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1)    Higher-dimensional completions  
       of the Standard Model 
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- Sometimes higher-dim. symmetries protect quantum 
corrections in a way invisible from 4d.  
 
Ex: Internal comp.  of a gauge field  protected by  
higher-dim. gauge symmetry 

�m2
0 ⇠ (loop)⇥ 1

R2
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•  Compactification scale                         traditionally 
defines the GUT/unification scale . 

 
•  Scale of supersymmetry breaking                 
usually much smaller. 

Mc = R�1

MSUSY



2) Magnetic compactifications 
  
  Consider a 6-dim. theory : 
An internal magnetic field                           
- break SUSY, due to the magnetic moment coupling      

- Turns KK states            into Landau levels      , mass 

 
where           is the internal helicity of particles.   
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H = �µB = � q
mSB

k1, k2 n

⌃45

x0x1x2x3x5x6

F56 = B = f

�M2 = (2n+ 1)|qB|+ 2qB⌃56



• An internal magnetic field is quantized 
                                                
                                                        ;     N = integer flux 
 
• Each Landau level is N times degenerate.  
• Precisely N chiral fermion zero modes. 
Magnetized models  : Bachas (1995)….Cremades, Ibanez,Marchesano…Hebecker…
Buchmuller,Dierigl,Ruehle,Schweizer 

• Starting with a SUSY 6d theory, it is usually said that 
the effect of the magnetic field is to add a D-term Fayet-
Iliopoulos (FI) term in 4d  
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f = N
R2 ⇠ M2

GUT

D = f ! V = 1
2D

2 = 1
2f

2 ⇠ M4
GUT



7 Multiplicity equal to the total number of times the

branes intersect in the compact space

D(a)°D(b) : I(ab) =
3Y

i=1
I(ab)
i =

3Y

i=1
(m(a)

i n(b)
i ° n(a)

i m(b)
i ) .

Widely studied in string theory  : 
 
Internal magnetic fields                     intersecting branes 
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T-dual 

Elegant geometrical intepretations : 
- chiral fermions live at the intersection of branes 
- Number of generations:  intersection numbers 
- Yukawa couplings : governed by areas  



”Standard Model” quiver
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Among the most succesful quasi-realistic 
Standard Model realizations in String Theory 
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Why would one be interested in field theory approach 
to magnetic compactifications ?  Several reasons:  

§  If broken SUSY, most of quantum corrections not 
calculable in string theory due to uncancelled NS-NS 
tadpoles 

D-brane/O-planes have tension and charges (Tp, qp).

Crucial constraint: RR tadpole constraints$ UV finite-

ness $ Gauss law in internal space

X

Dp

q(n)
Dp +

X

Op

q(n)
Op = 0 ; SUSY ! Tp = qp
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•  There is no mass gap in the spectrum :   
soft masses given by the FI term of the same order 
(           )  as the masses of Landau levels                  
 
 
one needs an effective theory for the whole tower. 
 
Truncation to « zero modes »  inconsistent.   

1/R2



3) Effective field theory 
• Consider an abelian 6d SUSY theory compactified on 
a torus. 

N=2 SUSY in 4d before the magnetic flux; 
4d Multiplets:      vector                  
                     charged hyper 
6d effective action in superfields: (Marcus,Sagnotti,Siegel ; 
Arkani-Hamed,Gregoire,Wacker)   
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(V,�)
(Q, Q̃)

Quantum Corrections
WB, Dierigl, Dudas, Schweizer ’16
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2
(A6 + iA5)

Bachas ’95: Landau levels

Wilson lines and flux, mode expansion of superfields:

Simplest example: 6d SUSY QED,  compactified on torus:

�0|✓=✓=0 =
f

2
p
2
(x5 � ix6) + ' , ' = 1p

2
(a6 + ia5) ,

Q(xM , ✓, ✓̄) =
X

n,j

Qn,j(xµ, ✓, ✓̄) n,j(xm) , Q̃(xM , ✓, ✓̄) = . . .

→effective 4d action, compute Wilson line potential
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�       are internal components of gauge fields  =  
     Wilson lines 
 
Mode expansions with flux:  

Quantum Corrections
WB, Dierigl, Dudas, Schweizer ’16
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Bachas ’95: Landau levels

Wilson lines and flux, mode expansion of superfields:

Simplest example: 6d SUSY QED,  compactified on torus:

�0|✓=✓=0 =
f

2
p
2
(x5 � ix6) + ' , ' = 1p

2
(a6 + ia5) ,

Q(xM , ✓, ✓̄) =
X

n,j

Qn,j(xµ, ✓, ✓̄) n,j(xm) , Q̃(xM , ✓, ✓̄) = . . .

→effective 4d action, compute Wilson line potential

which satisfy the canonical commutator relation [a, a†] = 1. The internal Hamiltonian
can be written in terms of the ladder operators as

H2 = �qgf
�

a†a+ aa†
�

= �2qgf
�

a†a+ 1
2

�

. (22)

Therefore, the energy eigenvalues of H2 and thus the 4d Landau level masses show the
typical spectrum of an harmonic oscillator. All levels are |N |-fold degenerate, with N
the number of flux quanta on the torus, in analogy to Landau levels. We denote the
internal field profiles as  n,j, see [14], where n refers to the Landau level and j accounts
for the |N |-fold degeneracy. The field profiles corresponding to the lowest mass can
then be constructed from the condition

a 0,j = 0 , a†  0,j = 0 . (23)

Applying the ladder operator we obtain the higher mode functions

 n,j =
1p
n!
(a†)n  0,j ,  n,j =

1p
n!
(a)n  0,j . (24)

The explicit form of the lowest wave function was obtained in [5, 14]. In our consid-
eration the specific form of the field profile is irrelevant and we will only need the
orthonormality condition4

Z

T 2

d2x ñ,|̃ n,j = �n,ñ�j,|̃ . (25)

Instead of the KK decomposition in Sec. 2 we now decompose the charged fields
with respect to the Landau levels,

Q(xM) =
X

n,j

Qn,j(xµ) n,j(xm) =
X

n,j

Qn,j(xµ)
1p
n!

�

a†
�n
 0,j(xm) ,

Q(xM) =
X

n,j

Qn,j(xµ) n,j(xm) =
X

n,j

Qn,j(xµ)
1p
n!

(a)n  0,j(xm) .
(26)

4Note that the charged wave functions in the flux background are not orthonormal with respect to
the standard KK states discussed in Sec. 2. Therefore, to discuss the interaction of the charged states
with higher excitations of the uncharged sector one has to evaluate the overlaps explicitly, see e.g. [15].

8

our choice of gauge reads3

A5 = �1
2fx6 , A6 =

1
2fx5 , F56 = @5A6 � @6A5 = f . (15)

As mentioned above, for the square torus of volume L2 the flux is quantized. In the
presence of particles with charge q the flux density can take the values

qg

2⇡

Z

T 2

F =
qg

2⇡

Z

T 2

dx5dx6 F56 =
qg

2⇡
L2f 2 Z (16)

Using a product space metric for M4 ⇥ T 2, and splitting the kinetic terms into 4d and
2d parts, the six-dimensional action (14) decomposes as

S6 =

Z

d6x
�

�⌘µ⌫DµQD⌫Q�QH2Q
�

, (17)

where after integration by parts in the internal coordinates we define the 2d Hamiltonian

H2 = �D2
5 �D2

6 = �
�

@5 � i
2qgfx6

�2 �
�

@6 +
i
2qgfx5

�2
. (18)

In analogy to the quantum harmonic oscillator with Hamiltonian H = 1
2mp2 + 1

2m!2x2

and the standard commutator relation [x, p] = i~, we identify

p = iD6 , x = iD5 , m = 1
2 , ! = 2 , (19)

with the commutator relation

[iD5, iD6] = �iqgf . (20)

This leads to the further identification ~ = �qgf [6], since we choose f to be negative
for left-handed zero modes, c.f. [25]. One now defines the ladder operators

a =

r

1

�2qgf
(iD5 �D6) ,

a† =

r

1

�2qgf
(iD5 +D6) ,

(21)

3The calculations in the following sections are equally valid for other gauge choices.

7

where (harmonic oscillator 
algebra)   
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The final 4d effective action for Landau levels is 
 
                                                                  FI term 

action as in Sec. 2,
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◆

.

(35)

The last contribution we have to add leads to a kinetic term for the complex Wilson
line ' as well as a Fayet-Iliopoulos (FI) term5

S⇤
4 �

Z

d4x

Z

T 2

d2x

Z

d4✓
⇣

@V0@V0 + �0�0 +
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Z
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Z

d4✓ (''+ 2fV0) .
(36)

Note again that compared to [10] our action di↵ers by an integration by parts. This is
important since the boundary terms do not vanish in the flux background. In summary,
the 4d e↵ective action with the complete tower of charged states and a restriction to
the zero modes in the uncharged sector reads

S⇤
4 =

Z

d4x

"

Z

d4✓
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X
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#

.

In order to obtain the mass spectrum of the charged fields and their interactions
with the uncharged field ' one has to integrate out the auxiliary fields. The bosonic
mass terms receive contributions from F - and D-terms, whereas only the F -terms enter
for the fermion masses. The couplings of the auxiliary field D are given by

LD = fD + |Qn,j|2qgD � |Q̃n,j|2qgD +
1

2
D2 , (38)

yielding

D = �f � qg
X
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|Qn,j|2 � |Q̃n,j|2
⌘

. (39)

5Here, we use @� = @� = f/
p
2 in the flux background, since @' = 0 = @', and @V = 0 = @V .
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                               Coupled mass terms 

•  SUSY broken like in the FI model, with an infinite 
number of fields. Truncation to a finite number 
inconsistent.   
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We also worked out the non-abelian case: SU(2)  
gauge group in 6d with N=2 vector multiplet,  flux  
in the generator       . 
 
•  Interesting subtleties with the Stueckelberg  
mechanism for Landau levels. 
  
•  In this case, there is always a recombination  
mode             which restore SUSY by tachyon 
condensation.               
 
                the abelian flux seems the one needed to 
break SUSY.  

E. Dudas – E. Polytechnique   

T3

�+,0
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We clearly identify the kinetic term for '3 as well as the gauge covariant kinetic terms for

the charged chiral multiplets �± of charge ±1
2 . Also the FI-term for the vector multiplet

aligned with the flux V3 is present, as in the Abelian case. The remaining contributions

will lead to interaction and mass terms connecting charged states. Except the last term,

that contains four charged fields, we can derive the 4d e↵ective action along the lines of

section 3, where �± now correspond to the charged chiral multiplets Q and Q̃. The final

result is
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Integrating out the auxiliary fields in (4.8) we can work out the masses of the charged fields.

The charged vector boson masses in 4d can be evaluated using ✓�µ✓✓�⌫✓ = �1
2✓✓✓✓⌘

µ⌫ .

They are given by

m2
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– 13 –

E. Dudas – E. Polytechnique   



16 

4) Quantum corrections, Wilson lines as 
goldstone bosons  
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Interested in Higgs = internal component of  the gauge 
field. 6d gauge symmetry could protect its mass ?   

String attempt in a string model intersecting branes (Anastasopoulos et al, 
2011):  inconclusive due to the NS-NS tadpoles  
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Each contribution is quadratically divergent: the sum 
over the whole charged tower is however exactly 
zero !  



' '

Qn,j, Q̃n,j

' '

Qn+1,j, Q̃n+1,j

Qn,j, Q̃n,j

Figure 3: Bosonic contributions to the Wilson line mass with flux.

' '

�n,j

�̃n,j

Figure 4: Fermionic contribution to the Wilson line mass with flux.

charged bosonic and fermionic fields,

Lint =� i
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(83)

where we have introduced the positive parameter ↵ = �2qgf of mass dimension two.
Note that the cubic bosonic vertex is proportional to the mass of the charged fields
involved. Moreover, the bosonic couplings do not mix the fields Q and Q̃. On the
contrary, the fermionic coupling involves the pair � and �̃ at the same Landau level n,
analogously to the Dirac mass terms in Eq. (49).

As in the case without flux there are two classes of bosonic contributions and one
class of fermionic contributions to the Wilson line mass which are depicted in Fig. 3
and Fig. 4, respectively. Using the couplings given in the Lagrangian (83) one obtains

23
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The same is true for the fermionic contribution 

We checked also that the quartic coupling is zero. 
 
Is there’s a symmetry reason ?  
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Action of charged matter fields invariant under 
translations 
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Wilson lines as Goldstone bosons 
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Flux background breaks the symmetries spontaneously  
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Translational symmetries now non-linearly realized  
with Wilson lines as  Goldstone bosons 
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Conclusions, Perspectives 
u  Strong theoretical arguments for SUSY at high scales: 

gravity, string theory  
u  Energy scale of grand unification                          GeV 
Scale of SUSY breaking                  ? 
u   Magnetized compactifications : high-scale SUSY 

breaking  

u   Hope for a higher-dim. protection  of scalar masses: 
Higgs mass, inflaton. 

u    Various applications possible: moduli stabilization (see 

Buchmuller,Dierigl,Ruehle,Schweizer), inflation, string and field 
theory orbifold GUT’s.  

MGUT ⇠ 1016

MSUSY

MSUSY ⇠ MGUT ⇠ R�1



       Thank  you 
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