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The Archetypical Statistics
Problem:
> There is a theory

> There is data from an experiment

» Does the data agree with the theory?




Example: Is the die fair?

Theory: die is fair (p; = 1/,)
Experiment: roll die T000 times

If die is fair one would expect 1000*1/6 = 167
1’s, 2’s and so on

Data:

RN

187 168 161 147 176 161

> Good fit?

p—



Most Famous Answer

Sir Karl Pearson 1900,

“On the criterion that a
given system of
deviations from the
probable in the case of
correlated system of
variables is such that it
can be reasonably
supposed to have arisen
from random sampling’,
Phil. Mag (5) 50, 157-175

 Pearson X?




Use as measure of deviations
2« (0—E)?
Xe=) -
O: observed counts

E: expected counts
Agreement is bad if X? is large

(0—E)?
9]

(0—E)*

But why ) — why not (say) ).
>.|0 — E| or max{|0 — E|} ?

or



187 168 161 147 176 161

E 167 167 167 167 167 167

(187 — 167)2 (161 — 167)2
X? = +..+ = 5.72
167 167
Is 5.72 “large™

If die is fair and rolled 1000 times, how large
would X? typically be?




Pearson’s Reasoning

N; = frequency of outcome i, i = 1,...k
(N1,..,Nk) ~ Multinomial(n,p1,..,pr)
E[N;| = np;, Var[N;] = np;(1 - p;)
N.—np;
E— ~4p N(0,1) by CLT

2
N!'_ i NE._ i 2
( np ) _ WNi-npy) ~app ¥2(1)

inp; (1-p;) npi(1-p;)
k (Nz'_”pz')2 2
so maybe ZH o)~ X ?

but N1 +..+N; = n fixed (not independent)



k=2: (Nlez) = (N_,H—N)

k  (N~E;)*
X =Zf=1 E.

(N-np)* (n-N-n(1-p))*
np + n(1-p)

(j"sf—ng::v}I (H—J?‘ur—fﬁnp))I .
T n(1-p) B

(ﬁ N ﬂill—p} )(N—np)2 -

(ptipy J V=P =

(N—np)° _( N-np )2 2(1
= = |~ X (1)

np(1-p)




Pearson: X? has a chi square distribution with k-1
degrees of freedom (k=number of categories)

Here: mean of x2(5) =5

So our X? = 5.72 is not unusually large, die is fair.

In the derivation of the distribution of X2 we used the
CLT approximation, so this needs a sufficiently large
sample size. But how large does it have to be?

Famous answer: E > 5

William G. Cochran The [chi-squared] test of goodness
of fit. Annals of Mathematical Statistics 1952; 25:315-
345.

Seems to have picked 5 for no particular reason. Later
research showed this is quite conservative.



Hypothesis Testing Basics

» Type | error: reject true null hypothesis
» Type Il error: fail to reject false null hypothesis

1: A HT has to have a true type | error probability
no higher than the nominal one

2: The probability of committing the type Il error
should be as low as possible (subjectto 1)

Historically 1 was achieved either by finding an
exact test or having a large enough sample.




Another Der

Neyman, Jerzy, Féea
Egon S. (1933). O
Problem of the Mos
Efficient Tests of

Statistical Hypothese
Philosophical
Transactions of the R
Society A: Mathematice

Physical and Engineering
Sciences. 231 (694-70

In a test of a simple vs
simple hypotheses
likelihood ratio test is
most powerful

o )
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https://en.wikipedia.org/wiki/Philosophical_Transactions_of_the_Royal_Society_of_London

L(p1,...pr) ~ pit..pi*

A = L(p;...pi)
max<{L(py,...pr)n1+..+=n}
N, N

LWNy/n,. . Npny (N_l)f"-rln(ﬁfk

() ()
N, U N,




Samuel S. Wilks: “The Large-Sample Distribution
of the Likelihood Ratio for Testing Composite

Hypotheses”, The Annals of Mathematical
Statistics, Vol. 9, No. 1 (Mar., 1938), pp. 60-62

—2logA~x*(k — 1)




2logA = —ZIOg[( 2N )N’*] _
2> nilog 4t =

2> nilog{ - —1+1) =
2 Y nilog( B +1)

log(x + 1) ~ x + x*/2 Taylor expansion
—n —np; \ 2
_ZlogA ~ ZZHI(N P n (N;?p;f]z ) /12) _

ZZHIN np; Z(N np; N\ 2 ﬁXz

because N; = npi, SO N; —np; = 0

- TR




The Degree of Freedom
Controversy

Not
Hy:F = Normal(0,1) (simple hypothesis)
but
Hy: F = Normal (composite hypothesis)
ldea: find estimates of parameters, use those.
Any change in test? Pearson said no.

In 1915 Greenwood and Yule publish an analysis of
a 2x2 table and note that there is a problem.

In 1922, 1924 and 1926 Sir Karl Fisher published
several papers showing that Pearson was wrong.




If m parameters are esti

X2~X2(k -
The 1922 paper is the
the term “degrees of

In some ways this is ¢
result: it does not see
well one can estimate
(aka what sample size

Does it matter what met
estimation is used? Yes, a
be minimum chisquare!

Except these days everyone is using
maximum likelihood, and then this
result can be wrong

Pearson-didn’t acknowledge Fisher



Mendel-Fish

Mendel, J.G. (1866). "
Pflanzenhybriden®, Ve

naturforschenden Vere
far das Jahr, 1865, Ab

Discovery of Mendelian
Immediate impact on Scienc

Darwin could have used this wh
On The Origin of Species.

His cousin Francis Galton (inventor of
regression!) could have told him.




Around 1900, and

first independently repeat some of Mendel’s
experiments and then rediscover Mendel's
writings and laws.

Finally Mendel becomes the “Father of Genetics”

Fisher, R.A. (1936).
. Annals of Science. 1 (2). 115-13/.

Fisher re-analyzed Mendel’s data and applied the X?
test to all of them together. He finds an (almost)
perfect agreement. But inheritance is intrinsically
random, the agreement should not be that good.

“to good to be true”


https://en.wikipedia.org/wiki/Hugo_de_Vries
https://en.wikipedia.org/wiki/Hugo_de_Vries
https://en.wikipedia.org/wiki/Hugo_de_Vries
https://en.wikipedia.org/wiki/Carl_Correns
https://en.wikipedia.org/wiki/Carl_Correns
https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15123/1/144.pdf
https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15123/1/144.pdf

X? large (blue area)

- difference between O
and E to large

— theory doesn’t agree
with data

X? small (red area)

— difference between O
and E to small

— Cheating!




More than 50 papers published since 1936 have
tried to figure out what happened.

For a long time: it was the Gardener!

Another explanation, which seems to have gained
momentum in recent years: It was early in the
history of experimentation, modern ideas of how to
avoid (even unconscious) biases were not yet
developed.

Allan Franklin, A. W. F. Edwards, Daniel J. Fairbanks,
Daniel L. Hartl and Teddy Seidenfeld. “Ending the
Mendel-Fisher Controversy’, University of
Pittsburgh Press, 2008.




Variations on X=

Cressie-Read ZO{( ‘E—’)A - 1}

nA(A-1)

Pearson (4 = 1) 3 (10;5;;,-—...
log likelihood ratio (4 = 0) 23 Olog(%)

Freeman-Tukey (A = -1/2) 42[@ _JE ]-
Neyman modified X (1 = -2) >, (Oz_ff;r’-’

modified likelihood ratio (A = —1) 2> Flog(£)

Question used to be: which converges fastest
to x??
But these day null distribution can be found

most easily using Monte Carlo simulation!



Monte Carlo Simulation

function(B=1e4) {
0<-¢c(187,168,161,147,176,161)
E<-rep(1,6)/6*1000
TS.Data<-rep(0,5)
TS.Data[1]<-sum( (O-E)A2 /E)
TS.Data[2]<-2*sum(O*log(O/E))

TS.Data[3]<-4*sum( (sqrt(O)-sqrt(E))A2)

TS.Data[4]<-sum( (O-E)A2/0)
TS.Data[5]<-2*sum(E*log(E/O))
TS.Sim<-matrix(0,B,5)
for(i in 1:B) {
O<-table(
TS.Sim[i,1]<-sum( (O-E)A2/E)
TS.Sim[i,2]<-2*sum(O*log(O/E))

,replace=

TS.Siml[i,3]<-4*sum( (sqrt(O)-sqrt(E))A2)

TS.Sim[i,4]<-sum( (O-E)A2/0)
TS.Sim[i,5]<-2*sum(E*log(E/O))
}
list(TS.Data,apply(TS.Sim,2,

)

Method
Pearson
log likelihood ratio

Freeman-Tukey

Neyman modified
modified likelihood ratio

Data 95"
5.72 10.95
5.76  10.97
10.95
11.08
11.00



Question today:

Which Method has hi

function(B=1e4) {

crit95<-c(10.95, 10.97, 10.95, 11.08,
11.00)

E<-rep(1,6)/6*1000
TS.Sim<-matrix(0,B,5)
for(i in 1:B) {

O<-
table ,replace=T,

TS.Sim[i,1]<-sum( (O-E)A2/E)
TS.Sim[i,2]<-2*sum(O*log(O/E))
TS.Sim[i,3]<-4*sum( (sqrt(O)-sqrt(E))A2
TS.Sim[i,4]<-sum( (O-E)A2/0)
TS.Sim[i,5]<-2*sum(E*log(E/O))

}

power<-rep(0,5)

for(i in 1:5) powerl[i]l<- S
sum(TS.Siml[,i]>crit95[i])/B

power

Method
Pearson

log likelihood ratio

Freeman-Tukey
Neyman modified
modified likelihood ratio

-—

Ly



Fisherian Significance Testing vs
Neyman-Pearson

Fisher’s question: does data agree with theory?

Neyman-Pearson’s question: should one reject the null
hypothesis in favor of some specific alternative?

Main advantage of Neyman-Pearson style test: can
decide which method is better (aka has a higher power)

Today’s procedure is a hybrid of both

GOF testing much closer to Fisherian significance
testing, except when we have a specific alternative in

mind




George Box: All models are wrong, but some
are useful

Probability models are theoretical constructs,
one can not expect them to be perfect fits in
real life (“there is no perfect circle in nature”)

— how close an agreement between null and
data is needed depends on context

— related to choice of type | error probability q,
5%? 1%? 50 (| hope not!)




Overfitting

Usual question: is our theory a good enough
model for the data?

We also should worry about: is our model better
than it should be?

» Overfitting!




Exponential Model -
Good Fit?

x> (6 bins): p value =
0.111

KS test: p value =
0.117




Typical procedure (especially for background
fits):

Start with low degree polynomial
Add higher degrees until fit looks good

If GOF done by “visual inspection” quite likely
leads to overfitting.

Additional problem: Version of “look-elsewhere
effect” (aka simultaneous inference)




Continuous Data

Need to bin the data
In principle any binning is ok

Two Questions:

1) What kind of bins?
2) How many bins?




What kind of bins?
Equi-distant - Equi-probable

| |
-1 1




Most studies suggest equi-probable is better

One advantage: E=1/k >> 5 for all bins, no
need to adjust binning

Major advantage: In general leads to tests with
higher power

Bins can be found easily as quantiles of F or as
qgquantiles of data




How many bins?

Textbook answer: k = 2n2/5

D’Agostini and Stephens (1986) “Goodness-of-
Fit Techiqgues’

But: really depends on alternative
Example: Hy,: X~U[0,1] vs H,: X~Linear
Optimal k: k=2!




EDF Methods

EDF: Empirical Distribution Function

-~ - # of events < x
F(x) = % ZI(_m,x](Xf) = ” —
i=1

F(x) = F(x) uniformly (Glivenko-Cantelli lemma)

SO

D{F(x),F(x)}
where D is some distance measure on function
space can be used for goodness-of-fit test.



Theorem: (Probability Integral Transform)

Let X be a continuous random variable with
distribution function F, then the random
variable

Y = F(X) has a uniform (0,1) distribution.

Consequence: D is distribution free, aka does
not depend on F.

One table to rule them all!

Except this does not work if parameters are
estimated from data!




KS = max{|F(x) — F@) ;%)=

[ { =l
——F(Xo)|. [Fa) == H

max {

Kolmogorov A (1933). "Sulla
determinazione empirica di una
legge di distribuzione”. G. Ist. Ital.

Attuari. 4: 83-91.

Smirnov N (1948). "Table for
estimating the goodness of fit of
empirical distributions”. Annals of
g/lgichematical Statistics. 19: 279-




Alternatives

Anderson-Darling

Anderson, T. W.; Darling, D. A. (1952).
"Asymptotic theory of certain "goodness—
of-fit" criteria based on stochastic - }“7 o5 F(x) p)
processes”. Annals of Mathematical 4D = HJ. ( (1) — (1))

Statistics. 23: 193-212. o FO)[1 —FO)] dF(x)

Cramer-vonMises

Cramér, H. (1928). "On the Composition of
Elementary Errors". Scandinavian Actuarial
Journal. 1928 (1): 13-74.
doi:10.1080/03461238.1928.10416862.

von Mises, R. E. (1928). Wahrscheinlichkeit,
Statistik und Wahrheit. Julius Springer.

M= [ (Fe) - F) ) dFo)

And more...

Modern theory based on convergence of F
to Gaussian process




None of these allows estimation of parameters
except in some special cases:

Hy: X~Normal
Hubert Lilliefors (1967), "On the Kolmogorov-
Smirnov test for normality with mean and variance

unknown'", Journal of the American Statistical
Association, Vol. 62. pp. 399-402.

Hy: X~Exponential

Hubert Lilliefors (1969), "On the Ko/lmogorov-
Smirnov test for the exponential distribution with
mean unknown'", Journal of the American Statistical
Association, Vol. 64 . pp. 387-389.

Butlthen again, just find null distribution via Monte
Carlo!



R package KScorrect

Uses maximum likelihood to estimate
parameters and Monte Carlo simulation to
estimate null distribution

Example:

> x<-rexp(1000,T1)

> LcKS(x,"pexp")$p.value
[1] 0.3998




"snorm" for normal,

"pmixnorm” for (univariate) normal mixture,

"plnorm” for lognormal (log-normal, log normal),
mpunif" for uniform,

"plunif" for loguniform (log-uniform, log uniform),
"pexp" for exponential,

"ogamma" for gamma,

"pweibull™ for Weibull.

Later | will show you another way to do GOF
testing!




X% vs K-S
Hy: F = Uniform|0,1]

H,:. F = Linear |0,1]

Sample size: n=1000

X?%: 32 bins
(here Equi-distant =
Equi-probable )




1.00-

0.75-
. Method
=
= ] — S
o 0.50 ..,
0.25-




Probability Plots

Plot quantiles
of F vs sample
quantiles

If Fis correct
model, points
form a straight
line




Turn this into a formal test

Again Probability Integral Transform:
X~F - F(X)~UJ[0,1]

(Uy,..,Uy) iid U[0,1]
Order Statistic Uy <...< Um

U(k)vaeta(k,n —k+1)

Find pointwise confidence intervals from quantiles of
Beta distribution

Turn into simultaneous confidence band by adjusting
nominal confidence level




Sivan Aldor-Noima, Lawrence D.
Brown, Andreas Buja , Robert A.
Stine and Wolfgang Rolke, “7hAe
Power to See: A New Graphical
Test of Normality”, The
American Statistician (201 3),
Vol 67/4

Andreas Buja, Wolfgang Rolke
“Calibration for Simultaneity:
(Re) Sampling Methods for
Simultaneous Inference with
Applications to Function
Estimation and Functional
Data’, Technical Report,
Wharton School of Business,
Univ. of Pennsylvania

R routines:
http://academic.uprm.edu/wrol
ke/research/publications.htm




Smooth Tests

Old idea - goes back to Neyman (1937) - but
with some recent improvements.

Basic idea: embed density f in family of
densities {g;} indexed by some parameter
vector © = (064,..,0;) which includes true density
for some k and such that

H,:true densityis f & Hy: © =0




k
gk(x;0,) = C(6, ) exp{z eﬂw:ﬁ)}f(x:ﬁ>
j=1

{h;} should be orthono
functions, i.e.

J. f hi(x)h;(x)dx = 0

optimal choice of {;} depends on f!




Typical choices for {h;}:
Legendre Polynomials, Fourier series,
hi(X)=v2 cos(jnx) Haar functions, ....

Basics of the test:

r.o— 1 L (V.
bf o i Zf:l hj(XI)
_ koo,

Iy = Zj=1 Df
Tx =a i

Interesting feature: partial tests (064,..,0,,) = 0 for
m<k can give insight into HOW null is wrong.




testing composite hypotheses is possible

Quite unusual: best method for estimating
parameters: MoM (method of moments)

Example:

X1,..,X, iidN(y,G)

u=Ex]~13" x
Gz_Vﬂ?‘(Xl)— E[X7] - E[X1]?
X1~ + 20 X7

= %Zz— X2 (%E?:IXE)E



And many more...

» Tests based on moments

» Tests specific for a distribution (Normal:
more than 20 tests)

» A good place to start: “Comparing
Distributions”, Olivier Thais, Springer




Multidimensional Data

x> tests: Curse of Dimensionality (R. Bellman)

Example: Hy: (Xq,..,X;)~U[0,1]¢
We want E> 5 and we want 10 bins in each
dimension. What n do we need?

d=1:E="/,,=25->n=50
d=2:E="/,.=5->n=500
d=3:E="/,:=5->n=5000

d=10: E="/,,10 =5 - n = 50 billion




EDF Tests

EDF needs an ordering.

What comes first in R%:(0,1) or (1,0)?

One can impose an ordering but in R? there are
29 — 1 ways to do it!

Also, Probability Integral Transform no longer
works, so KS test is no longer distribution free.

But one can always use MC to find null
distribution.




GOF tests beyond 2 or 3 dimensions unlikely to
be very useful.

At the very least will require gigantic data sets

Still a wide open problem!




Special Cases

Often data has special features that need to be
taken into account

Example: High Energy Physics
1 Data is truncated

2) Sample size is random

3) Data is binned




Truncated Data

» Data in High Energy Physics is always
truncated to a finite interval.

» Care needs to be taken with normalization
(aka ffooof(x)dx =1)




Sample Size

In HEP experiments sample size is not fixed a-
priori but is a consequence of the run time

nN~Poisson(A)
If nis fixed: (Ny,.., N;,)~Multinomial(n,p4,..,Px)

But if n is Poisson

N;~Poisson(Ap;) and N;,.., N independent!
(Theory of Marked Poisson processes)
Consequence: X*~x%(k) (not k-1)
Not an issue if null distribution is found via MC




Binned Data

Data in HEP is often already binned for various
reasons, for example detector resolution

Still need to consider rebinning for chi square
tests.

How about Kolmogorov-Smirnov?

I L —1
KS = max{‘g— F(X(i)) »‘F(X(i)) n ‘}

But we only know b; < X(;) < b;4q




. bi+b;j . .
Obvious answer: x; = = 2“’1 midpoint

Better answer: spread out N; points in (b;, b;41)
according to F.

Can be quite slow (requires finding quantiles of
F, solve many non-linear equations), in practise
spreading them uniformly almost as good.




2-Sample Problem

Say we have
Xl' . s ,Xn""F and Yl' "y YmNG
and we want to test

HO:F=GUSHO:F¢G




At first this seems a very different problem, but
fairly generally a method for one can be turned
into a method for the other.

Example: Kolmogorov-Smirnov
GOF: KS = max{‘ﬁ(x) — F(x)‘; x}

2-Sample: KS = max{‘ﬁ(x) — @(x)‘;x}




Permutation Tests

Under Hy: F =G
SO
X1, X0, Yy, .., Y ~F
samples are independent, so any reordering is
equally likely.
Basic permutation test:

Find random permutation of data, split in
vectors of size n and m, calculate test statistic,
repeat many times. Compare to actual data.




Power

F=N(0,1) G=N(1)
in example: n=50

Compare to classic 2- sample t test:

X —
IS = ~ tn+m—2,a/2
s+

l
m

S|




1.00-

0.75-
. Method
@
é == 2-sample t
0 0.50- == Permutation
0.25-
0.00- ' ' ' ' '




GOFer

Online Goodness-of-Fit Testing

» No know
» Can hanc

» Can hano

edge of R required
le continuous or binned data
le model specified via expression

(density) or via bin probabilities
» Model expressions can be specified via R or

C++

» Finds a variety of standard tests (Chisquare
variants and EDF tests)

» Allows for “optimal” binning




How to run App

» App is online at
https://drrolke.shinyapps.io/GOFer/

» You can install all you need to run the app on
your computer in less than 10 minutes. To
see how go here
http://academic.uprm.edu/wrolke/GOFer/

» Page also has detailed explanations on how
to use app.



https://drrolke.shinyapps.io/GOFer/
http://academic.uprm.edu/wrolke/GOFer/
http://academic.uprm.edu/wrolke/GOFer/

GOFer

For a detailed explanation of the app go here

Run MC! Datais..
Continuous
Source of Data?
Use Included Examples hd

Choose Probability Model to Test

Enter R expression for density hd

Select EDF Tests
Kolmogorov-Smirmay
Anderson-Darling

Cramer-vonMises

Type | error rate for envelope test

a=5% v

Do you want to find the Power of the
Tests?

No v

Model is ...

v Continuous

Select Data Set

Uniform y=1 hd

Enter R expression for density and hit Go

1

Select Chi Square Tests
Pearson *

Oxtap

Oyeim

MC runs

1000

Left End Point

0

Go

Number of Bins (0=Default Formula)

0

Sample size is ..

fixed

Right End Point

1

Type of bins

Equal Probability



Choose Probability Model to Test Enter R expression for density and hit Go

Enter R expression for density v exp(-x)
Select EDF Tests Select Chi Square Tests
7| Kolmogorov-Smirnov 7| Pearson y*
| Anderson-Darling VAp
7| Cramer-vonMises ¥EAM

Type | error rate for envelope test

a=>5% v

Do you want to find the Power of the
Tests?

No v

sample

Daa R
e L | o -

Number of Bins (0=Default Formula)

0

Go

Result of GOF Tests

Chi Square Tests. Number of bins: 32

Method BinType | p-value

Pearson ¥2 | Equal Probabiity | p = 0.561

EDF Type Tests

Kolmogorov-Smirnov p=0825
Anderson-Darling p=0.593
Cramer-vonMises p=0.966

Type of bins

Equal Probability



Choose Probability Model to Test Enter R expression for density and hit Go o

Enter R expression for density v EXp(-K)
Select EDF Tests Select Chi Square Tests Number of Bins (0=Default Formula) Type of bins
V| Kolmogorov-Smirnov 7| Pearson y* 0 Equal Probabilty v
V| Anderson-Darling ¥Ap
V| Cramer-vonhises ¥EAm

Type | error rate for envelope test

a=5% v
Do you want to find the Power of the Enter R expression for alternative density
Tests? g
-
Yes v
N nn Result of GOF Tests Power of the Tests
O N
NS —
%
”\\,‘"\\\ _ Chi Square Tests. Number of bins: 32 ¥2 Tests
n
slan '
N _
"'\:'«.,‘ i Method BinType | p-value Method Bin Type | Power
N
. .,4“»\ -
H T h A
_\i::\ M Pearson x? | Equal Probabilty | p = 0.561 Pearson y? | Equal Probability | 27.9%
A ‘*{:« Hl A EDF Type Tests EDF Type Tests
N
H L IH » gy
o
I 1 I Kolmogorov-Smirnov p=0825 Kelmogorov-Smirnov 61.3%
H H N
Anderson-Darling p=0593 Anderson-Darling £69.4%
Cramer-venMises p= 0966 Cramer-venMises 59%




File Upload

R fJCe

Density
exp(-param[1]*x)
Distribution
1-exp(-param[1]*x)
Alternative
1-x/5
Estimator
xbar<-mean(x)
new<-paraml1]
repeat {
old<-new

new<-old-(1/old-xbar-exp(-old)/(1-
ean old)))/( 1/oldA2+exp(-old)/(1-exp(-

|f(abs(old new)<0.0001) break
}

return(new)

Density
for(int i=0;i<n;++i) y[i] = exp(-
param[O]*x[|])
Distribution
for(int i=0;i<n;++i) y[i] = 1.0-exp(-
param[O]*x[l])
Alternative
for(int i=0;i<n;++i) y[i] = 1.0-x[i]/5.0;
Estimator
double pold,pnew,xbar;
xbar=0;
for(int i=0;i<n;++i) xbar+=x[i];
xbar=xbar/n;
pnew= Baram[O

whlle(a s(poId pnew)>0.0001) {

pold=pnew;

pnew— pold-(1.0/pold-xbar-exp(-
poId /(1.0-exp(-pold)))/(-

old pold)+exp(-pold)/(1.0-exp(-

oldg)(l .0-exp(-pold)));

p[O]=pnew;



Thanks!




