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The Flavour Problem:  masses hep-ph/1405.5495

The next puzzle of the SM is the mass spectrum of quarks and leptons. Since the
masses of all fundamental particles in the SM arise from the vacuum expectation value of
a single Higgs field

mquark = yquark · v,

mlepton = ylepton · v,

mW = g/
p

2 · v, (5)

mZ =
q

g2 + g02/
p

2 · v,

mH =
p

� · v,

m� = 0,

mgluon = 0,

the spectrum of masses is the spectrum of the Yukawa couplings and it is absolutely
arbitrary and unclear.Indeed, if one looks at numerical values (see Fig.9, left) [27], one
sees a significant disproportion. The di↵erence in the masses of the first and the third
generation achieves three orders of magnitude. The understanding of the mass spectrum
remains one of the vital problems of the SM.

CKM vs. PMNS 
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Why these values? Are the two related? Are they related to masses? 
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Figure 9: The mass spectrum of quarks and leptons (left) and the CKM and the PMNS
mixing matrices (right). The area of the circles and squares is proportional to the numer-
ical values of parameters

The mixing matrices of quarks ( the Cabibbo-Kobayashi-Maskawa matrix) and leptons
(the Pontecorvo-Maki-Nakagawa-Sakato matrix) are equally unclear. If the CKM matrix
is almost diagonal, the PMNS matrix is almost uniform (see Fig.9, right) [28]. What
explains their big di↵erence? The phases in both matrices which play the key role in the
CP-violation are also unknown. Here possibly lies the answer to the question of the source
of the CP-violation: Quark or lepton sector? The point is that the nonzero phase is usually
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neutrino mass states ν1, ν2, and ν3 with (real and positive) masses m1, m2, and m3 [3],

⎛

⎜⎝
νe
νµ
ντ

⎞

⎟⎠ =

⎛

⎜⎝
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞

⎟⎠

⎛

⎜⎝
ν1
ν2
ν3

⎞

⎟⎠ . (1.1)

According to quantum mechanics it is not necessary that the Standard Model states νe, νµ,

ντ be identified in a one-one way with the mass eigenstates ν1, ν2, and ν3, and the matrix

elements of U give the quantum amplitude that a particular Standard Model state contains

an admixture of a particular mass eigenstate. The probability that a particular neutrino

mass state contains a particular SM state may be represented by colours as in Fig. 1. Note

that neutrino oscillations are only sensitive to the differences between the squares of the

neutrino masses ∆m2
ij ≡ m2

i −m2
j , and gives no information about the absolute value of

the neutrino mass squared eigenvalues m2
i . There are basically two patterns of neutrino

mass squared orderings consistent with the atmospheric and solar data as shown in Fig. 1.
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Figure 1: The probability that a particular neutrino mass state contains a particular SM state
may be represented by colours as shown in the key. Note that neutrino oscillation experiments
only determine the difference between the squared values of the masses. Also, while m2

2 > m2
1, it is

presently unknown whether m2
3 is heavier or lighter than the other two, corresponding to the left

and right panels of the figure, referred to as normal or inverted mass squared ordering, respectively.
Finally the value of the lightest neutrino mass (sometimes referred to as the neutrino mass scale)
is presently unknown and is represented by a question mark in each case.
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• Quark masses generically hierarchical
• Charged lepton masses generically hierarchical
• Absolute neutrino mass not yet known, only mass-squared differences up to a sign

hep-ph/1301.1340
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The PMNS and CKM matrices are phenomenologically close to symmetric, and a symmetric form
could be used as zeroth order approximation for both matrices. We study the possible theoretical
origin of this feature in flavor symmetry models. We identify necessary geometric properties of
discrete flavor symmetry groups which can lead to symmetric mixing matrices. Those properties
are actually very common in discrete groups such as A4, S4 or �(96). As an application of our
theorem, we generate a symmetric lepton mixing scheme with ✓12 = ✓23 = 36.21

�
; ✓13 = 12.20

� and
� = 0, realized with the group �(96).

I. INTRODUCTION

The properties of the fermion mixing matrices are ex-
pected to give important hints on the underlying flavor
physics. Flavor symmetries [1] are an attractive and
most often studied approach to explain the rather differ-
ent structure of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) and Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrices. Literally hundreds of models have been
proposed in the literature, applying many possible dis-
crete groups in order to explain lepton and quark mixing.
Instead of adding simply another model to that list, we
study in this paper an interesting possible property of
both the CKM and PMNS matrix. Namely, despite the
fact that the CKM mixing is a small while the PMNS
mixing is large, both can to reasonable precision be es-
timated to be symmetric. The symmetric form of the
CKM matrix has early been noticed and studied in many
references [2–10]. After neutrino oscillation was well es-
tablished the possible symmetric PMNS matrix also at-
tracted some attention [11–16]. The symmetric form dis-
cussed in these references includes the manifestly sym-
metric case (U = UT ) and the hermitian case (U = U †).
It is easy to get the following relation by taking absolute
values

(U = UT
) ) (|U | = |U |T ) ( (U = U†

) (1)

which implies any physical prediction from |U | = |U |T
can also be used in the other two cases U = UT or U =

U †. Both of them are special cases of |U | = |U |T , which
is what we mean with symmetric mixing matrix from now
on.

Using the global fits of the CKM [17] and PMNS [18]
matrices, one finds:

|UCKM| =

0

BBBBBB@

✓
0.97441
0.97413

◆ ✓
0.22597
0.22475

◆ ✓
0.00370
0.00340

◆

✓
0.22583
0.22461

◆ ✓
0.97358
0.97328

◆ ✓
0.0426
0.0402

◆

✓
0.00919
0.00854

◆ ✓
0.0416
0.0393

◆ ✓
0.99919
0.99909

◆

1

CCCCCCA

(2)

|UPMNS|

0

BBBBBB@

✓
0.845
0.791

◆ ✓
0.592
0.512

◆ ✓
0.172
0.133

◆

✓
0.521
0.254

◆ ✓
0.698
0.455

◆ ✓
0.782
0.604

◆

✓
0.521
0.254

◆ ✓
0.698
0.455

◆ ✓
0.782
0.604

◆

1

CCCCCCA
. (3)

Here the upper (lower) values in each entries are upper
(lower) bounds of the matrix elements. The CKM matrix
has been measured to a high precision (here we show the
1� range) and the relations |U12| = |U21|, |U23| = |U32|
are still well compatible with data. The relation |U13| =
|U31| is however not fulfilled by data. As a symmetric
mixing matrix requires that [2, 11]

|U31|2 � |U13|2 = |U12|2 � |U21|2 = |U23|2 � |U32|2 = 0 ,
(4)

we have however an interesting option: namely that some
flavor symmetry or other mechanism generates |U12| =
|U21|, |U23| = |U32| but U13 = U31 = 0. Higher or-
der corrections, which are frequently responsible for the
smallest mixing angles, are then the source of non-zero
|U13| 6= |U31|, as well as for CP violation. Rather triv-
ially, matrices with only one mixing angle are symmetric,
the same holds for the unit matrix.

The symmetry conjecture for the PMNS mixing is less
compatible with data, as shown by the 3� bounds in Eq.
(3) [19]. Similar to the quark sector, the 13- and 31-
elements are incompatible with symmetry (the other two
relations between the elements are also not favored by
data), and a similar situation as mentioned above for the
CKM matrix might be realized. Of course, one could also
imagine that an originally symmetric mixing matrix is
modified by higher order corrections, VEV-misalignment,
RG-effects or other mechanisms that have been studied
in the literature.

For completeness, we give the phenomenological pre-
diction of a symmetric mixing matrix, using the standard
parametrization of the CKM and PMNS mixing matrices
[11]:

|U13| =
sin ✓12 sin ✓23p

1� sin

2 � cos

2 ✓12 cos

2 ✓23 + cos � cos ✓12 cos ✓23
(5)
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• Hierarchical
• Small exterior off diagonal elements
• Naively approximates an orthogonal 

SO(3) rotation about “z”
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I. INTRODUCTION

The properties of the fermion mixing matrices are ex-
pected to give important hints on the underlying flavor
physics. Flavor symmetries [1] are an attractive and
most often studied approach to explain the rather differ-
ent structure of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) and Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrices. Literally hundreds of models have been
proposed in the literature, applying many possible dis-
crete groups in order to explain lepton and quark mixing.
Instead of adding simply another model to that list, we
study in this paper an interesting possible property of
both the CKM and PMNS matrix. Namely, despite the
fact that the CKM mixing is a small while the PMNS
mixing is large, both can to reasonable precision be es-
timated to be symmetric. The symmetric form of the
CKM matrix has early been noticed and studied in many
references [2–10]. After neutrino oscillation was well es-
tablished the possible symmetric PMNS matrix also at-
tracted some attention [11–16]. The symmetric form dis-
cussed in these references includes the manifestly sym-
metric case (U = UT ) and the hermitian case (U = U †).
It is easy to get the following relation by taking absolute
values

(U = UT
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) (1)

which implies any physical prediction from |U | = |U |T
can also be used in the other two cases U = UT or U =

U †. Both of them are special cases of |U | = |U |T , which
is what we mean with symmetric mixing matrix from now
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Here the upper (lower) values in each entries are upper
(lower) bounds of the matrix elements. The CKM matrix
has been measured to a high precision (here we show the
1� range) and the relations |U12| = |U21|, |U23| = |U32|
are still well compatible with data. The relation |U13| =
|U31| is however not fulfilled by data. As a symmetric
mixing matrix requires that [2, 11]

|U31|2 � |U13|2 = |U12|2 � |U21|2 = |U23|2 � |U32|2 = 0 ,
(4)

we have however an interesting option: namely that some
flavor symmetry or other mechanism generates |U12| =
|U21|, |U23| = |U32| but U13 = U31 = 0. Higher or-
der corrections, which are frequently responsible for the
smallest mixing angles, are then the source of non-zero
|U13| 6= |U31|, as well as for CP violation. Rather triv-
ially, matrices with only one mixing angle are symmetric,
the same holds for the unit matrix.

The symmetry conjecture for the PMNS mixing is less
compatible with data, as shown by the 3� bounds in Eq.
(3) [19]. Similar to the quark sector, the 13- and 31-
elements are incompatible with symmetry (the other two
relations between the elements are also not favored by
data), and a similar situation as mentioned above for the
CKM matrix might be realized. Of course, one could also
imagine that an originally symmetric mixing matrix is
modified by higher order corrections, VEV-misalignment,
RG-effects or other mechanisms that have been studied
in the literature.

For completeness, we give the phenomenological pre-
diction of a symmetric mixing matrix, using the standard
parametrization of the CKM and PMNS mixing matrices
[11]:

|U13| =
sin ✓12 sin ✓23p

1� sin

2 � cos

2 ✓12 cos

2 ✓23 + cos � cos ✓12 cos ✓23
(5)
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Symmetries as solutions

S. King||
DISCRETE 2014
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Discrete flavour symmetries

• The data (arguably) indicate some ordering to flavoured parameters—new 
flavour symmetries can provide for such organization.

• Discrete symmetries (imposed via finite groups) have been favored candidates, 
especially in the leptonic sector.

• Such discrete symmetries can quantize precise mixing patterns and provide 
interesting relations amongst masses. 

• Furthermore, breaking discrete symmetries does not necessitate goldstone 
modes that could spoil phenomenology, and vacuum alignment can also be 
achieved.

• Discrete symmetries can also be embedded into Grand Unified Theories, and 
could have origins in extra dimensions, e.g. heterotic orbifold 
compactifications, thus naturally connecting them to UV complete theories 

hep-ph/1002.0211
hep-ph/1110.6376
hep-ph/1301.1340
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(i,j) in {S
iU

, S

jU

} T

diag

b or c GAP-ID Group Structure k U

2

i3

kT

(1), (3)⇤ [!2, 1, !] 1

2

,

1

2

⇤† [288, 397] Z

3

⇥�(96) [.333, .0447, .622]

⇤†

(12, 13, 23)

† [1, !2, !] 1

2

,

1

2

⇤† [96, 64] �(96) [.333, .0447, .622]

⇤†

(2) [!2, 1, !] N.A. [12, 3] A

4

N.A.

(1) [!2, 1, !] 1

4

,

1

4

⇤† [288, 397] Z

3

⇥�(96) [.333, .0447, .622]

⇤†

(3)

⇤, (3)� [1, !2, !] 1

4

,

1

4

⇤† [96, 64] �(96) [.333, .0447, .622]

⇤†

(12, 13, 23)

† [1, !2, !] 1

5

,

3

10

�
,

1

5

† [600, 179] �(600) [.230, .110, .659]

�†

[1, !2, !] 1

8

,

1

8

⇤† [384, 568] �(384) [.0976, .247, .655]

⇤†

[1, !2, !] 3

8

,

3

8

⇤† [384, 568] �(384) [.569, .0114, .420]

⇤†

[!2, 1, !] 1

9

,

1

18

�
,

1

9

† [648, 259] ⌅(18, 6) [.0780, .276, .647]

�†

[!2, 1, !] 1

10

,

2

5

� [450, 20] Z

3

⇥�(150) [.0637, .299, .638]

�

[1, !2, !] 1

10

,

2

5

� [150, 5] �(150) [.0637, .299, .638]

�

[!2, 1, !] 1

14

,

3

7

� [882, 38] Z

3

⇥�(294) [.0330, .358, .609]

�

[1, !2, !] 1

14

,

3

7

� [294, 7] �(294) [.0330, .358, .609]

�

[1, !2, !] 2

5

,

1

10

�† [600, 179] �(600) [.0288, .368, .603]

�†

[!2, 1, !] 1

18

,

1

9

� [162, 14] ⌅(9, 3) [.391, .0201, .589]

�

[!2, 1, !] 3

10

,

1

5

� [450, 20] Z

3

⇥�(150) [.436, .00728, .556]

�

[1, !2, !] 3

10

,

1

5

� [150, 5] �(150) [.436, .00728, .556]

�

[!2, 1, !] 5

14

,

1

7

� [882, 38] Z

3

⇥�(294) [.541, .00372, .455]

�

[1, !2, !] 5

14

,

1

7

� [294, 7] �(294) [.541, .00372, .455]

�

[!2, 1, !] 3

14

,

2

7

� [882, 38] Z

3

⇥�(294) [.259, .0890, .652]

�

[1, !2, !] 3

14

,

2

7

� [294, 7] �(294) [.259, .0890, .652]

�

(2) [!2, 1, !] N.A. [12, 3] A

4

N.A.
(3) [1, !2, !] 1

11

[726,5] �(726) [.0529, .318, .630]
[1, !2, !] 2

11

[726,5] �(726) [.195, .665, .140]
[1, !2, !] 3

11

[726,5] �(726) [.381, .0239, .595]
[1, !2, !] 4

11

[726,5] �(726) [.552, .00602, .442]
[1, !2, !] 5

11

[726,5] �(726) [.653, .0921, .255]

Table 2. Flavour Symmetries of U13
TBM (3�, � = 0, cos � = 1)
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Status of discrete flavour symmetries?
• Multiple symmetries predict the same mixing patterns, and the same symmetry 

can predict multiple patterns

• In the absence of an exact symmetry, sub-leading corrections become important 
for phenomenology.

• It is not presently clear that any discrete symmetry can, without special 
modeling, successfully describe all fermionic structure.

• Vacuum alignment mechanisms are often involved, and additional symmetries 
often needed.

• It is also not yet clear how such models should be completed/realized in the UV.

Input is needed from UV physics.  Guideposts could come from: 

• Renormalization Group Evolution
• Anomaly cancellation constraints
• Higher dimensional theories
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Projects, ideas, and interests

Generalized anomaly constraints - 
w/ Sven Krippendorf (Oxford)

Can the RGE for mass and mixing parameters be 
generalized with an EFT approach?

Indirect model for quarks and leptons - 
w/ GG Ross (Oxford)

Are there alternative mechanisms/constraints for 
flavoured vacuum alignment?

What are the connections between flavour and 
cosmology?
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Courtesy: Anne Schukraft

Atmospheric charm production
arXiv:1506.08025 + 1511.06346
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Prompt neutrinos @ terrestrial detectors

• Our central result is just below the 
most recent IceCube bound, 
indicating that a prompt component 
of the incoming flux should be 
observed soon….

• Our central result is consistent 
with the recent BERSS 
collaboration, though with better 
estimates of the uncertainties, 
which also encompass the 2008 
ERS result and the most recent 
GMS calculation.
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Figure 9. Comparison of our calculation (GRRST) with the central values from ERS [16], BERSS
[20] and GMS [24], all calculated using the BPL cosmic ray spectrum.

atically smaller than GMS, while the benchmark ERS result is at the upper end of the

theory uncertainty band. Note that the BERSS calculation is based on the CT10 NLO

PDF set [66] while the GMS calculation uses the ABM11 PDF set [62], neither of which

incorporate the recent LHCb charm hadroproduction data. The ERS calculation was not

based on pQCD at all, but the empirical ‘colour dipole model’. It is evident that there

is now some stability in calculations of the prompt neutrino flux and that in particular a

theoretical lower limit can be set (subject of course to the large systematic uncertainty in

the parameterisation of the incoming cosmic ray flux).

3.3 Spectral index of the prompt neutrino flux

It is useful to extract the local spectral index of the prompt neutrino flux, defined as:

�(E⌫) ⌘ �d ln�⌫(E⌫)

d lnE⌫
, where �⌫(E⌫) = A(E⌫)E

��(E⌫)
⌫ , (3.1)

in order to compare with the standard expectation that � ' 2.7. Both are shown in

figure 10 which illustrates that above 105 GeV the näıve scaling is not obeyed. The BPL,

H3P and H3A cosmic ray fluxes all yield a a prompt neutrino spectrum which falls o↵

more steeply, while with the H14a and H14b fluxes a harder spectrum is obtained (it is

worth keeping in mind that at very high energies, above ⇠ 50 PeV, charmed mesons too

will begin to lose energy by interaction with air nuclei before decaying, and at this point

the fall-o↵ of the prompt neutrino flux with E⌫ will start to become similar to that of the

conventional flux.).

This indicates that a extraction of the prompt flux from a fit to data (including both

the conventional flux and a cosmic signal) requires the full calculation of �⌫(E⌫) as a prior,

with the overall normalisation left free but bounded by the total uncertainty band shown

in figure 5. At a minimum, the lower limit on the prompt neutrino flux should be used as

a prior, rather than allowing it to be zero as in current analyses [26].
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includes all relevant sources of theoretical uncertainties: from PDFs (68% CL), missing higher
orders and the charm mass, as discussed in the text. The ERS benchmark calculation [16] is shown
for comparison, as is the recent 90% CL upper limit on the prompt flux from IceCube [26].
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that this limit should be interpreted with some care, since it depends e.g. on the specific

parameterisation of the cosmic ray flux in the analysis.

In figure 6 we compare the prompt neutrino flux with the conventional neutrino flux

from the decays of pions and kaons, using the same cosmic ray spectrum (H3A). We
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Resummation in SCET

4
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X

d� ⇠ H · J ⌦ J ⌦ S (1)

1

�0

d�

d⌧
= �(⌧ )+

↵sCF

4⇡
[(�2+

2⇡2

3

)�(⌧ )�6[

1

⌧
]+�8[

ln ⌧
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• SCET permits the derivation of all-order factorization theorems:
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• To increase the accuracy of the resummations one needs the anomalous dimensions and 
the matching corrections to higher orders.
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Q
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Thrust in SCET

In the two-jet limit ⌧ ! 0 the thrust distribution factorises as [Fleming, Hoang, Mantry,
Stewart 07; Schwartz 07]

I 1
�0

d�
d⌧

= H(Q2, µ)

Z
dp2

L

Z
dp2

R J(p2
L , µ) J(p2

R , µ) S
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⌧Q �

p2
L + p2

R
Q

, µ
⌘

multi-scale problem: Q2 � p2
L ⇠ p2

R ⇠ ⌧Q2 � ⌧2Q2

hard collinear soft

H(Q2) J(p2R)J(p2L)

S(µ2
S)

Hard function:

I on-shell vector form factor of a massless quark

H(Q2) =

2

I known to three-loop accuracy [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser 09;
Gehrmann, Glover, Huber, Ikizlerli, Studerus 10]

I also enters Drell-Yan and DIS in the endpoint region

Jet function:

I imaginary part of quark propagator in light-cone gauge

I J(p2) ⇠ Im
h
F.T.

D
0
��� n/n̄/

4 W†(0) (0)  ̄(x)W (x) n̄/n/
4

���0
Ei

W (x) = P exp

 
igs

Z 0

�1
ds n̄ · A(x + sn̄)

!

I known to two-loop accuracy (anomalous dimension to three-loop) [Becher, Neubert 06]

I also enters inclusive B decays and DIS in the endpoint region

Soft function:

I matrix element of Wilson lines along the directions of energetic quarks

I S(!) =
X

X

���
D

X
���S†

n (0) Sn̄(0)
���0
E���

2
�(! � n · pXn � n̄ · pXn̄

) Sn(x) = P exp

 
igs

Z 0

�1
ds n · As(x + sn)

!

I known to two-loop accuracy (anomalous dimension to three-loop)
[Kelley, Schwartz, Schabinger, Zhu 11; Monni, Gehrmann,

Luisoni 11; Hornig, Lee, Stewart, Walsh Zuberi 11]
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• We can thus factorize our matrix element for the dijet, two-fermion operator quite simply:

(for dijet 
thrust)!

“soft-decoupling”
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2

• Once factorized, we resum logs via RG Equations:
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Soft function “S
0

/CF cS
1

/CF “CA
1

“
nf

1

cCA
2

c
nf

2

Thrust [168,169] 0 ≠fi2

15.7945
(15.7945)

3.90981
(3.90981)

≠56.4992
(≠56.4990)

43.3902
(43.3905)

C-parameter [142] 0 ≠fi2/3 15.7947
(15.7945)

3.90980
(3.90981)

≠57.9754
(≠)

43.8179
(≠)

Thresh. Drell-Yan [167] 0 fi2/3 15.7946
(15.7945)

3.90982
(3.90981)

6.81281
(6.81287)

≠10.6857
(≠10.6857)

W@large pT [172] 0 fi2

15.88
(15.7945)

3.905
(3.90981)

≠2.65034
(≠2.65010)

≠25.3073
(≠25.3073)

Table 3.3: Anomalous dimensions and finite terms of the renormalized soft function for sample
SCET

1

observables. The upper numbers are the numerical results that we obtain with the
SecDec implementation of our algorithm, and the lower ones correspond to the known analytic
expressions.

3.5.5 Results for Various Soft Functions

We present results for all SCET
1

observables of Table 3.2, except for e+e≠ transverse

thrust. For these observables the NLO calculation as well as the NNLO mixed real-virtual

correction are trivial and can be performed analytically. As the respective measurement

functions are consistent with non-abelian exponentiation, the C2

F contribution is also

known analytically.

We thus use SecDec to compute the CF CA and CF TF nf double real emission contri-

butions. We write the two-loop anomalous dimension and the finite term in the form

“S
1

= “CA
1

CF CA + “
nf

1

CF TF nf

cS
2

= cCA
2

CF CA + c
nf

2

CF TF nf + 1
2(cS

1

)2 (3.53)

Table 3.3 summarises our results for thrust, C-parameter, threshold Drell-Yan production,

and W -production at large transverse momentum. Strictly speaking, the soft function for

W -production at large pT is not of the dijet-type considered here, but as argued in [172]

the diagrams with attachments to the third Wilson line are all scaleless and vanish up to

NNLO. We can therefore consider this function as an example with a non-trivial angular

dependence.6

The first three entries in Table 3.3 correspond to angular-independent measurement
6In this case, the colour structure is also slightly di�erent with CF æ CF ≠ CA/2 in the qq æ g and

CF æ CA/2 in the qg æ q and gg æ g channels, see [172].
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NNLL resummation of angularities
Angularities circa 2009
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To date, Angularities have been resummed and matched to NLL’+ O(�s) 
accuracy:  Hornig/Lee/Ovanesyan

hep-ph/0901.3780
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Figure 8: Angularity distributions at Q = 100 GeV. The full, NLL/NLO resummed, renormalon-
subtracted distributions in Fig. 7 are here shown all on the same scale. The parameters are chosen
the same as in Fig. 7. From highest to lowest peak value, the curves are for a = �2, �1, � 1
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Figure 9: Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity distributions at
Q = 100 GeV for a = �1, a = 0, a = 1/4, and a = 1/2. For the hard scale variation, µH varied
between Q/2 and 2Q and for the correlated scale variation, µJ and µS are varied between half the
values given in Eq. (6.1) and twice these values.
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Figure 9: Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity distributions at
Q = 100 GeV for a = �1, a = 0, a = 1/4, and a = 1/2. For the hard scale variation, µH varied
between Q/2 and 2Q and for the correlated scale variation, µJ and µS are varied between half the
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Figure 3.6: LEFT : The central values of the NNLLÕ resummed and O(–2

s) matched angularity
distributions at all 7 values of the parameter a. RIGHT : Theory bands demonstrating the
convergence between NLL æ NNLLÕ resummations. The plot is for a = .25. Q = 91.2 GeV in
both plots.

We have designed a profile function [137,166] that fulfills all of the criteria listed above

while smoothly interpolating between the various regions. These scales are ·a-dependent

and also depend on multiple additional parameters that can be tuned to appropriate

specifications. While we do not show the explicit functional form of our profile scales, they

are similar to those in [137, 213, 214] and meet all of the above criteria for interpolating

between the relevant ·a regions. A plot of our scale choices for Q = 100 GeV is seen in

Figure 3.5, where one observes the leveling o� in the low ·a region, the natural behavior

in the mid ·a region, and finally the convergence of all three scales in the far-tail region.

The error bands represent independent variations of the jet and soft scale dependence.

Varying the hard scale shifts the overall scale of the plot up or down. Indeed, the final

theory errors presented in Section 3.7 reflect all of these independent variations added in

quadrature.

3.7 Results

We now collect all of the results from Sections 3.5 and 3.6 and present our preliminary

curves for the di�erential cross-sections of resummed and matched angularity distribu-

tions. All of our results are for Q = 91.2 GeV, and we have set –s(MZ) = .1161.

In the left plot of Figure 3.6 we show the central theory curves in the tail and near-

far-tail regions for all values of a calculated in this study. No NP shift has been applied,

although they have been matched to QCD to O(–2

s) as described in Section 3.6.5. One

80

equivalently be written as:

·a(X) = 1
Q

ÿ

iœX

Ei |sin ◊i|a (1 ≠ |cos ◊i|)1≠a (3.32)

where ◊i is the angle the i’th particle makes with the thrust axis.

Our study is not the first attempt to predict angularity distributions — the authors

of [158] resummed these observables to NLLÕ accuracy and also matched their calculation

to fixed-order QCD at O(–s) which, to our knowledge, is the most sophisticated analysis

to date. Our goal is to achieve an even higher degree of precision by calculating a

NNLLÕ resummation and matching to QCD at O(–2

s). We are also motivated by the

presence of L3 Collaboration data [160] measuring angularities at 8 di�erent values of

the parameter, a œ {≠1., ≠.75, ≠.5, ≠.25, 0., .25, .5, .75}, at both Q = 91.2 GeV and

Q = 197.0 GeV. The L3 analysis also includes comparisons of this data with the Monte-

Carlo event generators JETSET [165], ARIADNE [161], and HERWIG [162–164]. The Q = 91.2

GeV data for a = ≠.25 and a = .25 is taken directly from [160] and shown in Figure 3.2.

The general conclusion from the L3 analysis is that the Monte-Carlo event generation

is in reasonable agreement with the a = {≠1, 0, .5} datasets in the low ·a region, but

generally underestimates the high ·a region. We are interested in confronting SCET

predictions with the same data. Furthermore, the presence of the data will allow for a

future extraction of –s(MZ) and the NP shift parameter A discussed in Section 3.6.6.

To achieve the NNLLÕ resummation that we desire, though, we will have to collect

all of the required ingredients in the third row of Table 3.1. In particular, the two-loop

jet and soft anomalous dimensions “s,j
1

and finite terms of the two-loop fixed-order soft

and jet functions cs,j
2

are not known. Calculating the soft variants is the subject of the

next section. We will then see in Section 3.6.2 that the other pieces required for NNLLÕ

accuracy can either be calculated using RGE consistency relations or be extracted using

numerical techniques.

3.5 Dijet Soft Functions and Anomalous Dimensions at NNLO

In this section we calculate dijet soft functions to next-to-next-to-leading order (NNLO)

in the perturbative expansion. Specifically, we will compute the two-loop soft anomalous

49
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Figure 8: Angularity distributions at Q = 100 GeV. The full, NLL/NLO resummed, renormalon-
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Figure 9: Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity distributions at
Q = 100 GeV for a = �1, a = 0, a = 1/4, and a = 1/2. For the hard scale variation, µH varied
between Q/2 and 2Q and for the correlated scale variation, µJ and µS are varied between half the
values given in Eq. (6.1) and twice these values.
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Figure 3.7: NNLLÕ resummed and O(–2

s) matched angularity distributions at four values of the
parameter a, a œ {≠.5, ≠.25, .25, .5}. The blue (PT) curves represent the purely perturbative
cross-section, whereas the green (NP) curves are shifted according to (3.126). Q = 91.2 GeV in
all four plots.

computed within SCET. Of course, resummation techniques for event shapes do exist in

QCD (see [133], for example). However, we have shown that RGE-based SCET techniques

are particularly elegant, formulaic, and transparent — there is no doubt as to which

ingredients are necessary for reaching a particular logarithmic accuracy. Furthermore,

the e�ects of various scales relevant to a given process are clearly elucidated. Future

research within SCET will undoubtedly lead to new and exciting results for particle

phenomenology. For example, a comprehensive analysis of the relevant SCET modes for

forward physics, i.e. Glauber modes, was recently presented [215], opening up a host of

new phenomenological applications.

We conclude this chapter by enumerating further points of relevant research regarding

our resummation (and future studies):

• Error Estimation of c2

˜J
Extraction: The scale uncertainties shown in Figures 3.6

and 3.7 include the variation of hard, jet, and soft scales. They do not include any
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Finalizing automated calculation of NNLO soft functions
w/ Guido Bell (Siegen) and Rudi Rahn (Bern)

What’s the value of the strong coupling constant at 
M_{Z}?

NNLL resummation of angularities
w/ Chris Lee (LANL), Andrew Hornig, and Guido Bell

Are there any other systematic uncertainties in the 
prompt atmospheric neutrino flux?

What can SCET say about the (forward) production of 
heavy mesons?

Projects, ideas, and interests


