-probable ) 





Plot quantiles 
of F vs sample 
quantiles 

 

If F is correct 
model, points 
form a straight 
line 

 

 

 



Again Probability Integral Transform: 
                                       𝑋~𝐹  →  𝐹(𝑋)~𝑈[0,1]  
 
                                        𝑈1, . . , 𝑈𝑛  𝑖𝑖𝑑 𝑈 0,1  
 
Order Statistic              𝑈(1) <. . . < 𝑈(𝑛) 
 

𝑈(𝑘)~𝐵𝑒𝑡𝑎 𝑘, 𝑛 − 𝑘 + 1  
Find pointwise confidence intervals from quantiles of 
Beta distribution 
 
Turn into simultaneous confidence band by adjusting 
nominal confidence level 
 



Sivan Aldor-Noima, Lawrence D. 
Brown, Andreas Buja , Robert A. 
Stine and Wolfgang Rolke, “The 
Power to See: A New Graphical 
Test of Normality”, The 
American Statistician (2013), 
Vol 67/4 
 
Andreas Buja, Wolfgang Rolke  
“Calibration for Simultaneity: 
(Re) Sampling Methods for 
Simultaneous Inference with 
Applications to Function 
Estimation and Functional 
Data”, Technical Report, 
Wharton School of Business, 
Univ. of Pennsylvania 
 
R routines: 
http://academic.uprm.edu/wrol
ke/research/publications.htm 



Old idea – goes back to Neyman (1937) – but 
with some recent improvements. 

 

Basic idea: embed density f in family of 
densities 𝑔𝑘  indexed by some parameter 
vector Θ = (θ1, . . , θ𝑘) which includes true density 
for some k and such that  

𝐻0: 𝑡𝑟𝑢𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑠 𝑓 ↔ 𝐻0:  Θ = 0 

 



ℎ𝑗  should be orthonormal family of 
functions, i.e. 

 

 

 

 

optimal choice of ℎ𝑗  depends on f! 



Typical choices for ℎ𝑗 :  

Legendre Polynomials, Fourier series, 

ℎ𝑗(x)= 2 cos 𝑗π𝑥 ,Haar functions,  …. 

 

Basics of the test: 

 

 

 

 

 

 

Interesting feature: partial tests θ1, . . , θ𝑚 = 0 for 
m<k can give insight into HOW null is wrong. 



testing composite hypotheses is possible 

 

Quite unusual: best method for estimating 
parameters: MoM (method of moments) 

Example: 



 Tests based on moments 

 

 Tests specific for a distribution (Normal: 
more than 20 tests) 

 

 A good place to start: “Comparing 
Distributions”, Olivier Thais, Springer 



χ2 tests: Curse of Dimensionality (R. Bellman) 
 

Example: 𝐻0:  (𝑋1, . . , 𝑋𝑑)~𝑈[0,1]𝑑  
We want E≥ 5 and we want 10 bins in each 
dimension. What n do we need?  

d=1: 𝐸 = 𝑛
10 ≅ 5 → 𝑛 ≅ 50 

d=2: 𝐸 = 𝑛
102 ≅ 5 → 𝑛 ≅ 500 

d=3: 𝐸 = 𝑛
103 ≅ 5 → 𝑛 ≅ 5000 

… 

d=10: 𝐸 = 𝑛
1010 ≅ 5 → 𝑛 ≅ 50 billion 

 
 



EDF needs an ordering.  

What comes first in 𝑅2: 0,1  𝑜𝑟 (1,0)? 

One can impose an ordering but in 𝑅𝑑 there are 
2𝑑 − 1 ways to do it! 

Also, Probability Integral Transform no longer 
works, so KS test is no longer distribution free. 

But one can always use MC to find null 
distribution. 



GOF tests beyond 2 or 3 dimensions unlikely to 
be very useful. 

 

At the very least will require gigantic data sets 

 

 

 

Still a wide open problem! 

  



Often data has special features that need to be 
taken into account 
 
Example: High Energy Physics 
 
1) Data is truncated 

 
2) Sample size is random 

 
3) Data is binned 



 Data in High Energy Physics is always 
truncated to a finite interval. 

 

 

 Care needs to be taken with normalization 

(aka  𝑓 𝑥 𝑑𝑥
∞

−∞
= 1) 

 

 



In HEP experiments sample size is not fixed a-
priori but is a consequence of the run time 

                         n~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ) 

If n is fixed: 𝑁1, . . , 𝑁𝑘 ~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝1, . . , 𝑝𝑘) 

 

But if n is Poisson 
𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ𝑝𝑖) 𝑎𝑛𝑑 𝑁1, . . , 𝑁𝑘 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡! 

(Theory of Marked Poisson processes) 

Consequence: 𝑋2~χ2(𝑘)    (not k-1) 

Not an issue if null distribution is found via MC 



Data in HEP is often already binned for various 
reasons, for example detector resolution 

 

Still need to consider rebinning for chi square 
tests. 

 

How about Kolmogorov-Smirnov? 

𝐾𝑆 = 𝑚𝑎𝑥
𝑖

𝑛
− 𝐹 𝑋(𝑖) , 𝐹 𝑋(𝑖) −

𝑖 − 1

𝑛
 

But we only know 𝑏𝑖 < 𝑋(𝑖) < 𝑏𝑖+1 

 

 



Obvious answer: 𝑥𝑖 =
𝑏𝑖+𝑏𝑖+1

2
 midpoint 

 

Better answer: spread out 𝑁𝑖 points in (𝑏𝑖 , 𝑏𝑖+1) 

according to F. 

Can be quite slow (requires finding quantiles of 
F, solve many non-linear equations), in practise 
spreading them uniformly almost as good. 



Say we have  

 
                   𝑋1, . . , 𝑋𝑛~𝐹 and 𝑌1, . . , 𝑌𝑚~𝐺 

 

and we want to test 

 
𝐻0: 𝐹 = 𝐺 𝑣𝑠 𝐻0: 𝐹 ≠ 𝐺 



At first this seems a very different problem, but 
fairly generally a method for one can be turned 
into a method for the other. 

 

Example:  Kolmogorov-Smirnov 

 

GOF:            𝐾𝑆 = 𝑚𝑎𝑥 𝐹 𝑥 − 𝐹 𝑥 ; 𝑥  

 

2-Sample:   𝐾𝑆 = 𝑚𝑎𝑥 𝐹 𝑥 − 𝐺 𝑥 ; 𝑥  

 

 



Under 𝐻0: 𝐹 = 𝐺  

so 
𝑋1, . . , 𝑋𝑛, 𝑌1, . . , 𝑌𝑚~𝐹 

samples are independent, so any reordering is 
equally likely. 

Basic permutation test: 

Find random permutation of data, split in 
vectors of size n and m, calculate test statistic, 
repeat many times. Compare to actual data.  



𝐹 = 𝑁 0,1   𝐺 = 𝑁(𝜇, 1) 

in example: n=50 

 

Compare to classic 2-sample t test: 

𝑇𝑆 =
𝑋 − 𝑌 

𝑠𝑝
1
𝑛

+
1
𝑚

 ~ 𝑡𝑛+𝑚−2,𝛼/2 





 No knowledge of R required 

 Can handle continuous or binned data 

 Can handle model specified via expression 
(density) or via bin probabilities 

 Model expressions can be specified via R or 
C++ 

 Finds a variety of standard tests (Chisquare 
variants and EDF tests) 

 Allows for “optimal” binning  



 App is online at 
https://drrolke.shinyapps.io/GOFer/ 

 

 You can install all you need to run the app on 
your computer in less than 10 minutes. To 
see how go here 
http://academic.uprm.edu/wrolke/GOFer/ 

 Page also has detailed explanations on how 
to use app. 

https://drrolke.shinyapps.io/GOFer/
http://academic.uprm.edu/wrolke/GOFer/
http://academic.uprm.edu/wrolke/GOFer/








R C++ 

Density 
exp(-param[1]*x) 
Distribution 
1-exp(-param[1]*x) 
Alternative 
1-x/5 
Estimator 
xbar<-mean(x) 
new<-param[1] 
repeat { 
       old<-new 
       new<-old-(1/old-xbar-exp(-old)/(1-
exp(-old)))/(-1/old^2+exp(-old)/(1-exp(-
old))^2) 
       if(abs(old-new)<0.0001) break 
} 
return(new) 

Density 
for(int i=0;i<n;++i) y[i] = exp(-
param[0]*x[i]); 
Distribution 
for(int i=0;i<n;++i) y[i] = 1.0-exp(-
param[0]*x[i]); 
Alternative 
for(int i=0;i<n;++i) y[i] = 1.0-x[i]/5.0; 
Estimator 
double pold,pnew,xbar; 
xbar=0; 
for(int i=0;i<n;++i) xbar+=x[i]; 
xbar=xbar/n; 
pnew=param[0]; 
while(abs(pold-pnew)>0.0001) { 
       pold=pnew; 
       pnew=pold-(1.0/pold-xbar-exp(-
pold)/(1.0-exp(-pold)))/(-
1.0/(pold*pold)+exp(-pold)/(1.0-exp(-
pold))/(1.0-exp(-pold))); 
} 
p[0]=pnew; 

 




