Mafalda Dias

room 308 mafalda.dias@desy.de

EARLY UNIVERSE/ INFLATION • Model independent computation of observable predictions

- String pheno/ SUGRA model building
- Statistical tools for complex systems

COMPLEXITY IN INFLATION

INFLATION AND THE TANTALIZING IDEA OF USING COSMOLOGICAL OBSERVATIONS AS A LAB FOR HIGH ENERGY PHYSICS

Fundamental physics

Observations / Phenomenology: Single field Slow Roll inflation?

INFLATION AND THE TANTALIZING IDEA OF USING COSMOLOGICAL OBSERVATIONS AS A LAB FOR HIGH ENERGY PHYSICS

Fundamental physics

INFLATION AND THE TANTALIZING IDEA OF USING COSMOLOGICAL OBSERVATIONS AS A LAB FOR HIGH ENERGY PHYSICS

multifield inflation

INFLATION AND THE TANTALIZING IDEA OF USING COSMOLOGICAL OBSERVATIONS AS A LAB FOR HIGH ENERGY PHYSICS

Fundamental physics

Observations

INFLATION IN THE PRESENCE OF MANY FIELDS

Superhorizon evolution of observables

- Compute observables beyond horizon exit
- Account for interference effects at horizon exit

NON-GAUSSIANITY

- Local type, but for most models not observable
- Massive modes: quasi-single field effects and particle production

THE TRANSPORT METHOD

Emergence in complex potentials

Random Potential using RMT

A local approach:

$$
\left.V\right|_{p_{0}}=\Lambda_{\mathrm{v}}^{4} \sqrt{N_{f}}\left(\left.v_{0}\right|_{p_{0}}+\left.v_{a}\right|_{p_{0}} \tilde{\phi}^{a}+\left.\frac{1}{2} v_{a b}\right|_{p_{0}} \tilde{\phi}^{a} \tilde{\phi}^{b}\right)
$$

$$
\left.v_{0}\right|_{p_{1}}=\left.v_{0}\right|_{p_{0}}+\left.v_{a}\right|_{p_{0}} \delta s^{a}
$$

$$
\left.v_{a}\right|_{p_{1}}=\left.v_{a}\right|_{p_{0}}+\left.v_{a b}\right|_{p_{0}} \delta s^{b}
$$

$$
\left.v_{a b}\right|_{p_{1}}=\left.v_{a b}\right|_{p_{0}}+\underbrace{\left.\delta v_{a b}\right|_{p_{0} \rightarrow p_{1}}}_{?}
$$

$$
\tilde{\phi}^{a} \equiv \phi^{a} / \Lambda_{\mathrm{h}}
$$

Random Potential using RMT

SMOOTHER AND MORE PREDICTIVE SPECTRA

D-BRANE INFLATION

D-BRANE INFLATION

Summarising:

- High energy physics suggests a complex picture for inflation.
- This complexity can have important phenomenological consequences, and certainly implies computational difficulties -- transport method.
- This complexity can give rise to emergent predictive behaviour, which can be explored using stochastic tools in model building.

EXTRA SLIDES

Complex field-Space metrics: N-FLATION

N-FLATION EXAMPLE

N-Axions potential:

$$
\begin{aligned}
& V=K^{i j} \partial \theta_{i} \partial \theta_{j}+\sum_{i} \Lambda_{i}\left(1-\cos \theta_{i}\right) \\
& \measuredangle \pi \sqrt{2} \\
& V=\operatorname{Diag}\left[f_{i}\right] \partial \theta_{i} \partial \theta_{j}+\sum_{i} \Lambda_{i}\left(1-\cos \theta_{i}\right) \\
& V=\partial \theta_{i} \partial \theta_{j}+\sum_{i} \Lambda_{i}\left(1-\cos \theta_{i} / f_{i}\right) \\
& \measuredangle \pi \sqrt{2} \\
& \longrightarrow \quad \text {, } \\
& \pi \sqrt{f_{1}^{2}+f_{2}^{2}}
\end{aligned}
$$

N-FLATION EXAMPLE

N-Axions potential:

$$
V=K^{i j} \partial \theta_{i} \partial \theta_{j}+\sum_{i} \Lambda_{i}\left(1-\cos \theta_{i}\right)
$$

$$
\leftrightarrow \quad \pi \sqrt{2}
$$

$V=\operatorname{Diag}\left[f_{i}\right] \partial \tilde{\theta}_{i} \partial \tilde{\theta}_{j}+\sum_{i} \Lambda_{i}\left(1-\cos \tilde{\theta}_{i}\right)$

$V=\partial \theta_{i} \partial \theta_{j}+\sum_{i} \Lambda_{i}\left(1-\cos \theta_{i} / f_{i}\right)$

N-FLATION EXAMPLE

$K^{i j} \longrightarrow$ Positive definite \longrightarrow Wishart ensemble

THE TRANSPORT METHOD

$$
\begin{gathered}
\frac{d \delta \phi_{\alpha}}{d N}=u_{\alpha \beta} \delta \phi_{\beta}+\frac{1}{2} u_{\alpha \beta \gamma} \delta \phi_{\beta} \delta \phi_{\gamma}+\cdots \\
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{0}+\hat{\mathcal{H}}_{\mathrm{int}} \longrightarrow\left[\delta \hat{\varphi}_{\alpha}, \hat{\mathcal{H}}_{0}\right]=i u_{\alpha \beta} \delta \hat{\varphi}_{\beta} \quad\left[\delta \hat{\varphi}_{\alpha}, \hat{\mathcal{H}}_{\mathrm{int}}\right]=i u_{\alpha \beta \gamma} \delta \hat{\varphi}_{\beta} \delta \hat{\varphi}_{\gamma}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d \Sigma_{\alpha \beta}}{d N}=\left\langle\frac{d \delta \phi_{\alpha}}{d N} \delta \phi_{\beta}+\delta \phi_{\alpha} \frac{d \delta \phi_{\beta}}{d N}\right\rangle=u_{\alpha \gamma} \Sigma_{\gamma \beta}+u_{\beta \gamma} \Sigma_{\alpha \gamma}+\cdots \\
& \frac{d \alpha_{\alpha \beta \gamma}}{d N}=u_{\alpha \lambda} \alpha_{\lambda \beta \gamma}+u_{\alpha \lambda \mu} \Sigma_{\lambda \beta} \Sigma_{\mu \gamma}+\operatorname{cyclic}(\alpha \rightarrow \beta \rightarrow \gamma)+\cdots
\end{aligned}
$$

system of ODEs

$$
\begin{aligned}
& \Sigma_{\alpha \beta} \equiv\left\langle\delta \phi_{\alpha} \delta \phi_{\beta}\right\rangle \\
& \alpha_{\alpha \beta \gamma} \equiv\left\langle\delta \phi_{\alpha} \delta \phi_{\beta} \delta \phi_{\gamma}\right\rangle
\end{aligned}
$$

INFLATION IN THE PRESENCE OF MANY FIELDS

$$
V=\frac{1}{2} \sum_{\alpha=1}^{3} m_{\alpha}^{2} \phi_{\alpha}^{2} \quad G^{\alpha \beta}=\left(\begin{array}{ccc}
1 & \Gamma & 0 \\
\Gamma & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

INFLATION AND THE TANTALIZING IDEA OF USING COSMOLOGICAL OBSERVATIONS AS A LAB FOR HIGH ENERGY PHYSICS

scalar mode:
ζ curvature perturbation

INFLATION IN THE PRESENCE OF MANY FIELDS

flat/ constant curvature gauge $\delta \phi$ constant density gauge ζ
constant ρ
flat

INFLATION IN THE PRESENCE OF MANY FIELDS

INFLATION IN THE PRESENCE OF MANY FIELDS

INFLATION IN THE PRESENCE OF MANY FIELDS

- SUPERHORIZON EVOLUTION OF OBSERVABLES
- also interference effects at horizon exit
- NON-GAUSSIANITY
- local type, but for most models not observable
- massive modes: quasi-single field effects and particle production
- Isocurvature
- non-predictive models if ζ not conserved by reheating

Random Potential using RMT

SMOOTHER AND MORE PREDICTIVE SPECTRA

Random Potential using RMT

Significant superhorizon evolution of the primordial curvature perturbation, implying the presence of many active fields

THE TRANSPORT METHOD

$$
\langle\mathrm{in}| \zeta \zeta|\mathrm{in}\rangle
$$

integrable form, nasty for numerics time dependent divergences at large scales

$$
\zeta=\delta N
$$

variational form, nasty for numerics requires an initial condition at horizon exit

