Unstable anti-branes source unwinding inflation?

Thomas Van Riet – K.U.Leuven

With Fridrik Gautason & Marjorie Schillo, arxiv:1611.07037

New ideas in string phenomenology, DESY, Hamburg, 2017

Unwinding inflation

[D'Amico, Gobetti, Kleban, Schillo, 2013]

Unwinding inflation in string theory?

1. Fluxes typically contribute in "tadpoles"

2. Depleting fluxes does not necessarily imply depleting energy: see GKP.

3. Depleting fluxes might destabilize the manifold.

 \rightarrow Issues will be solved by our embedding by using unstable anti-branes.

Uses of anti-branes: susy-breaking in 10d

Perturbatively unstable

Uses of anti-branes: susy-breaking in 10d

1. Holography of dynamical susy breaking [Maldacena & Nastase 2001, KPV 2002, ...]

- 1. Holography of dynamical susy breaking [Maldacena & Nastase 2001, KPV 2002, ...]
- 2. dS vacua [KKLT 2003,...]

- 1. Holography of dynamical susy breaking [Maldacena & Nastase 2001, KPV 2002, ...]
- 2. dS vacua [KKLT 2003,...]
- 3. Microscopic description of near extremal black holes [Bena, Puhm, Vercnocke 2011,...]

- 1. Holography of dynamical susy breaking [Maldacena & Nastase 2001, KPV 2002, ...]
- 2. dS vacua [KKLT 2003,...]
- 3. Microscopic description of near extremal black holes [Bena, Puhm, Vercnocke 2011,...]
- 4. Brane Inflation [KKLMMT 2004,...], Unwinding mechanism [Gautason, Schillo, VR 2016]

(Stable) Anti-branes?

(Stable) Anti-branes?

2002: Yes! [Kachru&Pearson&Verlinde (KPV)]

2009-2016: Not sure [Hannover, Madison, Leuven, Saclay, Uppsala]

(Stable) Anti-branes?

2002: Yes! [Kachru&Pearson&Verlinde (KPV)]

2009-2016: Not sure [Hannover, Madison, Leuven, Saclay, Uppsala]

2014: Don't worry [Polchinski et al]

(Stable) Anti-branes?

2002: Yes! [Kachru&Pearson&Verlinde (KPV)]

2009-2016: Not sure [Hannover, Madison, Leuven, Saclay, Uppsala]

2014: Don't worry [Polchinski et al]

Today: We still worry [see eg 1609.06529]

(Stable) Anti-branes?

2002: Yes! [Kachru&Pearson&Verlinde (KPV)]

2009-2016: Not sure [Hannover, Madison, Leuven, Saclay, Uppsala]

2014: Don't worry [Polchinski et al]

Today: We still worry [see eg 1609.06529]

"I'm right there in the room, and no one even acknowledges me."

Not so relevant for "unwinding fluxes"

Brane-flux annihilation

Kachru, Pearson, Verlinde (KPV)

• SUGRA IF :

$$g_s << 1, \quad g_s p >> 1, \quad g_s M >> 1$$

• Locally confined backreaction if :

$$p/M^2 << 1$$

Kachru, Pearson, Verlinde (KPV)

Brane-flux annihilation: some details

<u>Charges?</u> \rightarrow NS5 Wess-Zumino action

$$\mu_5 \int B_6 + 2\pi \mathcal{F}_2 \wedge C_4$$
 , where $2\pi \mathcal{F}_2 = 2\pi F_2 - C_2$

$$2\pi \int_{S^2} F_2 = 4\pi^2 p \,. \quad \int_{S^2} C_2 = 4\pi M (\psi - \frac{1}{2}\sin(2\psi))$$

 ψ =0: p anti-D3 charges & ψ = π : M-p D3 charges

 ψ = 3th Euler angle

Brane-flux annihilation: some details

<u>Energy</u>? \rightarrow NS5 DBI + WZ action

ψ = 3th Euler angle

$$V_{\rm NS5}(\psi) = \frac{\mu_3}{g_s \pi} M \left[\sqrt{\frac{{\rm e}^{-4A}}{(Mg_s)^2}} \sin^4(\psi) + \tilde{U}(\psi)^2 + \tilde{U}(\psi) \right]$$

$$\tilde{U}(\psi) = \frac{\pi p}{Mg_s} - \psi + \frac{1}{2}\sin(2\psi) \; .$$

Inflation from brane-flux annihilation?

One can S-dualise KS solution + dial to g<<1 . Such throats equally occur in IIB landscape.

What changes?

- > Tip is filled with K units of NSNS flux (instead of M units of RR flux.)
- > Brane-flux decay occurs via nucleation of spherical D5 branes that eat up RR flux.

Why care?

> NS5 probe action cannot really be used at weak coupling.

> KPV had to because of holography (KS gauge theory is lost after "S-duality").

Parameter regimes in warped IIB compactifications

- \rightarrow Inflation caused by the dynamics of a D3 brane moving towards the tip.
- \rightarrow Inflaton = D3 position.
- \rightarrow Small field inflation. Range of inflaton kinematically restricted by KK scale.

2. P/K ~ 0,08 Giant Inflaton [DeWolfe, Kachru, Verlinde 2004]:

- \rightarrow Inflation caused by brane-flux decay process.
- \rightarrow Inflaton = 5-brane position.
- \rightarrow Small field inflation. Range of inflaton kinematically restricted.
- \rightarrow Model out of control. (On the border of control)

2. P/K ~ 0,08 Giant Inflaton [DeWolfe, Kachru, Verlinde 2004]:

- \rightarrow Inflation caused by brane-flux decay process.
- \rightarrow Inflaton = 5-brane position.
- \rightarrow Small field inflation. Range of inflaton kinematically restricted.

NS/5

D3

 \rightarrow Model out of control. (On the border of control)

- \rightarrow Inflation caused by brane-flux decay process.
- \rightarrow Inflaton = 5-brane position.
- \rightarrow Large field inflation. Range of inflaton NOT kinematically restricted.
- \rightarrow Model under control for a part. But moduli-stabilization is tricky.

Take the KKLT potential (or LVS, or racetrack, or...)

$$V_K = \frac{a_K A_K \mathrm{e}^{-a_K \sigma}}{2\sigma^2} \left(\frac{1}{3} \sigma a_K A_K \mathrm{e}^{-a_K \sigma} + \mathcal{W}_0 + A_K \mathrm{e}^{-a_K \sigma} \right) + \frac{z^{4/3}}{g_s^2 \sigma^2} \frac{2p\mu_3}{g_s}$$

Make uplift term decay in time since anti-branes are unstable against brane-flux decay: $p = p(\psi)$, with ψ inflaton. (Other terms are roughly unaffected).

$$\frac{2\mu_3 p}{g_s} \to e^{-4A} V_{D5}(\psi) = K^2 V_{D5}(\psi) ,$$

This is large field inflation if the range of ψ is "unfolded" as in axion-monodromy [McAllister, Silverstein, Westphal]

 \rightarrow Then we need p>K : multiple bounces

 \rightarrow We can even stay within probe approximation if

$$R_{S^3}^2 = \ell_s^2 K \gg \ell_s^2 \sqrt{g_s p} = R_{\rm D3}^2$$

This limit is possible when g<<1 and p>>K !

The result

Many constraints on a 6D parameter family.

$$V_{S^3}(\phi) = 2A_0 e^{4A} \left(\frac{\pi p}{K} - \frac{\phi}{f} + \frac{1}{2}\sin\left(\frac{2\phi}{f}\right)\right)$$

60- e-folds possible! But then oscillating eta & too low amplitude (10^-18)

> No destabilization of volume modulus during inflation

Good news:

- The unwinding mechanism seems very natural within string theory if one relies on brane-flux decay in warped throats.
- > Ingredients are in the standard IIB settings, but different regime of charges/fluxes!
- > It is *large field*. The resulting potential has the well-known universal form:

$$V_{S^3}(\phi) = 2A_0 e^{4A} \left(\frac{\pi p}{K} - \frac{\phi}{f} + \frac{1}{2}\sin\left(\frac{2\phi}{f}\right)\right)$$

> Brane backreaction issues seem less worrying and can only improve the situation

Alternative facts:

> We have the best inflation model ever. Better than the rest. It's great.

Moduli-stabilization is a piece of cake. We have done it. It was fun. You should try once.

Alternative facts:

> We have the best inflation model ever. Better than the rest. It's great.

Moduli-stabilization is a piece of cake. We have done it. It was fun. You should try once.

Future research:

- > Beyond single Kahler model to fully grasp the moduli-stabilization constraints.
- > Interesting tension between large field extension and moduli-stabilization! (WGC?)
- > Brane backreaction is argued to help. How to compute it?
- > What about reheating?

BACK UP SLIDES

The best thus far....

$\Delta \phi/M_{pl} = 12.1$	$H/M_{pl} = 6.5 \times 10^{-11}$	$H/M_{KK} = 1.7 \times 10^{-4}$	$\mathcal{V} = 5.3 \times 10^{12} \ell_s^6$
$z^{1/3} = .012$	$\mathcal{V}/\mathcal{V}_{\mathrm{throat}} = 1.1$	$g_s p/K^2 = .06$	p/KM = .54
$p = 4.5 \times 10^6$	K = 4500	M = 1852	$g_s = .27$
$A_K = 3$	$a_K = 2\pi/31$	$\mathcal{W}_0 = 1.31$	$\sigma_{*} = 10.4$

Table 1: One set of parameters that satisfies our constraints. We have chosen the average value of σ_* throughout the cascade.

Thin versus thick wall limit

