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Cosmological singularities

• It appears that our universe began with a big bang singularity, i.e. our inflating FLRW 
cosmology evolved out of a phase with Planckian curvature and energy density, beyond 
the purview of any (semi)classical theory of gravity  

- I will neglect the possibility of a bouncing universe 

• Primary goal of quantum gravity: provide an understanding of  singularities. This is 
necessary for cosmology in order to describe the initial conditions of the universe. 

• Holography provides a tool for studying singularities. Crunching AdS spacetimes have 
been constructed from M-theory compacted on     . These are             , D = 4 = d+1 bulk 
theories with a boundary dual that is the (deformed) CFT on a stack of M2 branes.
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Holography           cosmology 

• What is the signature of the bulk singularity in the dual field theory? 

• The form of the answers 

- Correlation functions 

- Properties of the state and stability of the boundary theory 

• The relation to cosmology 

- Learn something about properties of singularities in quantum gravity (initial 
conditions) 

- Learn something about cosmologies (time dependent spacetimes) with strong gravity



Holographic setup

• We study a specific consistent truncation to a theory with gravity and a single scalar field 
with                  :  

- The gauge coupling has been chosen such that the pure AdS solution with            has                    

- The tachyonic scalar is within the Breitenlohner-Freedman bound.  With appropriate 
asymptotic boundary conditions, the theory is non-perturbatively stable at           . 

• For non-trivial scalar fields, the boundary CFT is deformed by an operator of weight 

m2 = �2

Sbulk =

Z
d

4
x

p
�g


1

2

R� 1

2

(@�)

2
+ 2 + cosh(

p
2�)

�

� = 0 RAdS = 1

�

m2 = �(�� d)

S

boundary

= S

CFT

+

Z
d

3

x

p�� O
�

� = 0

Duff & Liu: 9901149



Bulk geometry

• Non-standard asymptotic boundary conditions to allow for non-trivial instanton solutions 
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Euclidean instanton

Open FLRW

Big CrunchLorentzian Continuations 
•  Outside the light cone 

• Inside the light cone
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Bulk evolution

• The set of regular Euclidean instantons is 
a one parameter family of solutions that 
can be characterised by the value of the 
scalar field at the origin 

• Outside the light cone the scalar field 
dies off and the space is asymptotically 
AdS 

• Larger values of      correspond to 
crunches that happen at earlier and 
earlier FLRW times.  As                the big 
crunch singularity lies along the light 
cone.
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Holographic setup: boundary conditions 
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- We impose Neuman boundary 
conditions ↵ = hO1i (VEV)

• The Lorentzian continuation picks a natural slicing of AdS such that the boundary is     
3-dimensional de Sitter space: 

• Then the asymptotic behaviour of the scalar field is given by: 

- where                are the smaller/larger roots of 

• For our case of 



Boundary theory: massive scalar in de Sitter
• The choice of boundary condition                    corresponds to a boundary theory where a 

conformally coupled scalar on de Sitter space receives a massive deformation. 

• The bulk singularity does not hit the boundary at finite boundary time - the boundary 
theory is globally well defined.  

• Although the boundary theory is strongly coupled, we gain intuition from the free theory: 
expect a critical deformation,                      , where the boundary theory is that of a 
minimally coupled massless scalar. 

- We lose the existence of the Euclidean vacuum 

- The vacuum does not respect the full de Sitter symmetry group/ the zero mode of the 
correlation has to be removed/ only derivatives of the correlators can be considered 

- In the massless limit, two-point functions do not die off in the IR
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Mass deformation determined by the regular instantons

• The one parameter family of 
regular instantons defines a curve 
in the         plane. 

• A choice of boundary conditions 
does not guarantee either 
existence or uniqueness of the 
instanton solution 

• There is a critical                    at 
which a singular instanton enters, 
and below which two instanton 
geometries correspond to a given 
boundary theory 

- This corresponds to a second saddle 
point entering the computation for 
boundary correlators 

- not a feature of other consistent 
truncations  
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Effective Potential: scalar on de Sitter
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• No stable vacua for tachyonic scalars

• Stable for 
• Regime of with a metastable minimum 

    corresponding to the first saddle point, 
    and an unstable maxima corresponding 
    to the second saddle point and no overall 
    stable vacuum. 

• No (meta)stable vacua for large  
       deformations

� > �fr
c = �3/8 � > �c ⇡ �2.12

��(↵) = �V oldsVe↵(↵)�
�

(↵) = �0(↵)�
Z

d

3
x

p
��dS

Z
↵(x)

0
�BC(↵)d↵



Correlation functions: geodesic method
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•         is the state of the boundary theory 

• . 

•      is a weighting, given by the Euclidean action, relevant in the case of multiple saddle 
points 

•         is the regularised length of a geodesic connecting boundary points x and x’ 
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The IR behavior

• The strong IR tail is produced by the second saddle point, where 

• The proper time between the closest approach of the geodesic         , and the crunch 
shrinks as we increase     .  Therefore the IR tail near the critical deformation comes 
from geodesics which come close to the singularity.
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Comparison with free theory:

• To compare to the geodesic approximation we need 
to compute the two-point function for a heavy 
operator. 

• Expanding the free theory around the massless 
limit, one finds:

Free theory Strong coupling
• In the limit of the critical deformation we need 

numerical fits to describe the geometry 

• Using these we find the two point function in the 
limit              is:  

• The Z-dependence matches the free theory 

• The expansion in                  is reminiscent of an 
instanton expansion - especially in view of the 
metastable effective potential.  
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Euclidean Action

• The Euclidean action is not single single valued, signature of a first order phase 
transition. 

• Also indicated from purely field theory calculation by Nosaka, Shimizu and Terashima 
(1512.00249)
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Conclusions

• The boundary theory on de Sitter is stable (for some range of parameters), whereas this is not the case 
for a Minkowski boundary. 

• Signatures of the bulk singularity are reminiscent of the massless minimally coupled scalar in de Sitter  

- The dependence on boundary separation of correlation functions in the IR matches that of the free theory in the 
massless limit 

- The IR tail of the two point function comes from geodesics which come arbitrarily close to the singularity 

- Speculation: cosmological singularities are linked to strong correlations on large length scales (also one of the 
main virtues of inflation) 

• We find indications of an instability for a branch of instanton solutions 

• Instability in the boundary theory indicated by      

• Correlation functions dual to heavy bulk fields show hints of an instanton expansion in the limit of singular 
geometry 

• Double valued Euclidean action indicates first order phase transition
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Free scalar on 

• All correlators only depend on the de Sitter 
invariant distance: 

• Two-point function 

• One-point function
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Quantum effective action

• The effective potential for         , (i.e.    ) can be computed from the standard quantum 
effective action. 

• We are interested in a theory with fixed von Neumann boundary conditions. We deform the 
theory by some fixed source        , resulting in a shift of the quantum effective action: 

• The effective potential for     is obtained from the quantum effective action via the definition:                  
.                                    ,  resulting in: 

• The extrema of this potential are in one-to-one correspondence with the regular solutions 
(either in the free theory or the regular instanton solutions) that obey the von Neumann 
boundary conditions.
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Geodesics in crunching AdS

• Geodesics do not enter the region                , where          is defined by                            .  
As the boundary separation of the endpoints is taken to infinity, the geodesic lies along 
the surface 

- This has been used to argue that boundary correlators do not encode information about the 
singularity because geodesics don’t get close to it.  We do not find this to be the case. 

• Geodesic length can only depend on the de Sitter invariant distance (Z) between the 
boundary points 

• Geodesics with small boundary separations only probe the near boundary region - 
asymptotically AdS region 

• Regularisation removes the universal volume divergence
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Weight saddle points via the Euclidean action

• Weights are given by: 

• When the second saddle point 
enters, it has a less negative 
Euclidean action, and is therefore 
subdominant 

- reminiscent of Maldacena’s 
eternal BH in AdS story

wi =

(
1 for � > �c ,

e�SE i
P

j e
�SE j

for �min  �  �c ,

●

●●

▼ ▼▼
◆ ◆◆

5 10 15
ϕ0

-5

0

5

10

SE

hep-th/0106112



• In the near AdS limit we can solve the bulk 
perturbatively in    ,  we find: 

• Plugging into the IR expansion of the holographic 
two point function we find  

• The Z-dependence matches the free theory, 
however, the subleading dependence enters at a 
different order in 

Comparison with free theory:       

• To compare to the geodesic approximation we need 
to compute the two-point function for a heavy 
operator. 

• Focusing on the IR, we expand the two point 
function around               .  Additionally, the              
limit corresponds to small    :  
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Holographic Renormalization
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Some numerical fits
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