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Making Choices (‘Hypothesis Testing’)
Classification problem: Separation
into two (or more) classes: e.g.
Signal and Background events

Hypothesis is ‘This is a signal(red)
not background(green)’

Indicator variable x - may be
multidimensional and/or output from
ML system

Behaviour known - from simulations
or from control samples

Put a cut somewhere and accept all that pass Accept that some signal
events will be lost (efficiency) and some background events accepted
(purity)
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Type I and Type II errors

Two sorts of errors possible:

Type I: reject a signal event. Lowers efficiency

Type II: accept a background event. Lowers purity, increases
contamination

α is the probability of a type I error
∫
S(x)dx

over the rejection region. Called ’Significance’

β is the probability of a type II error
∫
B(x)dx

over acceptance region. 1− β called ’Power’
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Neyman-Pearson Lemma

How to choose the best
acceptance/rejection region even in
cases where S(x) and B(x) have lots
more structure.

α is imposed. You want to minimise
β.

Add regions of x with the highest S(x)/B(x) to the acceptance region
until α is achieved. β is then minimised, as replacing any ∆x with an
equivalent region from the rejection region would bring in more B(x)
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Composite Hypothesis

Suppose you have several different sources of background - and their
relative sizes are not known so you can’t just lump them together

Or a hypothesis containing an adjustable parameter, or parameters

Doesn’t affect α

Need to quote worst (i.e. largest) β. Then can say background
contamination probabilty≤ β
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ROC plots

Varying cut value varies α, or 1− ES and β, or EB

Plot ES against EB , or 1− ES against EB , or...

’ROC plots’ : also called efficiency plots, efficiency/contamination plots,
and (wrongly!) efficiency/purity plots Show how good your separation
technique is by how far they bend from diagonal. ROC stands for Receiver
Operating Characteristic (jargon but sounds good)

Roger Barlow Probability 7th March 2017 7 / 28



The Null Hypothesis H0

You want to test a theory. Do an experiment. Data may show the theory
is wrong - but how do you show it’s right using frequentist tools?

‘The data are compatible with the theory being true’ says nothing.

Have to test ’The theory are not compatible with the theory being false’

Construct Null Hypothesis H0 which is that your theory is false.

Examples: There are no dark matter events in your sample

Web advertising does not increase sales

There are no bumps in the mass plot

New Treatment has no effect on cure rate

.....

‘Every experiment may be said to exist only to have the chance to disprove
the null hypothesis’ - Fisher
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Type I and Type II errors revisited

Type I: reject a signal event → Probability of rejecting the H0 when it is true.
‘False positive’ probability

Description of α as ‘significance’ makes sense. Set α = 0.05 and get a result in
the reject region. Hooray! Null hypothesis rejected at significance level of 0.05.

Also quote as Confidence level 1− α. Here 95%.

If H0 passes the test I say, with 95% confidence ‘There is no effect’. Statement is
either true or false, but is a member of an ensemble of statements, 95% true.

Legal point: I say with 95% confidence that a statement is true if it belongs to an

ensemble of which at least 95% of statements are true. Extra two words mean (i)

a statement true with 96% confidence is also true with 95% confidence and (ii)

composite hypotheses are covered by taking the worst case.

Type II: accept a background event → fail to reject H0 given the chance
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χ2 and Goodness of Fit
Tool often used in Hypothesis testing

Data {xi , yi} and H0 is that y = f (x)

Define χ2 =
∑N

i=1

(
yi−f (xi )

σi

)2

Expectation χ2 = N. (broadly obvious, and can
be proved)

Figure shows N = 20

P(χ2;N) = 2−N/2

Γ(N/2)χ
N−2e−χ

2/2

Comes from integrating over multiple Gaussians.

Use χ2 as indicator variable for H0 (i.e. does the curve y = f (x) go
through the data points {xi , yi ± σi})
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More about χ2

You will also see χ2 =
∑N

i=1
(yi−f (xi ))2

yi
. This is a simplified version and

applies only to histograms

If f (x) actually f (x ; a) and a adjusted to minimise χ2, replace N by ND :
number of data points minus number of adjusted parameters. (Nice
property of χ2: assumes fitting acts to reduce dimensionality of χ space.)

If χ2 is large, reject H0. Calculate p =
∫∞
χ2 P(χ′2;N)dχ′2 - probability of

getting a χ2 value this large or worse.

If χ2 is small - be suspicious and check your error calculations.

χ2 is a really nice tool: minimising it gives estimates (and their errors) and
its value gives goodness-of-fit. Contrast likelihood, where the actual value
is meaningless.
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p values

p values are not just for χ2: - probability of getting a value this extreme or
worse for any measure of agreement.

The Difference between p and α

In one sense, none. Both are
∫∞
x P(x ′) dx ′

In another sense, plenty. α is computed before you see the data and is a
property of the test. p is a property of the data.
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Wilks’ Theorem
Getting a lot of use recently

Start with variant of χ2 test. Suppose 2 models H0 and H1, where H1 is
similar to H0 but has more parameters (e.g. H0 is straight line fit, H1 is
quadratic)

The difference ∆χ2 between the two is also χ2 distributed, with ND the
number of new parameters.

Use to answer question ‘Do the extra parameters really help?’ Sort of
decoupled from total χ2 values

Wilks extends this to likelihoods: −2∆lnL has a χ2 distribution. (Hence
name ‘Likelihood Ratio test’)

Proviso (1) applies in large n limit and (2) Models must be nested: for
particular parameter value H1 reverts to H0
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Five sigma

p− values often expressed in terms of Gaussian σ.

E.g. probability of Gaussian exceeding 3 σ is 0.13%. (1-tailed). Call a
p−value of 0.13% or below ‘3 sigma’

Do these calculations in R with 1-pnorm(Nsigma) and

qnorm(1-p)

For a ‘discovery’ claim we need 5 sigma. (Probability below 3× 10−7)

Harsh? Yes, but justified by history
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Look Elsewhere effect

Multiply number of particle physicists by number of plots they can draw
per day times days in year - many thousand. There will be 3 sigma effects!

If you histogram random numbers,
you see lots of apparently significant
bumps
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Blind Analysis
Cuts must be performed without looking at the final
sample

Otherwise the analyst will tweak cut values to enhance
the signal size, or the effect they are looking for.

The story of the split A2 meson is a cautionary tale

We are better today but not immune - as the Z(750)
shows

Statistics texts warn against publication bias - if 20 studies are done, one
will (probably) report a 5% significance effect. OK, except it may be the
only one that gets published.

We probably err in the reverse direction. If a measurement agrees with the
Standard Model, we publish. If it doesn’t we check and wait for more data.
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Confidence Intervals

Given Gaussian measurement (say) M = 123± 4.5GeV .

We know this was sampled from a distribution ∝ exp−
1
2

(M−µ
4.5

)2

But µ is unknown and we want to say something about it

Argument:
M will be within 4.5 GeV of µ in 68% of all cases
µ will be within 4.5 GeV of M in 68% of all cases
If I say ‘µ lies between 118.5 and 127.5 GeV’ I have a 68% chance of
being correct. (The statement is a member of an ensemble of statements
of which 68% are true)

118.5 to 125.5 GeV is a 68% confidence interval

Frequentists manage to say something useful about uncertainty on
measurement without violating their probability definition!
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Choices

The choice (68%, 95%, whatever) is up to the author. Tradeoff between
precision and confidence.

The ends of the interval do not have to be symmetric, provided integral is
chosen value. Other choices include lower limit, upper limit, shortest
interval and central (probability of both tails equal)
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Gaussians and Likelihood

Measurement may not come labeled as µ± σ

For true µ, log likelihood is −1
2

(
M−µ
σ

)2
+ constant term

This is a parabola. ∆ ln L = −1
2 at x = ±σ

1
σ2 is the second derivative.

We do not have access to the true lnL but we do
have access to lnL at µ̂ and the second derivative
is (hopefully) not that different

So estimate true σ from our d2lnL
dµ2 and estimate

that from points where ∆lnL = −1
2

This defines a 68% confidence interval.
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χ2 again

∆ ln L = −1
2 translates to ∆χ2 = +1

In 1-D, probability of χ2 < 1 is 68%

In 2-D, probability of χ2 < 1 is 39% (in R, pchisq(1.0,2))

If you want to find a region for which the chance is 68.3%, need
∆χ2 = 2.30 (qchisq(0.683,2))

For general n-D, and other probability values, use pchisq and qchisq
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Asymmetric Statistical Errors

Maybe your ln L is not a nice parabola

∆ ln L points are then not symmetric.

Argument for quoting them is: could transform
to some µ′ for which ln L was parabolic. Extract
symmetric errors. Then transform back.

OK but what later? How should you use combination of errors when errors
are asymmetric?

Standard procedure is to combine positive and negative errors separately
This is WRONG as it violates the Central Limit Theorem

For a better method, see RB ‘Asymmetric Statistical Errors’
arXiv:physics/0406120
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Confidence bands
Constructed Horizontally, read vertically

Gaussian measures are easy to handle because of their symmetry. What
about more general P(M;µ) giving probability that a true µ will result in a
measured M

Consider M, µ plane. For each µ, select the range of M according to value
and choice (i.e. 68% or 95%, central or shortest...)

This defines the confidence belt.

Then take your measurement of M. We say with
68% (or whatever) confidence that (M, µ) lies
inside the belt. So we read off the limits on µ

Note that the upper/lower limits in construction
give the lower/upper limits in readout
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Poisson confidence intervals

Extra complication as x − axis is discrete.
∫
Mεregion P(M, µ) dM becomes∑

rεregion P(r , µ)

May not be possible to choose region to satisfy probability exactly:
inclusion may bring it over the value - but that’s OK due to the ’at least’

Most Poisson studies are interested in setting one-sided upper limits.
Numbers are small. (If they were large we could use the Gaussian
approximation).

So if you see N you want
∑N

r=0 e
−µ µr

r ! = 0.05 (or whatever)

If the true value is µ, or higher, the probability of only seeing N, or fewer,
is only 0.05, or less.

Magic number: for N = 0, 95% confidence, µ = 3.00. If you see zero
events, you know with 95% confidence that the true value is at most 3.0
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The big problem

What do you do if you see 0 events - and your expected background is 3.1?

See CLS , Feldman-Cousins and other topics in later lectures
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Bayesian credible intervals

Everything is easy.

Take prior. Multiply by likelihood, and normalise to get your posterior.

Find regions for which
∫
µεregion P(µ|data) dµ = C where C is the desired

probability content and the region my be symmetric, central, whatever

Poisson Upper limit (i.e. credible interval[0, µ]) with uniform prior

P(µ|r) = e−µµr/r !∫
e−µ′µ′r/r !dµ′

Integral can be done by parts and you end up with
∑N

r=0 e
−µ µr

r ! = 0.05 –
same as Frequentists!

This is just a coincidence - doesn’t hold for upper limits. But has saved a
lot of arguments.
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Sensitivity to Priors
Consider case of zero observed events

95% upper limit is 3.00

95% upper limit much smaller than
3.00
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Coverage
Another use for Toy Monte Carlos

Check out that your confidence interval procedure makes sense by
1) Choose some true value µ
2) Generate lots of random pseudo-experimental results
3) Construct the confidence interval for each
4) Count how many times the interval encloses the true value
Ideally the result of (4) should be the same as you specified when you
chose the constructor.

If more (’over-coverage’) this is OK, thanks to the ‘at least’ clause, but
inefficient. If less (‘under-coverage’) then something is wrong,

Note: coverage is a function of µ, not a single number. Typical sawtooth
plots.

Bayesians do not care about coverage - but check it anyway
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Tau decay puzzle
Here is just one page of PDG limits
on ‘forbidden’ tau decays, all quoted
at 90% Confidence

10% of these results are allowed to
be wrong.

Frankly, I don’t think any of them
are.

What’s going on?

A frequentist can invoke the ’at least’
clause in the definition of confidence

But what about the Bayesians?
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