

31 October 2016 |। Fellows Day, DESY Hamburg

The Flavour Problem: masses

- Quark masses generically hierarchical
- Charged lepton masses generically hierarchical
- Absolute neutrino mass not yet known, only mass-squared differences up to a sign

The Flavour Problem: mixings

- Mismatch between flavour and mass bases leads to 3×3 unitary mixing matrices

Quarks

Leptons

- Non-hierarchical, but:
- 'bi-maximal' (?)
- 'tri-maximal' (?)
- Non-zero 13 element

$$
\left|U_{\text {PMNS }}\right|\left(\begin{array}{ll}
\left(\begin{array}{l}
0.845 \\
0.791
\end{array}\right. \\
\left(\begin{array}{l}
0.521 \\
0.254
\end{array}\right. & \left(\begin{array}{l}
0.592 \\
0.512 \\
0.698 \\
0.521 \\
0.521 \\
0.254
\end{array}\right)
\end{array}\left(\begin{array}{l}
\binom{0.172}{0.133} \\
0.698 \\
0.455
\end{array}\right)\left(\begin{array}{l}
\left(\begin{array}{l}
0.782 \\
0.604 \\
0.782 \\
0.604
\end{array}\right)
\end{array}\right)\right.
$$

Symmetries as solutions

S. King|।

DISCRETE 2014

Discrete flavour symmetries

- The data (arguably) indicate some ordering to flavoured parameters-new flavour symmetries can provide for such organization.
- Discrete symmetries (imposed via finite groups) have been favored candidates, especially in the leptonic sector.
- Such discrete symmetries can quantize precise mixing patterns and provide interesting relations amongst masses.
- Furthermore, breaking discrete symmetries does not necessitate goldstone modes that could spoil phenomenology, and vacuum alignment can also be achieved.
- Discrete symmetries can also be embedded into Grand Unified Theories, and could have origins in extra dimensions, e.g. heterotic orbifold compactifications, thus naturally connecting them to UV complete theories

Model-independent symmetry searches

Status of discrete flavour symmetries?

- Multiple symmetries predict the same mixing patterns, and the same symmetry can predict multiple patterns
- In the absence of an exact symmetry, sub-leading corrections become important for phenomenology.
- It is not presently clear that any discrete symmetry can, without special modeling, successfully describe all fermionic structure.
- Vacuum alignment mechanisms are often involved, and additional symmetries often needed.
- It is also not yet clear how such models should be completed / realized in the UV.

Input is needed from UV physics. Guideposts could come from:
Renormalization Group Evolution
Anomaly cancellation constraints
Higher dimensional theories

Projects, ideas, and interests

Generalized anomaly constraints w/ Sven Krippendorf (Oxford)

Indirect model for quarks and leptons -

 w/ GG Ross (Oxford)Can the RGE for mass and mixing parameters be generalized with an EFT approach?
Are there alternative mechanisms/ constraints for flavoured vacuum alignment?
What are the connections between flavour and cosmology?

Atmospheric charm production

Cosmic ray

Prompt neutrinos @ terrestrial detectors

- Our central result is just below the most recent IceCube bound, indicating that a prompt component of the incoming flux should be observed soon....
- Our central result is consistent with the recent BERSS collaboration, though with better estimates of the uncertainties, which also encompass the 2008 ERS result and the most recent GMS calculation.

SCET, an effective theory of QCD

- SCET permits the derivation of all-order factorization theorems:

$$
d \sigma \sim H \cdot \mathcal{J} \otimes \mathcal{J} \otimes \mathcal{S}
$$

- Once factorized, we resum logs via RG Equations:

$$
\frac{d H\left(Q^{2}, \mu\right)}{d \ln \mu}=\left[2 \Gamma_{c u s p} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)+4 \gamma_{H}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

- To increase the accuracy of the resummations one needs the anomalous dimensions and the matching corrections to higher orders.

Automated calculation of dijet soft functions

Soft function	γ_{0}^{S} / C_{F}	c_{1}^{S} / C_{F}	$\gamma_{1}^{C_{A}}$	$\gamma_{1}^{n_{f}}$	$c_{2}^{C_{A}}$	$c_{2}^{n_{f}}$
Thrust [168,169]	0	$-\pi^{2}$	15.7945 (15.7945)	3.90981 (3.90981)	-56.4992 (-56.4990)	43.3902 (43.3905)
C-parameter [142]	0	$-\pi^{2} / 3$	15.7947 (15.7945)	3.90980 (3.90981)	-57.9754 $(-)$	43.8179 $(-)$
Thresh. Drell-Yan [167]	0	$\pi^{2} / 3$	15.7946 (15.7945)	3.90982 (3.90981)	6.81281 (6.81287)	-10.6857 (-10.6857)
W@large $p_{T}[172]$	0	π^{2}	15.88 (15.7945)	3.905 (3.90981)	-2.65034 (-2.65010)	-25.3073 (-25.3073)

Table 3.3: Anomalous dimensions and finite terms of the renormalized soft function for sample SCET_{1} observables. The upper numbers are the numerical results that we obtain with the SecDec implementation of our algorithm, and the lower ones correspond to the known analytic expressions.

NNLL resummation of angularities

$$
\tau_{a}(X)=\frac{1}{Q} \sum_{i \in X} E_{i}\left|\sin \theta_{i}\right|^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}
$$

Figure 3.6: LEFT: The central values of the NNLL' resummed and $\mathcal{O}\left(\alpha_{s}^{2}\right)$ matched angularity distributions at all 7 values of the parameter a. RIGHT: Theory bands demonstrating the convergence between NLL \rightarrow NNLL' resummations. The plot is for $a=.25 . Q=91.2 \mathrm{GeV}$ in both plots.

NNLL resummation of angularities

Figure 3.7: NNLL' resummed and $\mathcal{O}\left(\alpha_{s}^{2}\right)$ matched angularity distributions at four values of the parameter $a, a \in\{-.5,-.25, .25, .5\}$. The blue (PT) curves represent the purely perturbative cross-section, whereas the green (NP) curves are shifted according to (3.126). $Q=91.2 \mathrm{GeV}$ in all four plots.

Projects, ideas, and interests

Finalizing automated calculation of NNLO soft functions w/ Guido Bell (Siegen) and Rudi Rahn (Bern)

NNLL resummation of angularities

w/ Chris Lee (LANL), Andrew Hornig, and Guido Bell

What's the value of the strong coupling constant at M_\{Z\}?

Are there any other systematic uncertainties in the prompt atmospheric neutrino flux?

What can SCET say about the (forward) production of heavy mesons?

