

31 October 2016 || Fellows Day, DESY Hamburg

The Flavour Problem: masses

hep-ph/1301.1340 hep-ph/1405.5495

- Quark masses generically hierarchical
- Charged lepton masses generically hierarchical
- Absolute neutrino mass not yet known, only mass-squared differences up to a sign

IC

The Flavour Problem: mixings

• Mismatch between flavour and mass bases leads to 3 x 3 unitary mixing matrices

Symmetries as solutions

S. King|| DISCRETE 2014

Discrete flavour symmetries

- The data (arguably) indicate some ordering to flavoured parameters—new flavour symmetries can provide for such organization.
- Discrete symmetries (imposed via finite groups) have been favored candidates, especially in the leptonic sector.
- Such discrete symmetries can quantize **precise mixing patterns** and provide interesting relations amongst masses.
- Furthermore, breaking discrete symmetries does not necessitate goldstone modes that could spoil phenomenology, and **vacuum alignment** can also be achieved.
- Discrete symmetries can also be embedded into **Grand Unified Theories**, and could have origins in **extra dimensions**, e.g. heterotic orbifold compactifications, thus naturally connecting them to UV complete theories

Model-independent symmetry searches

	(i,j) in $\{S_{iU}, S_{jU}\}$	T _{diag}	b or c	GAP-ID	Group Structure	$\parallel U_{i3}^2 \parallel^T$
	$(1), (3)^*$	$[\omega^2, 1, \omega]$	$\frac{1}{2}, \frac{1}{2}^{*\dagger}$	[288, 397]	$Z_3 \times \Delta(96)$	$[.333, .0447, .622]^{*\dagger}$
	$(12,13,23)^\dagger$	$[1,\omega^2,\omega]$	$rac{1}{2},rac{1}{2}^{*\dagger}$	[96, 64]	$\Delta(96)$	$[.333, .0447, .622]^{*\dagger}$
	(2)	$[\omega^2, 1, \omega]$	N.A.	[12, 3]	A_4	N.A.
	(1)	$[\omega^2,1,\omega]$	$\frac{1}{4}, \frac{1}{4}^{*\dagger}$	[288, 397]	$Z_3 \times \Delta(96)$	$[.333, .0447, .622]^{*\dagger}$
	$(3)^*, (3)^{\circ}$	$[1, \omega^2, \omega]$	$\frac{1}{4}, \frac{1}{4}^{*\dagger}$	[96, 64]	$\Delta(96)$	$[.333, .0447, .622]^{*\dagger}$
	$(12,13,23)^\dagger$	$[1, \omega^2, \omega]$		[600, 179]	$\Delta(600)$	$[.230, .110, .659]^{\circ \dagger}$
		$[1, \omega^2, \omega]$	$\frac{1}{8}, \frac{1}{8}^{*\dagger}$	[384, 568]	$\Delta(384)$	$[.0976, .247, .655]^{*\dagger}$
		$[1, \omega^2, \omega]$	$\frac{3}{8}, \frac{3}{8}^{*\dagger}$	[384, 568]	$\Delta(384)$	$[.569, .0114, .420]^{*\dagger}$
		$[\omega^2, 1, \omega]$	$ \begin{array}{c} 8,8\\ \frac{1}{9},\frac{1}{18}^{\circ},\frac{1}{9}^{\dagger}\\ \frac{1}{10},\frac{2}{5}^{\circ}\\ \frac{1}{10},\frac{2}{5}^{\circ}\\ \frac{1}{10},\frac{2}{5}^{\circ}\\ \frac{1}{14},\frac{3}{7}\\ \frac{1}{14},\frac{3}{7}\\ 2,1^{\circ\dagger} \end{array} $	[648, 259]	$\Xi(18,6)$	$[.0780, .276, .647]^{\circ \dagger}$
		$[\omega^2,1,\omega]$	$\frac{1}{10}, \frac{2}{5}^{\circ}$	[450, 20]	$Z_3 \times \Delta(150)$	$[.0637, .299, .638]^{\circ}$
		$[1, \omega^2, \omega]$	$\frac{1}{10}, \frac{2}{5}^{\circ}$	[150, 5]	$\Delta(150)$	$[.0637, .299, .638]^{\circ}$
		$[\omega^2, 1, \omega]$	$\frac{1}{14}, \frac{3}{7}^{\circ}$	[882, 38]	$Z_3 \times \Delta(294)$	$[.0330, .358, .609]^{\circ}$
		$[1, \omega^2, \omega]$	$\frac{1}{14}, \frac{3}{7}^{\circ}$	[294, 7]	$\Delta(294)$	$[.0330, .358, .609]^{\circ}$
		$[1, \omega^2, \omega]$	$\frac{2}{5}, \frac{1}{10}$	[600, 179]	$\Delta(600)$	$[.0288, .368, .603]^{\circ \dagger}$
		$[\omega^2, 1, \omega]$	$\frac{1}{18}, \frac{1}{9}^{\circ}$	[162, 14]	$\Xi(9,3)$	$[.391, .0201, .589]^{\circ}$
		$[\omega^2, 1, \omega]$	$\frac{3}{10}, \frac{1}{5}^{\circ}$	[450, 20]	$Z_3 \times \Delta(150)$	$[.436, .00728, .556]^{\circ}$
		$[1, \omega^2, \omega]$	$\frac{3}{10}, \frac{1}{5}^{\circ}$	[150, 5]	$\Delta(150)$	$[.436, .00728, .556]^{\circ}$
		$[\omega^2, 1, \omega]$	$ \frac{1}{18}, \frac{1}{9}^{\circ} \\ \frac{3}{10}, \frac{1}{5}^{\circ} \\ \frac{3}{10}, \frac{1}{5}^{\circ} \\ \frac{5}{14}, \frac{1}{7}^{\circ} $	[882, 38]	$Z_3 \times \Delta(294)$	$[.541, .00372, .455]^{\circ}$
		$[1, \omega^2, \omega]$	$\frac{5}{14}, \frac{1}{7}^{\circ}$	[294, 7]	$\Delta(294)$	$[.541, .00372, .455]^{\circ}$
		$[\omega^2, 1, \omega]$	$\frac{3}{14}, \frac{2}{7}^{\circ}$	[882, 38]	$Z_3 \times \Delta(294)$	$[.259, .0890, .652]^{\circ}$
		$[1, \omega^2, \omega]$	$\frac{3}{14}, \frac{2}{7}^{\circ}$	[294, 7]	$\Delta(294)$	$[.259, .0890, .652]^{\circ}$
	(2)	$[\omega^2, 1, \omega]$	N.A.	[12, 3]	A_4	N.A.
./	(3)	$[1, \omega^2, \omega]$	$\frac{1}{11}$	[726, 5]	$\Delta(726)$	[.0529, .318, .630]
0		$[1,\omega^2,\omega]$	$ \frac{1}{11} \frac{2}{11} \frac{3}{11} \frac{4}{11} \frac{5}{11} $	[726, 5]	$\Delta(726)$	[.195, .665, .140]
		$[1, \omega^2, \omega]$	$\frac{3}{11}$	[726, 5]	$\Delta(726)$	[.381, .0239, .595]
n/		$[1, \omega^2, \omega]$	$\frac{4}{11}$	[726, 5]	$\Delta(726)$	[.552, .00602, .442]
81		$[1, \omega^2, \omega]$	$\frac{5}{11}$	[726, 5]	$\Delta(726)$	[.653, .0921, .255]

hep-ph/ 1409.7310 hep-ph, 1605.03583

Status of discrete flavour symmetries?

- Multiple symmetries predict the same mixing patterns, and the same symmetry can predict multiple patterns
- In the absence of an exact symmetry, sub-leading corrections become important for phenomenology.
- It is not presently clear that any discrete symmetry can, without special modeling, successfully describe all fermionic structure.
- Vacuum alignment mechanisms are often involved, and additional symmetries often needed.
- It is also not yet clear how such models should be completed / realized in the UV.

Input is needed from UV physics. Guideposts could come from:
Renormalization Group Evolution

Anomaly cancellation constraints
Higher dimensional theories

Projects, ideas, and interests

Generalized anomaly constraints w/ Sven Krippendorf (Oxford)

Indirect model for quarks and leptons w/ GG Ross (Oxford)

Can the RGE for mass and mixing parameters be generalized with an EFT approach?

Are there alternative mechanisms/constraints for flavoured vacuum alignment?

What are the connections between flavour and cosmology?

Atmospheric charm production

Prompt neutrinos @ terrestrial detectors

$$= \operatorname{qov}_{V} \operatorname{qov}_{\bar{n}} \operatorname{sov}_{\bar{n}} \operatorname$$

• SCET permits the derivation of all- $\bar{q}rder^{\mu}factorization theorems \xi_n$ $\frac{1}{\sigma_0}\frac{d\sigma}{d\tau} = H(Q^2,\mu) \int_{(2)}^{(2)} \int_{d\pi}^{(2)} dp_L^2 \int_{d\pi}^{(2)} \int_{$

$$(1) \quad \bar{\Psi}(x) \stackrel{J(p_{L}^{2})}{\longrightarrow} \Psi(x) \to \int ds dt \stackrel{H(Q^{2})}{C_{V}(s,t)} \bar{\zeta}_{\bar{n}}(x+sn) \gamma_{\perp}^{\mu} \zeta_{n}(x+t\bar{n})^{1} \qquad (12)$$

$$(2) \quad \bar{\Psi}(x) \stackrel{\gamma^{\mu}}{\longrightarrow} \Psi(x) \to \int ds dt \stackrel{C_{V}(s,t)}{C_{V}(s,t)} \frac{\bar{\zeta}_{\bar{n}}^{0} W_{\bar{n}}^{0,\dagger} S_{\bar{n}}^{\dagger}(x_{-})}{S_{\bar{n}}^{0} W_{\bar{n}}^{0,\dagger} S_{\bar{n}}^{\dagger}(x_{-})} \gamma_{\perp}^{\mu} W_{n}^{0} S_{n}(x_{+}) \zeta_{n}^{0} \qquad (13)$$

• Once factorized we resum logs via RG Equations: $\mu_{S} \sim Q\tau$ (14) $\frac{dH(Q^{2},\mu)}{d\ln\mu} = \left[2\Gamma_{cusp}\ln(\frac{Q^{2}}{\mu^{2}}) + 4\gamma_{H}(\alpha_{s})\right]H(Q^{2},\mu)$

To increase the accuracy of the regularizations one needs the anomalous dimensions and (15) the matching corrections to higher orders.

$$S(\omega) \simeq \delta(\omega) + \frac{\alpha_s}{4\pi} S^1(\omega) + \dots \quad with \quad |A|^2 = \frac{64\pi^2}{h_c h_c} C_F$$
 ¹³(16)

arXiv:1512.06100

Automated calculation of dijet soft functions

Soft function	γ_0^S/C_F	c_1^S/C_F	$\gamma_1^{C_A}$	$\gamma_1^{n_f}$	$c_2^{C_A}$	$c_2^{n_f}$
Thrust [168, 169]	0	$-\pi^2$	15.7945 (15.7945)	3.90981 (3.90981)	-56.4992 (-56.4990)	$\begin{array}{c} 43.3902 \\ (43.3905) \end{array}$
C-parameter [142]	0	$-\pi^{2}/3$	15.7947 (15.7945)	3.90980 (3.90981)	-57.9754 (-)	43.8179 (-)
Thresh. Drell-Yan [167]	0	$\pi^{2}/3$	15.7946 (15.7945)	3.90982 (3.90981)	$6.81281 \\ (6.81287)$	-10.6857 (-10.6857)
W@large p_T [172]	0	π^2	15.88 (15.7945)	3.905 (3.90981)	-2.65034 (-2.65010)	-25.3073 (-25.3073)

Table 3.3: Anomalous dimensions and finite terms of the renormalized soft function for sample $SCET_1$ observables. The upper numbers are the numerical results that we obtain with the **SecDec** implementation of our algorithm, and the lower ones correspond to the known analytic expressions.

NNLL resummation of angularities

NNLL resummation of angularities

Figure 3.7: NNLL' resummed and $\mathcal{O}(\alpha_s^2)$ matched angularity distributions at four values of the parameter $a, a \in \{-.5, -.25, .25, .5\}$. The blue (PT) curves represent the purely perturbative cross-section, whereas the green (NP) curves are shifted according to (3.126). Q = 91.2 GeV in all four plots.

Projects, ideas, and interests

Finalizing automated calculation of NNLO soft functions *w*/*Guido Bell (Siegen) and Rudi Rahn (Bern)*

NNLL resummation of angularities *w*/*Chris Lee (LANL), Andrew Hornig, and Guido Bell*

What's the value of the strong coupling constant at M_{Z}

Are there any other systematic uncertainties in the prompt atmospheric neutrino flux?

What can SCET say about the (forward) production of heavy mesons?