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Leading order

For many of the theory predictions needed in the searches for new 
physics as well as measuring properties of the SM, leading order 
predictions are used

The reasons for this are clear:

In many regions of phase-space they do a decent job, in 
particular for shapes of distributions

Parton showers and hadronizations models are tuned to data 

Many flexible lowest order (LO) tools are readily available

Unfortunately LO predictions describe total rates rather poorly
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Need for NLO

If we would have the same flexible tools available at NLO, the experimental 
analyses will benefit a various ways:

NLO predictions predict rates much more precisely

Reduced theoretical uncertainties due to meaningful scale dependence

Shapes are better described

Correct estimates for PDF uncertainties

Even data-driven analyses might benefit: smaller uncertainty due to 
interpolation from control region to signal region

These accurate theoretical predictions are particularly needed for

searches of signal events in large backgrounds samples and

precise extraction of parameters (couplings etc.) when new physics 
signals have been found
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Quantitative predictions

For precise, quantitative comparisons between theory and data, (at least) 
Next-to-Leading-Order corrections are a must
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Fig. 7 Normalised differential tt̄ production cross section in the dilep-
ton channels as a function of the pℓ

T (top left) and ηℓ (top right) of the
leptons, and the pℓ+ℓ−

T (bottom left), and mℓ+ℓ−
(bottom right) of the

lepton pair. The superscript ‘ℓ’ refers to both ℓ+ and ℓ−. The inner

(outer) error bars indicate the statistical (combined statistical and sys-
tematic) uncertainty. The measurements are compared to predictions
from MADGRAPH, POWHEG, and MC@NLO. The MADGRAPH pre-
diction is shown both as a curve and as a binned histogram

rapidity, ηb, are shown. Also shown are predictions from
MADGRAPH, POWHEG, and MC@NLO. Good agreement is
observed between the data and the theoretical predictions
within experimental uncertainties.

For the dilepton channels, the normalised tt̄ differential
cross section as a function of the lepton and b jet kinematic
properties is defined at the particle level for the visible phase
space where the leptons have |ηℓ| < 2.4 and pℓ

T > 20 GeV,
and the b jets from the top-quark decays both lie within the
range |η| < 2.4 and pT > 30 GeV. The b jet at the particle
level is defined as described above for the ℓ + jets analysis.

In Fig. 7, the normalised differential cross section for
the following lepton and lepton-pair observables are pre-
sented: the transverse momentum of the leptons pℓ

T, the
pseudorapidity ηℓ of the leptons, the transverse momen-
tum of the lepton pair pℓ+ℓ−

T , and the invariant mass of the
lepton pair mℓ+ℓ−

. The distributions for the transverse mo-
mentum of the b jets, pb

T, and their pseudorapidity, ηb, are
shown in Fig. 8. Predictions from MADGRAPH, POWHEG,
and MC@NLO are also shown. Good agreement is observed
between data and theoretical predictions within experimen-
tal uncertainties. The MC@NLO and POWHEG predictions,

LO + PS 
accuracy

NLO +PS 
accuracy
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improving MC’s

Parton shower MC programs are only correct in the soft-collinear 
region. Hard radiation cannot be described correctly

There are two ways to improve a Parton Shower Monte Carlo event 
generator with matrix elements:

NLO+PS matching: Include full NLO corrections to the matrix 
elements to reduce theoretical uncertainties in the matrix 
elements. The real-emission matrix elements will describe the 
hard radiation 

ME+PS merging: Include matrix elements with more final state 
partons to describe hard, well-separated radiation better
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Limitations of Fixed Order 
calculations

In the small transverse 
momentum region, this calculation 
breaks down (it’s even negative in 
the first bin!), and anywhere else it 
is purely a LO calculation for V+1j
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At NLO

We have to integrate the real emission over the complete phase-
space of the one particle that can go soft or collinear to obtain the 
infra-red poles that will cancel against the virtual corrections

We can NOT use the same merging procedure as used at LO 
(MLM or CKKW): requiring that all partons should produce 
separate jets is not infrared safe

We have to invent a new procedure to match NLO matrix elements 
with parton showers

8
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Naive (wrong) approach

In a fixed order calculation we have contributions with m final 
state particles and with m+1 final state particles 
 

We could try to shower them independently

Let               be the parton shower spectrum for an observable O, 
showering from a k-body initial condition

We can then try to shower the m and m+1 final states 
independently
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Double counting

But this is wrong!

If you expand this equation out up to NLO, there are more terms 
then there should be and the total rate does not come out 
correctly

Schematically               for 0 and 1 emission is given by

And Δ is the Sudakov factor
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Sources of double counting
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Parton shower

Born+Virtual:

Real emission:
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Sources of double counting

There is double counting between the real emission matrix elements 
and the parton shower: the extra radiation can come from the matrix 
elements or the parton shower

There is also an overlap between the virtual corrections and the 
Sudakov suppression in the zero-emission probability
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Parton shower
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Double counting in virtual/
Sudakov

The Sudakov factor Δ (which is responsible for the resummation of 
all the radiation in the shower) is the no-emission probability

It’s defined to be Δ = 1 - P, where P is the probability for a 
branching to occur

By using this conservation of probability in this way, Δ contains 
contributions from the virtual corrections implicitly

Because at NLO the virtual corrections are already included via 
explicit matrix elements, Δ is double counting with the virtual 
corrections

In fact, because the shower is unitary, what we are double counting 
in the real emission corrections is exactly equal to what we are 
double counting in the virtual corrections (but with opposite sign)!

12



Rikkert Frederix

Avoiding double counting

There are a couple of methods to circumvent this double counting

MC@NLO (Frixione & Webber)

POWHEG (Nason)

KRKNLO (Cracow group), Vincia (Skands et al.), …
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MC@NLO procedure

To remove the double counting, we can add and subtract the 
same term to the m and m+1 body configurations  
 
 
 
 
 
 
Where the MC are defined to be the contribution of the parton 
shower to get from the m body Born final state to the m+1 body 
real emission final state
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MC@NLO procedure

Parton shower

...

...Born+Virtual:

Real emission:

Double counting is explicitly removed by including the “shower 
subtraction terms”
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MC@NLO properties

Good features of including the subtraction counter terms

1. Double counting avoided: The rate expanded at NLO coincides with the 
total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the parton 
shower in the soft/collinear region, while it agrees with the NLO in the 
hard region

3. Stability: weights associated to different multiplicities are separately finite. 
The MC term has the same infrared behavior as the real emission (there is 
a subtlety for the soft divergence)

Not so nice feature (for the developer):

4. Parton shower dependence: the form of the MC terms depends on what 
the parton shower does exactly. Need special subtraction terms for each 
parton shower to which we want to match
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Double counting avoided

Expanded at NLO
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Smooth matching

Smooth matching:

Soft/collinear region:

Hard region (shower effects suppressed), ie. 
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Stability & unweighting

The MC subtraction terms are defined to be what the shower does to get from the m 
to the m+1 body matrix elements. Therefore the cancellation of singularities is exact 
in the (R - MC) term*: there is no mapping of the phase-space in going from events 
to counter events as we have in the CS-dipoles/FKS subtraction

The integral is bounded all over phase-space; we can therefore generate 
unweighted events!

“S-events” (which have m body kinematics)

“H-events” (which have m+1 body kinematics) 
 
* up to a subtlety that I’ll mention later
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FKS subtraction

The MC counter terms render the real emission finite

So, do we still need the CS-dipoles/FKS subtraction terms?
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NLO subtraction

We cannot do the one-particle integral over the MC terms 
analytically: we do not get the explicit poles in 1/𝜖 and 1/𝜖2 to cancel 
the poles in the virtual corrections. So we need to extract them using 
a subtraction method G
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Negative weights

We generate events for the two terms between the square brackets 
(S- and H-events) separately

There is no guarantee that these contributions are separately 
positive (even though predictions for infra-red safe observables 
should always be positive!)

Therefore, when we do event unweighting we can only unweight the 
events up to a sign. These signs should be taken into account when 
doing a physics analysis (i.e. making plots etc.)

The events are only physical when they are showered
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Possible issues with the 
MC@NLO method

MC subtraction terms need to be defined over the full phase-space, even though 
the shower has a cut-off.

Can be considered a power corrections to the parton shower and is therefore beyond expected 
accuracy

Value of the scale entering ⍺S in the MC subtraction terms

Can be considered a higher order difference and is therefore beyond expected accuracy

Shower does, in general, not reproduce exactly the IR singularities in the soft 
limit (for subleading terms in colour)

Can be considered a power corrections and is therefore beyond expected accuracy

Other solution would be to change the shower to include complete colour dependence (at least 
for a single emission)

Fraction of negative weights can be large (30% negative weights is not rare)

Requires larger samples of unweighted events to obtain the same statistical precision 

23



Rikkert Frederix

POWHEG

Consider the probability of the first emission of a leg (inclusive over 
later emissions)  
 

One could try to get NLO accuracy by replacing B with the NLO 
rate (integrated over the extra phase-space) 
 

This naive definition is not correct: the radiation is still described 
only at leading logarithmic accuracy, which is not correct for hard 
emissions. 
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POWHEG

This is double counting. 
To see this, expand the equation up to the first emission 
 
 
which is not equal to the NLO

In order to avoid double counting, one should replace the definition 
of the Sudakov form factor with the following: 
 
 
 
corresponding to a modified differential branching probability 

Therefore we find for the POWHEG differential cross section
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Properties

The term in the square brackets integrates to one (integrated over 
the extra parton phase-space between scales Q02 and Q2) 
(this can also be understood as unitarity of the shower below scale t) 
POWHEG cross section is normalised to the NLO

Expand up to the first-emission level: 
 
 
 
so double counting is avoided

Its structure is identical an ordinary shower, with normalisation 
rescaled by a local K-factor and a different Sudakov for the first 
emission: no negative weights are involved. 
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Possible issues with 
POWHEG method

NLO-factor multiples the complete first  
emission Sudakov terms: Large, arbitrary 
NNLO terms are included

scale dependence looks like NLO (i.e., is relatively small), even though 
distribution is only LO accurate in the tail

Can be ameliorated (see next slide)

Order/evolution variable used in POWHEG and shower are not the same: 
formally needs a truncated, vetoed parton shower
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Figure 17: Comparison between POWHEG, MC@NLO and the NLO calculation, for mH = 120 GeV at
the LHC. All calculations are performed in the mt → ∞ approximation. Shower and hadronization
are included in the MC results. The POWHEG result is also presented without shower and hadroniza-
tion, and with a fixed-scale choice.

this calculation is shown in comparison with the NLO curve in fig. 18. Since, as shown in

fig. 17, the shower and hadronization are irrelevant for this distribution, we do not include

them in the figure. In fig. 18 we have chosen to use pT independent renormalization and

factorization scales, in order to perform a consistent comparison. Notice that, with this

choice of scales, the NLO distribution is harder than the one shown in fig. 17. This is

easily explained by the fact that the NLO process is proportional to α3
S(µR), and thus a pT

dependent renormalization scale can alter significantly the pT distribution.

At this point, we can ask whether the higher order terms included in POWHEG with the

mechanism illustrated above do in fact give a reasonable estimate of true NNLO effects.

We thus include in fig. 18 the NNLO result, obtained from the HNNLO program of ref. [16].

The result shows a rather good agreement between the NNLO result and POWHEG. Thus,

our seemingly large corrections to the Higgs boson pT distributions are in fact very similar

in size to the full NNLO result. Observe that in fig. 18 we have used a fixed scale choice

for all the results. We were forced to do this, since the HNNLO program does not allow for

other choices. However, because of the good agreement of the two POWHEG results in fig. 17,

and because of the smaller scale dependence of the NNLO result, this should not make a

severe difference.

Because of a fortuitous circumstance, we did not need to worry about correcting for

– 22 –

Higgs production in gluon fusion 0812.0578
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POWHEG: improved

28
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and we have split the Real emission matrix elements in a singular and finite part:
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Rs(�) = F R(�), Rf (�) = (1� F )R(�)POWHEG: Original is F = 1 : exponentiate the 
full real; it can be damped by hand
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POWHEG looks now similar to MC@NLO. MC@NLO has the real matrix 
elements split according to:

MC@NLO: Need exact mapping (ΦR,ΦB)⇒Φ 
in MC subtraction term RsRs(�) = P (�R|B)B(�B) = MC

Original is F = 1 : exponentiate the 
full real; it can be damped by hand
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Damped powheg

Inclusion of NNLO terms can be varied by changing F

Should this be considered an uncertainty or a tuning parameter?
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following form

F =
h2

p2
T + h2

. (4.6)

The resulting transverse-momentum distribution at the LHC, for a Higgs boson mass of

400 GeV, is shown in fig. 19 for h → ∞ (standard POWHEG), h = 120 GeV and h = 400 GeV.

One can see that it is not difficult to get distributions that undershoot the MC@NLO one in

Figure 19: Comparison of the predictions of MC@NLO, standard POWHEG (h → ∞) and POWHEG with
two different values of the parameter h (h = 120 GeV and h = mH = 400 GeV) in the function F
of eq. (4.6), for the transverse-momentum distributions of a Higgs boson, at the LHC pp collider.

the intermediate range of pT. We also observe that, with this procedure, no undesired

features of other distributions appear. In particular, the distribution in the rapidity of the

hardest jet, and in the rapidity difference between the hardest jet and the Higgs boson

remain qualitatively the same, as shown in fig. 20.

4.4 Next-to-leading logarithmic resummation

As explained in section (4.4) of ref. [9], one can reach next-to-leading logarithmic (NLL)

accuracy of soft gluon resummation if the number of coloured partons involved in the hard

scattering is less or equal to three. This can be obtained by replacing the strong coupling

constant in the Sudakov exponent with [29]
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Higgs production in gluon fusion: 0812.0578
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Four-lepton production

4-lepton invariant mass is almost insensitive to parton shower 
effects. 4-lepton transverse moment is extremely sensitive

30

Figure 1: Four-lepton invariant mass (left panel) and transverse momentum (right panel), as pre-
dicted by aMC@NLO(solid black), aMC@LO(solid blue), and at the (parton-level) NLO (dashed
red) and LO (dashed magenta). The middle insets show the aMC@NLO scale (dashed red) and
PDF (black solid) fractional uncertainties, and the lower insets the ratio of the two leptonic channels,
eq. (3.5). See the text for details.

These have very different behaviours w.r.t. the extra radiation provided by the parton

shower, with the former being (almost) completely insensitive to it, and the latter (almost)

maximally sensitive to it. In fact, the predictions for the invariant mass are basically

independent of the shower, with NLO (LO) being equal to aMC@NLO (aMC@LO) over

the whole range considered. The NLO corrections amount largely to an overall rescaling,

with a very minimal tendency to harden the spectrum. The four-lepton pT , on the other

hand, is a well known example of an observable whose distribution at the parton-level LO

is a delta function (in this case, at pT = 0). Radiation, be it through either showering or

hard emission provided by real matrix elements in the NLO computation, fills the phase

space with radically different characteristics, aMC@LO being meaningful at small pT and

NLO parton level at large pT – aMC@NLO correctly interpolates between the two. The

different behaviours under extra radiation of the two observables shown in fig. 1 is reflected

in the scale uncertainty: while in the case of the invariant mass the band becomes very

marginally wider towards large M(e+e−µ+µ−) values, the corresponding effect is dramatic

in the case of the transverse momentum. This is easy to understand from the purely

perturbative point of view, and is due to the fact that, in spite of being O(αS) for any

pT > 0, the transverse momentum in this range is effectively an LO observable (the NLO

effects being confined to pT = 0). The matching with shower blurs this picture, and in

particular it gives rise to the counterintuitive result where the scale dependence increases,

rather than decreasing, when moving towards large pT [18]. Finally, the lower insets of

fig. 1 display the ratio defined in eq. (3.5) which, in agreement with the results of table 2,

is equal to one half in the whole kinematic ranges considered. The only exception is the

small invariant mass region, where off-resonance effects become relevant.

– 13 –

Plot from RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli (2011)
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Four-lepton production

Differences between Herwig (black) and Pythia (blue) showers 
large in the Sudakov suppressed region (much larger than the scale 
uncertainties)

Contributions from gg initial state (formally NNLO) are of 5-10%
31

Figure 4: Same observables as in fig. 1, for aMC@NLO+gg HERWIG (solid black) and Pythia

(dashed blue) results. The rescaled gg contributions withHERWIG (open black boxes) and Pythia

(open blue circles) are shown separately. Middle insets: scale (dashed red) and PDF (solid black)
fractional uncertainties. Lower insets: aMC@LO/(aMC@NLO+gg) with HERWIG (solid black)
and Pythia (dashed blue).

O(αS), the predictions are quite independent of whether a shower is generated or not.

Slight differences can be seen in the case of the ∆φ distribution, which is indeed known to

be more sensitive than pseudorapidity to extra radiation. The small-pT dominance ensures

that scale and PDF uncertainties are flat over the whole kinematic ranges, and of the order

of those relevant to total cross section.

We now discuss the impact of the O(α2
S) gg channel on our predictions. The argument

for considering such a channel, despite its being of the same perturbative order as all other

NNLO contributions which cannot be included, is the dominance of its parton luminosity

over those of the qq̄ and qg channels. This dominance grows stronger with decreasing

final-state invariant masses, and hence the O(α2
S) versus NLO comparison is significantly

influenced by the cut in eq. (3.3) – by lowering such a cut, the relative importance of the

gg contribution will grow bigger than the 5%-ish reported in table 2. We also discuss in the

following the differences that arise when matching our calculation to Pythia6 rather than

toHERWIG. We remind the reader that, depending on input parameters, Pythia is rather

effective in producing radiation in the whole kinematically-accessible phase space. This is

not particularly useful in the context of a matched computation, where hard radiation

is provided (in a way fully consistent with perturbation theory) by the underlying real-

emission matrix elements. Therefore, we have set the maximum virtuality in Pythia

equal to the four-lepton invariant mass. For consistency, this setting has been used also

when showering the gg-initiated contribution.

Figures 4, 5 and 6 present the same observables as figs. 1, 2 and 3 respectively. In

the main frame, we show the aMC@NLO predictions plus the gg contribution (including

shower), as resulting from HERWIG (solid black) and Pythia (dashed blue) – we shall

– 16 –
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Higgs boson production

Powheg: original: F=1, default F={1 for pT(H) < mH, 0 for pT(H) > mH}

Not only an impact at large pT, but also at small pT. Higher order terms in 
shower are large, hence can easily be tuned.
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Figure 5: Comparisons of the Higgs-boson transverse momentum and rapidity distributions
from the KrkNLO, MC@NLO and POWHEG methods implemented in Herwig 7 for Higgs-
boson production in gluon–gluon fusion at the LHC, see text for details.

ever, MC@NLO and POWHEG (Default), by construction, converge to the NLO results,
departing from the NNLO predictions. On the other hand, POWHEG (Original) is closer
to the NNLO predictions but for larger pHT values is much harder than both the KrkNLO
and NNLO predictions, as can also be seen in Fig. 5.

In Fig. 7 we show the results of the KrkNLO method obtained for di↵erent modern MS
PDF sets: CT10nlo (used as our default PDF set), CT14lo, HERAPDF20, MMHT2014lo and
NNPDF30lo. We can see that the distributions can vary even by up to 40%. The biggest
di↵erences are observed at low transverse momenta and large rapidities. In Appendix A we
compare all the di↵erent PDFs in the MS and MC schemes and show that the di↵erences at
the level of parton distribution functions, see Fig. 9, are commensurate to those observed
in Fig. 7 for the di↵erential cross sections. Further studies of systematic e↵ects due to

11
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Figure 5: Comparisons of the Higgs-boson transverse momentum and rapidity distributions
from the KrkNLO, MC@NLO and POWHEG methods implemented in Herwig 7 for Higgs-
boson production in gluon–gluon fusion at the LHC, see text for details.

ever, MC@NLO and POWHEG (Default), by construction, converge to the NLO results,
departing from the NNLO predictions. On the other hand, POWHEG (Original) is closer
to the NNLO predictions but for larger pHT values is much harder than both the KrkNLO
and NNLO predictions, as can also be seen in Fig. 5.

In Fig. 7 we show the results of the KrkNLO method obtained for di↵erent modern MS
PDF sets: CT10nlo (used as our default PDF set), CT14lo, HERAPDF20, MMHT2014lo and
NNPDF30lo. We can see that the distributions can vary even by up to 40%. The biggest
di↵erences are observed at low transverse momenta and large rapidities. In Appendix A we
compare all the di↵erent PDFs in the MS and MC schemes and show that the di↵erences at
the level of parton distribution functions, see Fig. 9, are commensurate to those observed
in Fig. 7 for the di↵erential cross sections. Further studies of systematic e↵ects due to
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Plot from Jadach et al. (2016)
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Quantitative predictions

For precise, quantitative comparisons between theory and data, (at least) 
Next-to-Leading-Order corrections are a must

33
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Fig. 7 Normalised differential tt̄ production cross section in the dilep-
ton channels as a function of the pℓ

T (top left) and ηℓ (top right) of the
leptons, and the pℓ+ℓ−

T (bottom left), and mℓ+ℓ−
(bottom right) of the

lepton pair. The superscript ‘ℓ’ refers to both ℓ+ and ℓ−. The inner

(outer) error bars indicate the statistical (combined statistical and sys-
tematic) uncertainty. The measurements are compared to predictions
from MADGRAPH, POWHEG, and MC@NLO. The MADGRAPH pre-
diction is shown both as a curve and as a binned histogram

rapidity, ηb, are shown. Also shown are predictions from
MADGRAPH, POWHEG, and MC@NLO. Good agreement is
observed between the data and the theoretical predictions
within experimental uncertainties.

For the dilepton channels, the normalised tt̄ differential
cross section as a function of the lepton and b jet kinematic
properties is defined at the particle level for the visible phase
space where the leptons have |ηℓ| < 2.4 and pℓ

T > 20 GeV,
and the b jets from the top-quark decays both lie within the
range |η| < 2.4 and pT > 30 GeV. The b jet at the particle
level is defined as described above for the ℓ + jets analysis.

In Fig. 7, the normalised differential cross section for
the following lepton and lepton-pair observables are pre-
sented: the transverse momentum of the leptons pℓ

T, the
pseudorapidity ηℓ of the leptons, the transverse momen-
tum of the lepton pair pℓ+ℓ−

T , and the invariant mass of the
lepton pair mℓ+ℓ−

. The distributions for the transverse mo-
mentum of the b jets, pb

T, and their pseudorapidity, ηb, are
shown in Fig. 8. Predictions from MADGRAPH, POWHEG,
and MC@NLO are also shown. Good agreement is observed
between data and theoretical predictions within experimen-
tal uncertainties. The MC@NLO and POWHEG predictions,

LO + PS 
accuracy

NLO +PS 
accuracy
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Is NLO+PS always the 
preferred method?

It is the preferred method if the observable is described at NLO 
accuracy

But there are many observables for which a given NLO+PS code 
has only zeroth order accuracy.
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Figure 10: Normalised differential tt production cross section in the dilepton channels as a func-
tion of the pt

T (top left) and yt (top right) of the top quarks, and the ptt
T (middle left), ytt (middle

right), and mtt (bottom) of the top-quark pairs. The superscript ‘t’ refers to both top quarks and
antiquarks. The inner (outer) error bars indicate the statistical (combined statistical and system-
atic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG,
and MC@NLO, and to NLO+NNLL [15] and approximate NNLO [16, 17] calculations, when
available. The MADGRAPH prediction is shown both as a curve and as a binned histogram.

Semi-leptonic decay
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differential jet rates

Effectively the scale for which a 1-jet event becomes a 0-jet event 
(left) or 2-jet event becomes a 1-jet event (based on kT-algorithm)

NLO+PS work well at low scales, but not so much at large scales: 
easily explained by only having LO (left) or PS (right) accuracy
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Summary

We want to match NLO computations to parton showers to keep 
the good features of both approximations

In the MC@NLO method: 
by including the shower subtraction terms in our process we 
avoid double counting between NLO processes and parton 
showers

In the POWHEG method: 
apply an NLO-factor, and modify the (Sudakov of the) first 
emission to fill the hard region of phase-space according to the 
real-emission matrix elements
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improving MC’s

Parton shower MC programs are only correct in the soft-collinear 
region. Hard radiation cannot be described correctly

There are two ways to improve a Parton Shower Monte Carlo event 
generator with matrix elements:

NLO+PS matching: Include full NLO corrections to the matrix 
elements to reduce theoretical uncertainties in the matrix 
elements. The real-emission matrix elements will describe the 
hard radiation 

ME+PS merging: Include matrix elements with more final state 
partons to describe hard, well-separated radiation better
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showers
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ME

1. Fixed order calculation
2. Computationally expensive
3. Limited number of particles
4. Valid when partons are hard 

and well separated
5. Quantum interference correct
6. Needed for multi-jet description
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ME

1. Fixed order calculation
2. Computationally expensive
3. Limited number of particles
4. Valid when partons are hard 

and well separated
5. Quantum interference correct
6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders
2. Computationally cheap
3. No limit on particle multiplicity
4. Valid when partons are 

collinear and/or soft
5. Partial interference through 

angular ordering
6. Needed for hadronization

39
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Approaches are complementary: merge them!

ME

1. Fixed order calculation
2. Computationally expensive
3. Limited number of particles
4. Valid when partons are hard 

and well separated
5. Quantum interference correct
6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders
2. Computationally cheap
3. No limit on particle multiplicity
4. Valid when partons are 

collinear and/or soft
5. Partial interference through 

angular ordering
6. Needed for hadronization

39
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Difficulty: avoid double counting, ensure smooth distributions

Approaches are complementary: merge them!

ME

1. Fixed order calculation
2. Computationally expensive
3. Limited number of particles
4. Valid when partons are hard 

and well separated
5. Quantum interference correct
6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders
2. Computationally cheap
3. No limit on particle multiplicity
4. Valid when partons are 

collinear and/or soft
5. Partial interference through 

angular ordering
6. Needed for hadronization

39
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showers
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In the soft-collinear approximation of Parton Shower MCs, parameters are 
used to tune the result ⇒ Large variation in results (small prediction power)

(Pythia only)
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[MadGraph]

In a matched sample these differences are irrelevant since the behavior 
at high pt is dominated by the matrix element. 

41
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Goal for ME-PS merging/
matching

2nd QCD radiation jet 
in top pair production at 

the LHC

Regularization of matrix element divergence
Correction of the parton shower for large momenta
Smooth jet distributions

Matrix element

Parton shower
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Goal for ME-PS merging/
matching

2nd QCD radiation jet 
in top pair production at 

the LHC

Regularization of matrix element divergence
Correction of the parton shower for large momenta
Smooth jet distributions

Matrix element

Parton shower
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Possible double counting

43
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easily avoided by applying a 
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Possible double counting
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Merging ME with PS

So double counting no problem, but what about getting smooth 
distributions that are independent of the precise value of Qc?

Below cutoff, distribution is given by PS 
 - need to make ME look like PS near cutoff

Let’s take another look at the PS!
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Merging ME with PS

How does the PS generate the configuration above (i.e. starting from e+e- -> 
qqbar events)?
Probability for the splitting at t1 is given by 
 

and for the whole tree
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Merging ME with PS
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Merging ME with PS

Leading Logarithmic approximation of the matrix element  
BUT with αs evaluated at the scale of each splitting
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Merging ME with PS

Leading Logarithmic approximation of the matrix element  
BUT with αs evaluated at the scale of each splitting

Sudakov suppression due to disallowing additional radiation  
above the scale tcut
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e

e+

Merging ME with PS

To get an equivalent treatment of the corresponding 
matrix element, do as follows:

1. Cluster the event using some clustering algorithm 
- this gives us a corresponding “parton shower history”

2. Reweight αs in each clustering vertex with the clustering 
scale 

3. Use some algorithm to apply the equivalent Sudakov 
suppression

|M|2(ŝ, p3, p4, ...)

47
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The simplest way to do the Sudakov suppression is to run the 
shower on the event, starting from t0! 
 
 
 
 
 

[M.L. Mangano, 2002, 2006] 
[J. Alwall et al 2007, 2008]

48
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The simplest way to do the Sudakov suppression is to run the 
shower on the event, starting from t0! 
 
 
 
 
 

If hardest shower emission scale kT1 > tcut, throw the event away, if 
all kT1,2,3 < tcut, keep the event
The suppression for this is                         so the internal structure of 
the shower history is ignored. In practice, this approximation is still 
pretty good
Allows matching with any shower, without modifications!

[M.L. Mangano, 2002, 2006] 
[J. Alwall et al 2007, 2008]

48

kT1

kT2

kT3

t0

e-

e+

Q2

MLM matching

(�q(Q
2, tcut))

4



Rikkert Frederix

CKKW matching

Once the ‘most-likely parton shower history’ has been found, one 
can also reweight the matrix element with the Sudakov factors that 
give that history 
 

To do this correctly, must use same variable to cluster and define 
this sudakov as the one used as evolution parameter in the parton 
shower. Parton shower can start at tcut

49

e-

e+

|M|2(ŝ, p3, p4, ...)

Catani, Krauss, Kuhn, Webber [2001]

(�q(Q
2, tcut))

2�g(t1, t2)(�q(t2, tcut))
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Matching results

W+jets production: diff. jet rate 
for 0➙1 transition (~ pT of 
hardest jet)

Small dependence on the 
merging scale for small values, 
~10%

When taken too large, the 
parton shower cannot fill the 
region all the way up to the 
merging scale anymore, 
leading to large deficits

50
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Figure 25. Multijet merging systematics of the 1 ! 0 (left) and 2 ! 1 (right) k? jet resolutions (R = 0.6)
in pp ! `�⌫̄ + jets events in leading order (bottom) and next-to-leading order (top) multijet merging in
the MEPS scheme. Only basic lepton acceptance cuts are applied. The contributions of the individual jet
multiplicities are indicated by dotted, dashdotted and dashed lines for Q

cut

= 20 and 200 GeV.
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Four-lepton production

52

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and
the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.

A gauge-invariant way to suppress off-resonance effects, and to select doubly-resonant

contributions, is that of imposing:

∣∣M(ℓ+ℓ−)−mZ

∣∣ ≤ 10 GeV (3.6)

on all equal-flavour lepton pairs; we call the cut of eq. (3.6) the Z-id cut. Lepton pairs that

pass the Z-id cut are called Z-id matched, and can be roughly seen as coming from the

decay of a (generally off-shell) Z boson. While in the case of the e+e−µ+µ− channel there

is only one way to choose two same-flavour lepton pairs, there are two different pairings in

e+e−e+e− production. In the case both of these pairings result in lepton pairs that fulfill

eq. (3.6), we choose that with the smallest pair invariant mass, and assign the Z-id matched

pairs according to this choice; in practice, this is a rare event. By imposing the Z-id cuts

the M(ℓ+ℓ−ℓ(′)+ℓ(′)−) distribution falls steeply below threshold and gets no contributions

below 160 GeV.

In fig. 2 we present two transverse momentum distributions, relevant to the positively-

charged leptons (left panel), and to same-charge lepton pairs (right panel); hence, there are

two entries in each histogram for any given event. These results are obtained by applying

the Z-id cuts, but we have in fact verified that without such cuts we obtain exactly the

same patterns. In the case of the pT of the individual lepton, the aMC@NLO (aMC@LO)

prediction is fairly close to the NLO (LO) one, but tends to be slightly harder, owing to

the extra radiation generated by the shower. This effect is more pronounced at the LO

than at the NLO, which is the sign of a behaviour consistent with perturbation theory

expectations. In fact, at the LO all hadronic transverse momentum is provided by the

shower, while at the NLO this is not the case; therefore, at the NLO the shower will have

less necessity to “correct” the prediction obtained at the parton level, a tendency which is

naturally embedded in a matching prescription such as aMC@NLO. The scale dependence

– 14 –
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Four-lepton production

52

In the tail of the pT spectrum, 
there are large theoretical 
uncertainties. This is no surprise! 
Here the NLO calculation has 
actually only LO accuracy, 
because there must be a hard 
parton/jet recoiling against the 4-
lepton system.

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and
the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.
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Four-lepton production

52

In the tail of the pT spectrum, 
there are large theoretical 
uncertainties. This is no surprise! 
Here the NLO calculation has 
actually only LO accuracy, 
because there must be a hard 
parton/jet recoiling against the 4-
lepton system.

Can we include the NLO corrections to 
4 leptons + 1 (hard) jet here?

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and
the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.
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Limitations

53

There are more observables very sensitive to theory uncertainties -- all 
related to hard emissions in the real-emission matrix elements and even 
stronger if they are emitted by the shower.
 
Even though our NLO  
computation is “inclusive in all extra 
radiation” (which is made explicit by 
the parton shower), the shower is 
only correct in the strict collinear 
approximation. It cannot generate 
hard extra jets correctly (i.e. jets beyond 
the first, which is included in the real 
emission corrections of the NLO computation 
and therefore already has a large uncertainty 
associated with it)

ttbar
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There are more observables very sensitive to theory uncertainties -- all 
related to hard emissions in the real-emission matrix elements and even 
stronger if they are emitted by the shower.
 
Even though our NLO  
computation is “inclusive in all extra 
radiation” (which is made explicit by 
the parton shower), the shower is 
only correct in the strict collinear 
approximation. It cannot generate 
hard extra jets correctly (i.e. jets beyond 
the first, which is included in the real 
emission corrections of the NLO computation 
and therefore already has a large uncertainty 
associated with it)

ttbar

Large dependence on the shower/scales
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Merging ME with PS

At LO this has been solved ~10 years ago: use tree-level matrix elements of various 
multiplicities to generate hard radiation, and the parton shower for the collinear and 
soft

Double counting no problem: we simply throw events away when the matrix-
element partons are too soft, or when the parton shower generates too hard 
radiation

Applying the matrix-element cut is easy: during  
phase-space integration, we only generate events 
with partons above the matching scale

For the cut on the shower, there are two methods. Throwing events away after 
showering is not very efficient, although it is working (“MLM method”)

Instead we can also multiply the Born matrix elements by suitable product of 
Sudakov factors (i.e. the no-emission probabilities) Δ(Qmax, Qc) and start the 
shower at the scale Qc (“CKKW method”).

For a given multiplicity we have 
54

kT > Qc

kT < Qc

�LO
n,excl = Bn⇥(kT,n �Qc)�n(Qmax, Q

c)

CKKW (2004) and MLM (2004)
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What to do at NLO

Let’s start very simple and see what to do…

Let’s consider

a very simple process: production of a single EW vector boson 
(or Higgs boson)

an observable most-sensitive to QCD radiation: kT-jet resolution 
variable (with R=1), √y ~ pT(j)     [y01 ~ pT2(j1) ; y12 ~ pT2(j2) ; etc]

55
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Leading Order V

Simplest prediction of all

Just gives a delta-function at 
zero pT due to energy-
momentum conservation

Cannot be used to make reliable 
predictions for this observable

56

Physical curve No

Tail N/A

Integral LO

Extendible to 
multi-jet Yes

√y01
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Leading Order V+1 jet

Non-trivial distribution that is 
LO accurate

Need a generation cut, otherwise 
the integral over the pT spectrum 
diverges

Cannot be used to make reliable 
predictions at low pT

57

Physical curve Only at high-pT

Tail LO

Integral ∞

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

2

+ ...
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Leading Order V+1 jet
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the integral over the pT spectrum 
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Next-to-leading order V

Integral is NLO accurate

Curve is non-physical at low pT: 
divergent real-emission corrections 
are compensated for by divergent 
virtual corrections

Including higher order corrections 
(NNLO, etc), does not fix the non-
physical behaviour at small pT

58
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NLO+PS V

To get a physical shape at low pT 
need to resum radiation at all orders

Can either be done analytically, or 
with a parton shower

Parton shower also includes 
hadronisation and other non-
factorisable corrections

Most used methods are MC@NLO 
and POWHEG

59

Physical curve Yes

Tail LO

Integral NLO

Extendible to 
multi-jet Yes

√y01
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01

MC@NLO: [Frixione, Webber (2002)] 
POWHEG: [Nason (2004)]
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NLO(+PS) V+1 jet

Distribution diverges at small pT

Have to put a generation cut

Parton shower can easily be 
added, but this does not solve the 
low-pT problem

60
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Minlo V+1jet

Include suitable Sudakov Form 
factors in the NLO V+1j 
predictions

Distributions is NLO accurate

Integral is not NLO accurate: 
the difference starts at O(αs3/2)

Parton shower can easily be 
attached

61

Physical curve Yes

Tail NLO

Integral LO+

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

[Hamilton, Nason, Zanderighi (2012)]
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Minlo

The Minlo approach can be summarised as follows:

Renormalisation and factorisation scale setting, a la CKKW

Together with matching to the Sudakov form factor,

Matching requires to subtract the O(alpha_s) expansion of the Sudakov form 
factor times the Born to prevent double counting with the NLO corrections

NLO accuracy of V+1j observables is not hampered by the scale setting and 
inclusion of the form factor: differences are beyond NLO

62

in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,
since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR

21

and eR
20

have no µR or µF

dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightforward, oper-
ations on the fully differential input NLO calculations. These can be summarized as renormalization
and factorization scale setting, together with matching to the Sudakov form factor (exp [�R (v) ],
eq. (2.4)). To ease readibility, we have deferred the precise details of these steps to the appendix
(A.3). We suffice to say that if one carefully traces the effects of the latter operations on the NLO
cross section, in particular on the singular parts, d�S and d�SR, neglecting O

�
N

4

LL

�

�
terms, one

finds the resulting Minlo cross section can be written as

d�M = d�R + d�MR + d�F , (2.22)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:

d�MR

d�dL
=

d�
0

d�
exp [�R (v) ]

niY

`=1

q(`)
�
x
`

, µ2

Fv
�

q(`) (x
`

, µ2

F )

h
↵̄2

S

�
K2

R y
� h

eR
21

L+

eR
20

i
+ ↵̄3

s

�
K2

R y
�
L2 eR

32

i
,

eR
32

= 2G
12

¯�
0

H
1

�
µ2

R

�
. (2.23)

In eq. 2.23 the KR/F 2
⇥
1

2

, 2
⇤

denote rescaling factors applied to the renormalization and factoriza-
tion scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details), for the purposes
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√y01

dσ
/d
√y

01

√y01

dσ
/d
√y

01

NLO V+1j Minlo V+1j



Rikkert Frederix

Minlo

Start from a NLO calculation with one extra jet

63

since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR
21

and eR
20

have no µR or µF

dependence.

The Minlo prescription amounts to the following operations on the NLO calculation

0. Define µR = KR max(QB, QBJ) and µF = KFQ, where KR/F 2
⇥
1

2

, 2
⇤
.7

1. Set µR everywhere it occurs and likewise for all µF set µF ! µF

p
v:

d� ! d�0
= d� (µR = KR max(QB, QBJ), µF ! KF

p
y) . (2.22)

2. Replace the additional power of ↵̄S that accompanies the NLO corrections according to

d�0 ! d�00
= d�0 �↵̄NLO

S

�
µ2

R

�
! ↵̄S

�
K2

R y
��

. (2.23)

3. Multiply the LO component by the O (↵̄S) expansion of the inverse of the Sudakov form factor
times ↵̄

s

�
K2

R y
�
/↵̄

s

�
µ2

R

�
:

d�00 ! d�000
= d�00 � d�00|

LO
↵̄S

�
K2

R y
�✓

G
12

L2

+

�
G

11

+ 2S
1

+

¯�
0

�
L+ 2

¯�
0

ln

µR

KR Q

◆
.(2.24)

4. Multiply by the Sudakov form factor times ↵̄
s

�
K2

R y
�
/↵̄

s

�
µ2

R

�
:

d�000 ! d�M = exp [�R (v)]
↵̄
s

�
K2

R y
�

↵̄
s

(µ2

R)

d�000 . (2.25)

Neglecting O
�
N

4

LL

�

�
terms, with a bit of effort, we can write

d�M = d�R + d�MR + d�F , (2.26)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:

d�MR

d�dL
=

d�
0

d�
exp [�R (v) ]

niY

`=1

q(`)
�
x
`

, µ2

Fv
�

q(`) (x
`

, µ2

F )

h
↵̄2

S

�
K2

R y
� h

eR
21

L+

eR
20

i
+ ↵̄3

s

�
K2

R y
�
L2 eR

32

i
,

eR
32

= 2G
12

¯�
0

H
1

�
µ2

R

�
. (2.27)

The last term in eq. 2.26, d�F , is more precisely d�MF , the replacement d�MF ! d�F being made
on the grounds that the Minlo operations preserve the fixed order expansion up to and including
NLO terms, as well as the fact that d�F (and d�MF) is finite for v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.26 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

7This is the definition of QB given in sect. 2.1.
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Minlo decomposed

64

Resummed cross section. 
(Almost) identical to known 

LL/NNLLσ results
Finite terms in the 

limit y->0 (coming from 
real emission corrections)

Logarithmically enhanced terms 
for y->0 that are not captured 

by dσR 

d�M = d�R + d�MR + d�F
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Resummed cross section

65

d�M = d�R + d�MR + d�F

L = log(1/v) = log(Q2/y)



Rikkert Frederix

Resummed cross section

Well-known formula; used e.g. in the Caesar approach

Sudakov form factor exp[R] not identical to what’s (originally) used in Minlo. 
But Minlo approached can be improved to incorporate these terms  
(not relevant when colour is trivial)

Written as total derivative: straight-forward to show that this is NLO correct 
in phase-space Φ up to dσF  after integration over L and expanding in αS

However, not NLO correct in the dΦdL phase space (i.e., tail is not NLO correct)
65

d�R

d�dL

=

d�0

d�

⇥
1 + ↵̄S

�
µ

2
R

� H1

�
µ

2
R

�⇤
d

dL

[exp [�R (v) ] L ({x`} , µF , v)]

[Banfi, Salam, Zanderighi (2005); Dokshitzer, Diakonov, Troian (1980)]

(Hard) virtual contributions
Sudakov form factor

Luminosity factor

d�M = d�R + d�MR + d�F

LO cross 
section

L = log(1/v) = log(Q2/y)
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Accuracy of Minlo

Explicit derivation, using the general form of the differential NLO V+1j 
cross sections in the small y limit, 
 
 
 
gives 
 

66

d�M = d�R + d�MR + d�F

the Sudakov form factor of the original Minlo procedure is fully consistent with that prescribed
by Caesar.

For the Bj case, not forgetting that here in section 2 we are restricting ourselves to considering
the region y

01

& O(m2

B), F
2

is not zero, and S
1

has non-trivial dependence on the underlying
Bj kinematics. Therefore, in the region where our Caesar-based formula is strictly valid we
have a discrepancy between what is suggested by it and by Minlo. In particular the original
Minlo proposal has omitted NNLL

�

terms due to multiple emission corrections (F
2

) and, more
importantly, NLL

�

contributions due to soft-wide-angle radiation (S
1

). Thus, in the region y
01

&
O(m2

B) Bjj-Minlo, implemented according to the original proposal in ref. [26], would formally not
be LO accurate in the description of Bj-inclusive quantities, with ambiguities arising between it
and conventional LO of order

p
↵̄S times the leading order term. With the benefit of hindsight it is

perhaps obvious that the original Minlo procedure would have this problem in this region, since
we know that its Sudakov form factors contain only soft-collinear and collinear terms, yet soft-wide-
angle radiation from a Bj state will be logarithmically enhanced too, even if the underlying Born
partons are widely separated.

In section 3 we also consider this comparison (for Bjj-Minlo) in the region y
01

< O(m2

B).

2.4 Minlo jet resolution spectra

In the Minlo framework, in all cases, we start with an NLO cross section: for the v
01

resummation
in B-production our fundamental ingredient is the NLO Bj cross section, while for v

12

resummation
in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,

– 12 –

d�MR

d�dL

=

d�0

d�

exp [�R (v) ]

niY

`=1

q

(`)
�
x`, µ

2
Fv

�

q

(`)
(x`, µ

2
F )

h
↵̄

2
S

�
K

2
R y

� h
e
R21 L+

e
R20

i
+ ↵̄

3
s

�
K

2
R y

�
L

2 e
R32

i

Only non-zero when exp[R] and Minlo 
Sudakov exponent are different, or 

when exp[R] is not NNLLσ accurate. 
Therefore, assume that it is not known

Unknown 
coefficient!

Known 
coefficient

need to include the C(1)
ij

terms, the A1 and A2 terms, and the B1 and B2 terms of eq. (2.4).

After the derivative is taken, we get terms of the following form

�0
1

q2T

⇥

↵S, ↵
2
S, ↵

3
S, ↵

4
S, ↵SL, ↵

2
SL, ↵

3
SL, ↵

4
SL

⇤

expS (Q, qT) , (2.17)

where L = logQ2/q2T and the ↵SL and ↵2
SL terms arise from the A term in the derivative

of the Sudakov exponent. Some terms of order ↵S and ↵2
S also arise in this way, from

the B term. Others arise from the derivative of the parton distribution functions (pdfs).

Terms of order ↵4
S arise, for example, from two C

(1)
ij

terms together with the B2 term in the

derivative of the Sudakov exponent. All powers of ↵S in the square bracket of eq. (2.17),

and the relevant pdfs, are evaluated at qT.

If we do not drop any higher-order terms from eq. (2.17), its integral is still NLO(0)

accurate. This is, of course, the case, since the formula can be written back as an exact

derivative, its integral is given by eq. (2.16), and the C(1)
ij

terms are included. We now want

to show that even if we drop the higher-order terms, the NLO(0) accuracy is not spoiled.

We estimate the size of each contribution using the formula

Z

Q

2

⇤2

dq2T
q2T

logm
Q2

q2T
↵n

S

�

q2T
�

expS (Q, qT) ⇡
⇥

↵S

�

Q2
�⇤

n�m+1
2 . (2.18)

This formula is a consequence of the fact that the dominant Sudakov singularities carry

two logarithms for each power of ↵S, and thus each logarithm counts as 1/
p
↵S. We give

however a detailed derivation of this formula, including the e↵ect of the running coupling,

in Appendix C.

Among all terms of order higher than ↵2
S in the square bracket of eq. (2.17), the

dominant one is ↵3
SL. This term gives a contribution of relative order

⇥

↵S

�

Q2
�⇤3� 2

2 =

↵2
S

�

Q2
�

. Thus, all terms of order ↵3
S and higher can be dropped without spoiling the

NLO(0) accuracy. Dropping these terms, we get essentially the full singular part of the

MiNLO HJ formula, except that the original MiNLO formula does not have the B2 term in

S. In fact, if we expand the Sudakov factor up to O(↵S) and combine it with the content

of the squared parenthesis, we get the full singular part of the HJ cross section. Since also

the MiNLO HJ formula has the same property, the two must agree. We also remark that the

choice of the scale in the power of ↵S entering V , �(1) and R (that we have taken equal

to qT) is essential for our argument to work. For example, if we choose instead a scale

equal to Q, the largest di↵erence arises in the terms of order ↵2
SL in eq. (2.17), where they

would give an O �

↵3
SL

2
�

variation. This yields a contribution of order O �

↵1.5
S

�

Q2
��

upon

integration. On the other hand, we will show in the following this kind of contributions

are of the same size as the e↵ect of the B2 term. Thus, if the latter is not included, this

scale choice remains ambiguous.

We now investigate what is the loss of precision due to the lack of the B2 term in

the MiNLO formula. In order to do this, we drop the B2 term in the Sudakov exponent

in eq. (2.11). The resulting formula still satisfies eq. (2.16), and thus is NLO(0) accurate.

When taking the derivative, however, we will get all the terms in the square bracket of

– 8 –
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Minlo accuracy for 
(inclusive) 0-jet observables

After integration over the logarithm L (taking R21=0, which is okay for the 
processes considered here) this results into terms of 

Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo

67

of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
dL0 d�MR

d�dL0 = �d�
0

d�
eR
21

1

|2G
12

| ↵̄S

�
1 +O

�p
↵̄S

��
. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR

d�dL0 = �d�
0

d�

h
eR
20

� ¯�
0

H
1

�
µ2

R

�i r
⇡

2

1

|2G
12

|1/2
↵̄
3/2

S

�
1 +O

�p
↵̄S

��
. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.

– 14 –

[Hamilton, Nason, Oleari, Zanderighi (2012); 
RF, Hamilton (2015)]
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Minlo V+1jet

Include suitable Sudakov Form 
factors in the NLO V+1j 
predictions

Distributions is NLO accurate

Integral is not NLO accurate: 
the difference starts at O(αs3/2)

Parton shower can easily be 
attached

68

Physical curve Yes

Tail NLO

Integral LO+

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

[Hamilton, Nason, Zanderighi (2012)]
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Minlo V+1jet

Include suitable Sudakov Form 
factors in the NLO V+1j 
predictions

Distributions is NLO accurate

Integral is not NLO accurate: 
the difference starts at O(αs3/2)

Parton shower can easily be 
attached

68

Physical curve Yes

Tail NLO

Integral LO+

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

[Hamilton, Nason, Zanderighi (2012)]
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Getting 0-jet observables 
NLO correct

69
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/d
√y

01

√y01

dσ
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√y

01

Minlo V+1j

NLO+PS V+0j
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Getting 0-jet observables 
NLO correct

69
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Getting 0-jet observables 
NLO correct

69
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01
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01
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01
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Minlo V+1j

NLO+PS V+0j
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Getting 0-jet observables 
NLO correct

69

√y01

dσ
/d
√y

01

√y01

dσ
/d
√y

01

dσ
/d
√y

01
√y01Q

Minlo V+1j

NLO+PS V+0j

Below Q: Bulk of the 
cross section, hence after 
integration observables 
are NLO correct. shape 

includes LO matrix 
element contribution due 

to MC@NLO/
POWHEG matching. 

Above Q: 
shape 

includes all 
NLO 

contributions
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FxFx / Meps@nlo: 
V & V+1j merging

Merge NLO+PS for V with Minlo 
for V+1j, at “merging scale” Q

Above Q the tail is NLO accurate

For not-too-small Q, integral is 
NLO accurate

Used by ATLAS & CMS for LHC 
run II analyses

70

Physical curve “Yes”

Tail NLO

Integral “NLO” (depending on Q)

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

Q

FxFx: [RF, Frixione (2012)] 
MEPS@NLO: [Hoeche, Krauss, Schonherr, Siegert; +Gehrmann (2012)]
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Differences between FxFx & 
MEPS@NLO

Both FxFx and MEPS@NLO merging are based on making MC@NLO calculation for 
jet-multiplicities exclusive in more jets

Veto additional radiation; resum dependence on the veto scale (=merging scale)

Major difference is in the way this exclusivity is applied

CKKW-L approach (i.e. Sudakov rejection based on shower kernels)

Used in Sherpa’s “MEPS@NLO”

Using shower kernels prevents for a direct link with Minlo approach (and 
comparison to analytic resummation and accuracy), but prevents issues with 
mismatch in kT and shower ordering values

Minlo (CKKW) from hard scale down to the scale of the softest jet not affected by 
veto; MLM-type rejection from there down to merging scale

Used in MadGraph5_aMC@NLO w/ Pythia/Herwig: “FxFx merging”

Direct link with Minlo, but MLM-type rejection prevents mismatches in 
ordering values

71
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FxFx merging: Higgs boson 
production

Transverse momentum of the Higgs and of the 1st jet. 
Agreement with H+0j at MC@NLO and H+1j at MC@NLO in 
their respective regions of phase-space; Smooth matching in 
between; Small dependence on matching scale
Alpgen (LO matching) shows larger kinks
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Figure 3: As in fig. 1, with Sudakov reweighting.

the lower insets of fig. 2). On the one hand, this overestimates the systematics, since the

contributions due to scales close to the end-points of the merging range are less important

(in the effective average performed by the smooth D function) than those at its center. On

the other hand, this is not equivalent to assessing the effect of changing the position and

width of the merging range, which should probably also be done. In any case, these appear

to be pretty minor issues, given that the theoretical systematics associated with merging

cannot be given a precise statistical meaning, and some degree of arbitrariness is always

present.

We now study the effect of the Sudakov reweighting, following the procedure described

in sect. 2.2.3. We start by considering again the N = 1 case, which we generate with a

sharp D function, and the three values µQ = 30, 50, and 70 GeV already employed. In

fig. 3 we plot the same observables as in fig. 1 and 2; a few more jet-related observables are
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Differential jet rates for 1->0 and 2->1
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Figure 4: As in fig. 3, for the pseudorapidity of the hardest jet (upper left), the pseudorapidity
(upper right) and pT (lower left) of the second-hardest jet, and d2 (lower right). In the case of
η(jk), we have imposed a pT (jk)>30 GeV cut.

displayed in figs. 4 and 5. In all these figures, the main frame presents the µQ = 50 GeV

results, our “central” predictions henceforth. The histograms in the lower insets are the

ratios of the Sudakov-reweighted µQ = 30 GeV and 70 GeV results over the central ones

(in other words, there are no merged predictions in these plots that do not include the

Sudakov reweighting). Also shown there are the ratios computed using Alpgen in the

numerator, over the central NLO-merged results.

The comparison of fig. 3 with figs. 1 and 2 shows that the Sudakov reweighting on top

of a sharp D function is as effective as the use of a smooth D function (without Sudakov

reweighting) in removing the kinks. There are quite small residual wiggles11, which may be

11These can be eliminated with a smooth D function (plus Sudakov reweighting). We did not test this
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Differential jet rates
Matching up to 2 jets at NLO
Results very much consistent with matching up to 1 jet at NLO
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Figure 6: As in fig. 3, with N = 2.

to disappear, and the merging-parameter dependence reduced, when pcut
T

becomes large.

We finally turn to discussing the case of the N = 2, sharp-D function, Sudakov-

reweighted merging; that is, we increase the largest multiplicity by one unit w.r.t. what

was done before. The settings are the same as in the N = 1 case, and figs. 6, 7, and 8 are

the analogues of figs. 3, 4, and 5 respectively (with the exception of one panel in fig. 8).

The numerators of the ratios that appear in the upper insets are the same as before for

the H + 0j and H + 1j cases; that for H + 2j is obviously specific to N = 2. In the lower

insets, together with the ratios that allow one to assess the merging systematics, we have

plotted (as histograms overlaid with open circles) the ratios of the N = 1 results over the

N = 2 ones, both for µQ = 50 GeV. We have also recomputed the Alpgen predictions, by

adding the H + 3 parton sample, for consistency with N = 2. The corresponding results

will not be shown in the plots, since these are already quite busy, and there is no difference

– 26 –

Figure 7: As in fig. 4, with N = 2.

at all in the patterns discussed above, except in a very few cases which we shall comment

upon when appropriate.

The common feature of all but one of the observables presented in figs. 6–8 is that

they are extremely close, in both shape and normalization, to their N = 1 counterparts

of figs. 3–5. This is highly non-trivial, since the individual i-parton contributions are

different in the two cases. The exception is the pseudorapidity of the second-hardest jet

(upper right panel of fig. 7), which the inclusion of the 2-parton sample turns into a more

central distribution, as anticipated in the discussion relevant to fig. 4, and brings it very

close to the Alpgen result obtained with the same µQ.

The small impact of the increase of the largest multiplicity is also generally in agree-

ment with what is found in Alpgen, where the inclusion of the H +3 parton contribution

changes the fully-inclusive rate by +0.3%. The effects on differential observables are also

– 27 –
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Four-lepton production

75

In the tail of the pT spectrum, 
there are large theoretical 
uncertainties. This is no surprise! 
Here the NLO calculation has 
actually only LO accuracy, 
because there must be a hard 
parton/jet recoiling against the 4-
lepton system.

Can we include the NLO corrections to 
4 leptons + 1 (hard) jet here?

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and
the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.

A gauge-invariant way to suppress off-resonance effects, and to select doubly-resonant

contributions, is that of imposing:

∣∣M(ℓ+ℓ−)−mZ

∣∣ ≤ 10 GeV (3.6)

on all equal-flavour lepton pairs; we call the cut of eq. (3.6) the Z-id cut. Lepton pairs that

pass the Z-id cut are called Z-id matched, and can be roughly seen as coming from the

decay of a (generally off-shell) Z boson. While in the case of the e+e−µ+µ− channel there

is only one way to choose two same-flavour lepton pairs, there are two different pairings in

e+e−e+e− production. In the case both of these pairings result in lepton pairs that fulfill

eq. (3.6), we choose that with the smallest pair invariant mass, and assign the Z-id matched

pairs according to this choice; in practice, this is a rare event. By imposing the Z-id cuts

the M(ℓ+ℓ−ℓ(′)+ℓ(′)−) distribution falls steeply below threshold and gets no contributions

below 160 GeV.

In fig. 2 we present two transverse momentum distributions, relevant to the positively-

charged leptons (left panel), and to same-charge lepton pairs (right panel); hence, there are

two entries in each histogram for any given event. These results are obtained by applying

the Z-id cuts, but we have in fact verified that without such cuts we obtain exactly the

same patterns. In the case of the pT of the individual lepton, the aMC@NLO (aMC@LO)

prediction is fairly close to the NLO (LO) one, but tends to be slightly harder, owing to

the extra radiation generated by the shower. This effect is more pronounced at the LO

than at the NLO, which is the sign of a behaviour consistent with perturbation theory

expectations. In fact, at the LO all hadronic transverse momentum is provided by the

shower, while at the NLO this is not the case; therefore, at the NLO the shower will have

less necessity to “correct” the prediction obtained at the parton level, a tendency which is

naturally embedded in a matching prescription such as aMC@NLO. The scale dependence
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Four-lepton production
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Merging scale dependence
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For pT(W) > 1 TeV, Sudakov peak for d12 is around 50 GeV
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Even for a factor 1000 or more in ratio of hard scale over merging scale: no sign of lack of 
NLO for inclusive observables seems to a problem for this process and observable
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of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
dL0 d�MR

d�dL0 = �d�
0

d�
eR
21

1

|2G
12

| ↵̄S

�
1 +O

�p
↵̄S

��
. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR

d�dL0 = �d�
0

d�

h
eR
20

� ¯�
0

H
1

�
µ2

R

�i r
⇡

2

1

|2G
12

|1/2
↵̄
3/2

S

�
1 +O

�p
↵̄S

��
. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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FxFx / Meps@nlo: 
V & V+1j merging

Merge NLO+PS for V with Minlo 
for V+1j, at “merging scale” Q

Above Q the tail is NLO accurate

For not-too-small Q, integral is 
NLO accurate

Used by ATLAS & CMS for LHC 
run II analyses

80

Physical curve “Yes”

Tail NLO

Integral “NLO” (depending on Q)

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

Q

FxFx: [RF, Frixione (2012)] 
MEPS@NLO: [Hoeche, Krauss, Schonherr, Siegert; +Gehrmann (2012)]
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Unlops: 
V & V+1j merging

“Unitarise” FxFx/MEPS@NLO 
predictions

Difference between NLO+PS V and 
FxFx/MEPS@NLO computed 
numerically and subtracted below Q

Almost NLO accurate integral (not 
exactly due to incorrect phase-space 
mappings/kinematics below Q)

Allows for smaller Q

Available in Pythia8

81

Physical curve “Yes”

Tail NLO

Integral “NLO”

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

Q

[Plätzer (2012); Lonnblad, Prestel (2012)]
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V & V+1j merging
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Figure 2. k⊥- separation d01 of the first jet and the beam, for W-boson production in pp collisions
at ECM = 7000 GeV, when merging up to two additional partons at LO, and zero and one additional
parton at NLO, for three different merging scales. Jets were defined with the k⊥-algorithm, by
clustering to exactly one jet. Multi-parton interactions and hadronisation were excluded. Left
panel: results of the NL3 scheme. Right panel: results of the UNLOPS scheme.
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Figure 3. Comparison of using exclusive and inclusive NLO input for W-boson production in pp
collisions at ECM = 7000 GeV, when merging up to two additional partons at LO, and zero and
one additional parton at NLO. Curves labelled “inc” are produced with the B-prescription, while
“exc” indicate a generation with B̃-input. The lower inset shows the deviation from PYTHIA8.
The band labelled “POWHEG W+jet” is given by the envelope of varying the renormalisation
scale in the POWHEG-BOX program between 1

2
MZ, . . . , 2MZ, and the factorisation scale between

1
2
MW, . . . , 2MW.
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“Subtract what you add” 
philosophy

The difference between the inclusive 
NLO 0-jet observables and the inclusive 
NLO 1-jet Minlo calculations is subtracted 
at a (projected) 0-jet Born-like phase-space point

This (potentially) removes the NLO ambiguities of taking the merging scale  to 
small values

Idea is very interesting, but current implementation/subtleties need improvement:

Shape of contribution below merging scale is strictly generated by shower: not 
even LO contributions there, i.e. MC@NLO or POWHEG matching there. 
Problematic for large merging scales

There is a non-trivial dependence on the mapping used to got from 1-jet to 0-
jet kinematics (i.e. for the real emission corrections to the NLO 1-jet)

Rather poor efficiency for small merging scales as adding/subtraction is done 
at the level of event files
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Geneva

Start from NNLO for V, add NNLL’ 
analytic resummation

High-enough orders in resummation 
accuracy circumvents the need of 
merging scale: already includes NLO for 
the complete pT(j) spectrum

Non-trivial to attach parton shower

Only available for W-boson production: 
rather difficult to extend, even though in 
principle possible
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Physical curve Yes

Tail NLO

Integral NNLO

Extendible to 
multi-jet Tricky

√y01

dσ
/d
√y

01

[Alioli, Bauer, Berggren, Tackmann, Walsch (2015)]



Rikkert Frederix

Geneva
Not based on MC@NLO or POWHEG for event generation. Rather, just like 
UNLOPS, use projections to underlying kinematics to allow for event generation

No real issues with inefficiencies here: can put this cut to very small value ~1 
GeV; similar to a shower cut-off or phase-space slicing parameter in NNLO 
computations

Projections done very carefully. No issues with mismatches

First steps to N-jettiness subtraction instead of slicing for NNLO?

Split phase-space according to variable that is easy to resum: N-jettiness

It is known how to resum N-jettiness up to NNLL’ accuracy

NNLO corrections naturally included in NNLL’ resummation 

N-jettiness and shower evolution are very different: need some gymnastics to 
attach a parton shower: recent study on underlying event studies shows that this 
seems to be under control [Alioli, Bauer, Guns, Tackmann (2015)]

Very powerful approach
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Rikkert Frederix

Minlo-Revisited V+1j

Much simpler as Geneva

Like Minlo V+1j, include Sudakov 
form factors to make distribution 
physical at low pT

Modify the Sudakov form factors 
with subleading, process dependent 
terms such that total integral 
becomes NLO accurate

Can include NNLO corrections for V
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Physical curve Yes

Tail NLO

Integral (N)NLO

Extendible to 
multi-jet Yes

√y01

dσ
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[Hamilton, Nason, Oleari, Zanderighi (2012); 
Hamilton, Nason, Re, Zanderighi (2013); 

RF, Hamilton (2015)]



Rikkert Frederix

Minlo accuracy for 
(inclusive) 0-jet observables

An explicit comparison between the diff.-jet-rate-resummation formula (which 
integrates to the correct NLO 0-jet diff. cross section) and Minlo shows that 
they differ by terms of order

After integration over the logarithm L (taking R21=0, which is okay for the 
processes considered here) this results into terms of 

Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo

86

in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,
since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR

21

and eR
20

have no µR or µF

dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightforward, oper-
ations on the fully differential input NLO calculations. These can be summarized as renormalization
and factorization scale setting, together with matching to the Sudakov form factor (exp [�R (v) ],
eq. (2.4)). To ease readibility, we have deferred the precise details of these steps to the appendix
(A.3). We suffice to say that if one carefully traces the effects of the latter operations on the NLO
cross section, in particular on the singular parts, d�S and d�SR, neglecting O

�
N

4

LL

�

�
terms, one

finds the resulting Minlo cross section can be written as

d�M = d�R + d�MR + d�F , (2.22)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:

d�MR

d�dL
=

d�
0

d�
exp [�R (v) ]

niY

`=1

q(`)
�
x
`

, µ2

Fv
�

q(`) (x
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F )

h
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�
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R y
� h

eR
21

L+

eR
20

i
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s

�
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R y
�
L2 eR

32

i
,

eR
32

= 2G
12

¯�
0

H
1

�
µ2

R

�
. (2.23)

In eq. 2.23 the KR/F 2
⇥
1

2

, 2
⇤

denote rescaling factors applied to the renormalization and factoriza-
tion scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details), for the purposes
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of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
dL0 d�MR

d�dL0 = �d�
0

d�
eR
21

1

|2G
12

| ↵̄S

�
1 +O

�p
↵̄S

��
. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR

d�dL0 = �d�
0

d�

h
eR
20

� ¯�
0

H
1

�
µ2

R

�i r
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2

1

|2G
12

|1/2
↵̄
3/2

S

�
1 +O

�p
↵̄S

��
. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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Rikkert Frederix

Minlo accuracy for 
(inclusive) 0-jet observables

An explicit comparison between the diff.-jet-rate-resummation formula (which 
integrates to the correct NLO 0-jet diff. cross section) and Minlo shows that 
they differ by terms of order

After integration over the logarithm L (taking R21=0, which is okay for the 
processes considered here) this results into terms of 

Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo

86

in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,
since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR

21

and eR
20

have no µR or µF

dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightforward, oper-
ations on the fully differential input NLO calculations. These can be summarized as renormalization
and factorization scale setting, together with matching to the Sudakov form factor (exp [�R (v) ],
eq. (2.4)). To ease readibility, we have deferred the precise details of these steps to the appendix
(A.3). We suffice to say that if one carefully traces the effects of the latter operations on the NLO
cross section, in particular on the singular parts, d�S and d�SR, neglecting O

�
N

4

LL

�

�
terms, one

finds the resulting Minlo cross section can be written as

d�M = d�R + d�MR + d�F , (2.22)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:

d�MR

d�dL
=
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exp [�R (v) ]
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In eq. 2.23 the KR/F 2
⇥
1

2

, 2
⇤

denote rescaling factors applied to the renormalization and factoriza-
tion scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details), for the purposes
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of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
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0

d�
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1

|2G
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�
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. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR
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. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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Rikkert Frederix

Minlo accuracy for 
(inclusive) 0-jet observables

An explicit comparison between the diff.-jet-rate-resummation formula (which 
integrates to the correct NLO 0-jet diff. cross section) and Minlo shows that 
they differ by terms of order

After integration over the logarithm L (taking R21=0, which is okay for the 
processes considered here) this results into terms of 

Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo

86

in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,
since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR

21

and eR
20

have no µR or µF

dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightforward, oper-
ations on the fully differential input NLO calculations. These can be summarized as renormalization
and factorization scale setting, together with matching to the Sudakov form factor (exp [�R (v) ],
eq. (2.4)). To ease readibility, we have deferred the precise details of these steps to the appendix
(A.3). We suffice to say that if one carefully traces the effects of the latter operations on the NLO
cross section, in particular on the singular parts, d�S and d�SR, neglecting O

�
N

4

LL

�

�
terms, one

finds the resulting Minlo cross section can be written as

d�M = d�R + d�MR + d�F , (2.22)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:
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In eq. 2.23 the KR/F 2
⇥
1

2

, 2
⇤

denote rescaling factors applied to the renormalization and factoriza-
tion scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details), for the purposes
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of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M
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=

d�NLO
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Z
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d�dL0 +O
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�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:
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The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving
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. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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Explicitly compute and remove that term in the Minlo 
calculation such that the integral                    is zero up to NLO  

It’s process dependent and not a constant in phase-space

R
dL

d�MR
d�dL



Rikkert Frederix

Minlo accuracy for 
(inclusive) 0-jet observables

An explicit comparison between the diff.-jet-rate-resummation formula (which 
integrates to the correct NLO 0-jet diff. cross section) and Minlo shows that 
they differ by terms of order

After integration over the logarithm L (taking R21=0, which is okay for the 
processes considered here) this results into terms of 

Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo

86

in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain
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=
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m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,
since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR

21

and eR
20

have no µR or µF

dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightforward, oper-
ations on the fully differential input NLO calculations. These can be summarized as renormalization
and factorization scale setting, together with matching to the Sudakov form factor (exp [�R (v) ],
eq. (2.4)). To ease readibility, we have deferred the precise details of these steps to the appendix
(A.3). We suffice to say that if one carefully traces the effects of the latter operations on the NLO
cross section, in particular on the singular parts, d�S and d�SR, neglecting O

�
N

4

LL

�

�
terms, one

finds the resulting Minlo cross section can be written as

d�M = d�R + d�MR + d�F , (2.22)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:

d�MR

d�dL
=

d�
0

d�
exp [�R (v) ]

niY

`=1

q(`)
�
x
`

, µ2

Fv
�

q(`) (x
`

, µ2

F )

h
↵̄2

S

�
K2

R y
� h

eR
21

L+

eR
20

i
+ ↵̄3

s

�
K2

R y
�
L2 eR

32

i
,

eR
32

= 2G
12

¯�
0

H
1

�
µ2

R

�
. (2.23)

In eq. 2.23 the KR/F 2
⇥
1

2

, 2
⇤

denote rescaling factors applied to the renormalization and factoriza-
tion scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details), for the purposes
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of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
dL0 d�MR

d�dL0 = �d�
0

d�
eR
21

1

|2G
12

| ↵̄S

�
1 +O

�p
↵̄S

��
. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR

d�dL0 = �d�
0

d�

h
eR
20

� ¯�
0

H
1

�
µ2

R

�i r
⇡

2

1

|2G
12

|1/2
↵̄
3/2

S

�
1 +O

�p
↵̄S

��
. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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Explicitly compute and remove that term in the Minlo 
calculation such that the integral                    is zero up to NLO  

It’s process dependent and not a constant in phase-space
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Rikkert Frederix

Rapidity of the Higgs boson

Only observable truly NNLO correct

Extended Minlo’ method (HJJ⭑) agrees with NNLOPS by construction

Normal HJJ Minlo shows larger uncertainty bands and different central 
value: it’s only LO accurate for this observable

87

We do not claim that variation of ⇢, together with the renormalization and factorization scales,
gives a realistic estimate of theoretical uncertainties in regions where large Sudakov logarithms
occur. We content ourselves to say that ⇢ is an unphysical technical parameter introduced in our
procedure, with systematics associated to it. We believe our variation of ⇢, as described above, is
a conservative estimate of these systematics, and we find them to be very much negligible.

Finally, statistical uncertainties are shown as vertical lines, however, for the most part these
are negligible to the point of being invisible.

Inclusive quantities

In figure 1 we plot the rapidity of the Higgs boson; no cuts have been applied to the final state. The
Hjj? and Nnlops central predictions agree with one another to within 2%, with their uncertainty
bands exhibiting a similar level of agreement. This indicates that the method and its implementation
are performing as expected (eqs. 2.40-3.1). The uncorrected Hjj-Minlo prediction in blue is 10%
away from the central Nnlops results, but this is fortuitous given that the scale uncertainty on
the former is ⇠ 30%. Moreover, given our theoretical analysis in the preceding sections of this
paper, neglecting the sub-leading NLL

�

�S
1

terms, we expect the Hjj-Minlo prediction here is
only LO accurate, so the ⇠ 30% uncertainty assigned to it is arguably too small. The uncertainty
band associated to varying the ⇢ parameter as described at the beginning of this subsection 4.2 is
so small that it is concealed within thickness of the black reference line in the upper right plot;
indeed since this quantity is fully inclusive in L

12

, by construction of the procedure (sect. 2.6), the
only way any such uncertainty could manifest here is as a result of technical problems and/or some
statistical issues.
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Figure 1. Rapidity of the Higgs boson as predicted by the Hjj-Minlo (Hjj, blue), Nnlops (dark green)
and improved Hjj-Minlo (Hjj?, red) generators.

In figure 2 we plot the Higgs boson transverse momentum spectrum. As with the Higgs boson
rapidity distribution no cuts have been applied to the final state. Exceptionally, in this figure we
compare Hjj? and Hjj to the NNLL+NNLO predictions of the Hqt program [66–70], instead
of Nnlops. Comparing Nnlops (not shown) and Hjj? we find the two generators agree with
one another to within 3% throughout the spectrum, except for the region pT . 5GeV, where the
difference rises up to 15% in the pT < 2GeV region. The latter differences owe to the finite size of the
bins in our interpolation grids, coupled with the fact that the distribution is changing very rapidly for

– 26 –



Rikkert Frederix

Transverse momentum of the 
leading jet

Extended Minlo’ method (HJJ⭑) agrees with NNLOPS by construction.

apart from pT<5 GeV region: grid-granularity to compute δ not fine enough

Also region 60<pT<80 GeV shows 3-5% deviations: pT derivative of the 
numerator of δ changes very rapidly

Normal HJJ Minlo shows unphysical uncertainty band. Formally only LO for 
this observable
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Figure 5. Leading jet transverse momentum spectrum, for anti-kt-jets with radius parameter R = 0.4.

predictions agree very well throughout the spectrum, with the procedure correcting well for sub-
stantial (±15%) shape differences between the unimproved Hjj-Minlo result and the more accurate
Nnlops prediction. Regarding differences between the Nnlops and Hjj? results in the pT . 5GeV

region, the explanation here is the same as for the case of the Higgs boson pT spectrum, namely, that
the granularity in our discretized implementation of the �BJ phase space is not sufficiently fine to
cope with the rapidly changing distribution for pT . 5GeV. We reiterate that this region is under
limited theoretical control anyway. Indeed, rather than seek improved agreement of Nnlops and
Hjj? in the latter murky region, we might prefer to lessen the 3-5% deviation in the neighbourhood
60  pT  80 GeV. This region, where the Hjj-Minlo and Nnlops lines intersect, appears to
be where the pT derivative of the difference between the two predictions is changing most rapidly,
i.e. the numerator of � (�BJ) in eq. 2.35/3.11. It should therefore be possible to improve agreement
between the Nnlops and Hjj? results in this region by, for example, making use of (irregular)
optimized grids and interpolation methods which can work on them. Overall, notwithstanding our
unsophisticated implementation, agreement between the Nnlops and Hjj? predictions is very sat-
isfactory, providing significant improvement across the whole pT spectrum relative to the original
Hjj-Minlo generator.

In fig. 6 we plot Hjj, Hjj? and NNLL+NNLO JetVHeto [37, 47] predictions for the jet
veto efficiency, "(pT,veto), defined as the cross section for Higgs boson production events containing
no jets with transverse momentum greater than pT,veto, divided by the respective total inclusive
cross section. In the left-hand column, in the red shaded area, we show the scale uncertainty
band predicted by the Hjj? simulation, with the central NNLL+NNLO resummed prediction of
JetVHeto superimposed in green (matching scheme-(a), µR = µF = µQ = mH, µQ being the
resummation scale). The lower panel shows the ratio with respect to the Hjj? prediction obtained
with its central scale choice. On the right we have made the same plots as on the left but with
the JetVHeto predictions replacing those of the Hjj? and vice-versa. The uncertainty band in
the JetVHeto results is the envelope of a seven point variation of µR and µF by a factor of two.
This is in contrast to the band associated with it in ref. [37], where additionally resummation scale
and matching scheme variations were included in the envelope. Thus the JetVHeto error band
here is considerably smaller than that shown in ref. [37]. We restricted the JetVHeto uncertainty
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Transverse momentum of the 
second jet

Extended Minlo’ method HJJ⭑ agrees with Minlo HJJ, as expected

apart close to the Sudakov peak: the difference between HJJ⭑ and 
HJJ is beyond LL/NNLLσ accuracy, which is important close to 
the Sudakov peak

NNLOPS only LO accurate for this observable: uncertainty band is 
too small (this is due to the POWHEG method)

89

Additionally, for the case of jet rapidity distributions, in figures 12 and 13, the jets are required to
pass a transverse momentum threshold of 25 GeV.
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Figure 10. Transverse momentum spectrum of the second jet.

The transverse momentum spectrum of the second hardest jet is plotted in fig. 10. In all
simulations, before (not shown) and after showering, the distribution peaks in the bin at 3GeV 
pJ2

T  6GeV. Moving upwards from the first bin at pJ2
T = 0 GeV the Hjj? (red) and Hjj-Minlo

(blue) predictions start off with a 20% difference, which smoothly and monotonically diminishes,
with the two distributions coalescing at pJ2

T ⇡ 20 GeV. For higher transverse momenta, the Hjj?

and Hjj-Minlo histograms become indistinguishable from one another. Meanwhile, in the same
region, the Nnlops result starts off with a 15% discrepancy between it and the latter simulations,
which rises with the transverse momentum. Nevertheless, the Nnlops prediction is within the
margins set by all renormalization and factorization scale uncertainty bands.

The behaviour of the Hjj? and Hjj-Minlo predictions relative to one another is as intended.
In general, the Hjj-Minlo prediction is NLO accurate in the description of pJ2

T , and so it is of
course desirable that the Hjj? tends to that result in regions where Sudakov logarithms at higher
orders are not large, i.e. away from the Sudakov peak.18 In the vicinity of the peak, large logarithms
enter at every order in perturbation theory. In this feasibility study we claim to control these large
logarithms nominally at just LL/NLL

�

accuracy. The improved Hjj? prediction works so as to
implement unitarity for the 0- and 1-jet inclusive cross sections by ascribing the mismatch there to
missing NNLL

�

Sudakov logarithms beyond NLO. The increasing difference of Hjj? with respect
to Hjj-Minlo in the region pJ2

T  20 GeV, up onto the Sudakov peak, roughly reflects this NNLL

�

‘profiling’ of the ⇠10-12% excess in the Nnlops total inclusive cross section over that of Hjj-Minlo
(see e.g. figs. 1-3).

In figure 11 we plot the transverse momentum of the third jet. In this case there is, coinci-
dentally, good agreement of all predictions in the moderate to high pT domain. This is somewhat
fortuitous in the context of the Nnlops simulation, since the third jet in that simulation is gen-
erated exclusively in the parton shower approximation, whereas in Hjj? and Hjj-Minlo it has a
matched matrix element-parton shower description. With a view to validating our ideas, what is
more relevant is the observation of the relative behaviour of Hjj? and Hjj-Minlo. Here we see,

18In such regions where it is meaningful to quantify accuracy in the context of just fixed order perturbation theory,
we remind that the Nnlops prediction for p

J2
T is, by contrast, only LO accurate.
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y12 resolution parameter

Similar picture as for pT(j2), but low pT region easier to see due to 
logarithmic x-axis

First observable where we see some non-zero dependence on the 
freezing parameter ρ (red solid). Well below the Sudakov peak 
where higher-logarithmic corrections are large as well as non-
perturbative corrections
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Figure 14. In the upper plots we display the log10
p
y01 differential jet rate on the left, while on the right

we show the various predictions relative to the central improved Hjj-Minlo (Hjj?), Nnlops and original
Hjj-Minlo (Hjj) ones, respectively, in the top, middle and bottom panels. In the lower plots we display
the corresponding set of distributions for the log10

p
y12 differential jet rate. In the making of these plots

jets have been clustered according to the kt-jet algorithm, with radius parameter R = 1.

Lastly, this log

10

p
y
12

distribution shows the first real evidence, so far, of some sensitivity in
the Hjj? results to the technical ⇢ parameter. The conservatively estimated systematic uncertainty
owing to ⇢ is depicted by the dark-red band, seen superimposed on the light-red band, in the
uppermost ratio plot. This sensitivity to ⇢ is, however, rather contained at the level of ±10� 15%,
moreover, it is basically negligible above p

y
12

= 3GeV.
Moving on, in the upper half of fig. 15 we have the log

10

p
y
23

distribution. The correspondence
of py

12

with pJ2
T , which helped to quickly understand the log

10

p
y
12

results above, has an analogon
here, namely, that neglecting final-state clusterings by the jet algorithm, p

y
23

becomes equal to
pJ3

T . This analogy continues to appear to hold remarkably well, for describing the features of
log

10

p
y
23

in terms of those found in the pJ3
T distribution of fig. 11. The arrangement of the

three predictions relative to one another, throughout the log

10

p
y
23

distribution, is very much
in direct correspondence with what one can see in the pJ3

T distribution. For example, all three
predictions even cross at the same point in the log

10

p
y
23

and pJ3
T distributions: p

y
23

⇡ 50GeV

in fig. 15 and, correspondingly, pJ3
T ⇡ 50GeV in fig. 11. As was noted in comparing the pJ2

T and
pJ3

T distributions beforehand (figs. 10-11), the effect of our corrective procedure in lifting the Hjj?

distribution above that of its ‘parent’ Hjj-Minlo simulation, in the region log

10

p
y
12

< 1.25,
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y12 resolution parameter 
with √y01 > 200 GeV

At very large y12, all scales are large and of the same order —> the 
Minlo method switches off: HJJ⭑ agrees with HJJ

When y12 ≪ y01, large logarithms build up, and the extended Minlo' 
method brings the HJJ⭑ to the NNLOPS
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Figure 16. The log10
p
y12 differential jet rates, defined according to the kT-jet algorithm with jet radius

parameter R = 1, and with cuts of 10, 50 and 200 GeV imposed on p
y01.

examine the key jet rate of interest to our studies, given its role in the proposed correction procedure,
log

10

p
y
12

, but now subject to additional cuts in the py
01

jet rate variable. These cuts are intended
to bring to the fore events for which there is a hierarchy y

12

⌧ y
01

and associated large logarithm
L
12

. This aspect is indeed manifested in both log

10

p
y
12

distributions in fig. 16 through the Sudakov
peak shifting to higher y

12

values. The Sudakov peak in the inclusive distribution of fig. 14 is
centred around log

10

p
y
12

= 1 (py
12

= 10 GeV), moving up to log

10

p
y
12

⇡ 1.5 (py
12

⇡ 30 GeV)
on imposing the p

y
01

> 50 GeV cut, as shown in the uppermost plot in fig. 16, and further to
log

10

p
y
12

⇡ 1.75 (py
12

⇡ 55 GeV) on imposing the p
y
01

> 200 GeV cut. The shifting of the peak
to higher y

12

values is a manifestation of the fact that the cuts imply a proportionate increase in
the available phase space for high pT emission of the second pseudoparton.

One of the easiest features to make sense of in fig. 16, is the excess of the Nnlops results
over Hjj? and Hjj-Minlo predictions in the high p

y
12

region, with the latter pair of results
being indistinguishable there. This attribute is consistent with the enhancement of the Nnlops
cross section over the corresponding Hjj-Minlo and Hjj? results, in both the inclusive 2-jet cross
section, with high jet pT thresholds (fig. 3), and the transverse momentum spectrum of the second
hardest jet (fig. 10). In the latter distribution the discrepancy increases with radiation hardness,
as it does in fig. 16. Technically, the agreement of Hjj? and Hjj-Minlo in this limit is also easy to
understand, since in these regions L

12

is not large and the Minlo correction procedure ‘switches
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Higgs boson pT in events with 
exactly 2 jets

At small pT, all scales are of the same order. The Minlo method does not do 
much: HJJ⭑ agrees with HJJ

At large pT, HJJ⭑ agrees with NNLOPS dominated by events with one hard 
jet (pT(j1) ~ pT(H)) and one soft jet: a 30 GeV jet comes basically for free

The pT(H) spectrum with Njets=2 becomes essentially Njets≥1 pT(H) 
distribution

92

Turning to the Higgs transverse momentum in the 1-jet events, we see the results we naively
expect in the region pH

T > 100 GeV, with Nnlops and Hjj? in very good agreement. In the
region surrounding the peak of the distribution at pH

T ⇠ 50 GeV, Hjj? continues to agree well with
Hjj-Minlo, but not quite as nicely as before. The slight excess of the Hjj? prediction over the
Nnlops around this peak follows the same explanation as for the similarly sized enhancement of
the exclusive 1-jet cross section of the former over the latter, in the discussion surrounding fig. 4.
There we explained that our correction procedure led to an enhanced 1-jet exclusive cross section,
by acting to recover the inclusive 1-jet cross section of the Nnlops, while maintaining the 2-jet
inclusive cross section of Hjj-Minlo; since the 2-jet inclusive cross section of Hjj-Minlo was low
with respect to that of the Nnlops, the Hjj? 1-jet exclusive cross section therefore had to be high.
Remarkably, on the other hand, we note that for the lowest bin in the N

jets

= 1 pH
T plot, it is

in fact natural and correct that the Hjj? distribution is found to be in complete agreement with
Hjj-Minlo, for in that region the recoil of the leading jet can no longer be balanced by the Higgs
boson, and instead extra radiation must be present to this end.
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Figure 22. In the upper plot we show the transverse momentum distribution of the Higgs boson in 2-jet
events. Jets are here constructed according to the anti-kt clustering algorithm, for a radius parameter
R = 0.4. Jets are required to have transverse momentum pT � 30 GeV and rapidity |y|  4.4. The
corresponding distribution in the case of � 3-jet events is shown underneath.

Lastly, we look to the Higgs boson transverse momentum distributions in the exclusive 2-jet
events and inclusive 3-jet events, in the upper and lower plots of fig. 22. For both the exclusive 2-jet
and inclusive 3-jet pH

T spectra, we see that Hjj? agrees perfectly with the Hjj-Minlo generator

– 48 –



Rikkert Frederix

NLO rate? NLO tail? physical? comment

NLO V+0j ✓ ✘ ✘

NLO+PS V+0j ✓ ✘ ✓ fully 
automated

Minlo V+1j ✘ ✓ ✓

FxFx/
MEPS@NLO 

V+0,1j
✓* ✓* ✓

Combines 
NLO+PS with 

Minlo

UNLOPS ✓* ✓* ✓
Unitarity on 

incl. X-sect. is 
imposed

Geneva ✓ ✓ ✓ allows for 
NNLO

Minlo’ V+1j ✓ ✓ ✓ allows for 
NNLO
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Comparison to data

Z+jets

Exclusive jet 
multiplicity and hardest 
and 3rd hardest jet pT 
spectra

Uncertainty band 
contains ren. & fac. 
scale, PDF & merging 
scale dependence

Rather good agreement 
between data and 
theory
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Figure 1: Exclusive jet multiplicity. Data from ref. [28], compared to Herwig++ (left

panel) and Pythia8 (right panel) predictions. The FxFx uncertainty envelope (“Var”)

and the fully-inclusive central result (“inc”) are shown as green bands and red histograms

respectively. See the end of sect. 2 for more details on the layout of the plots.

Figure 2: As in fig. 1, for the transverse momentum of the 1st jet.

Figure 3: As in fig. 1, for the transverse momentum of the 3rd jet.

is entirely dominated by MC e↵ects, and formally of LL accuracy. The impact of multi-

parton matrix elements, measured by the distance between the FxFx and the inclusive
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Agreement between FxFx merged results, matched to Herwig++ 
and Pythia8, and Atlas and CMS data is rather good

Where data and theory differ, also differences between the results 
matched to HW++ and PY8 differ
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Figure 29: As in fig. 19, for the invariant mass of the two hardest jets.

Figure 30: As in fig. 19, for HT .

Figure 31: As in fig. 19, for HT in events with at least three jets.

measurements (as was marginally the case for the Z+jets analysis of ref. [28]); the clearest

evidence of that, the Njet � 1 case as predicted by Herwig++, is much weaker than its

analogue in the Z+jets case (see fig. 2). On the other hand, there is possibly an indication

of the theory being lower than data at the smallest pT ’s, especially for Njet � 2, 3, but

this is not statistically very significant; we note that a similar trend has been observed in
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NLO+PS matching including 
EW corrections

In POWHEG, two independent 
implementations of QCD+EW corrections to 
W-boson production exist [Bernaciak & 
Wackeroth (2012); Barzè et al. (2012)]

MG5_aMC and Sherpa working towards 
automation. Some first results with 
Sherpa+OpenLoops have been presented, 
although they include only EW corrections of 
virtual origin [Kallweit et al. (2015)]
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shape of the NLO EW corrections to various observables for both the muon and electron

final state, to register perfect technical agreement with HORACE.

5.2 Combined electroweak and QCD corrections

The full results of the POWHEG BOX for the combined e↵ects of QCD and EW radiation

in the resonance region are shown in Fig. 3 for the W transverse mass, in Fig. 4 for

the lepton p? and in Fig. 5 for the lepton rapidity. In Fig. 6 we show the transverse

mass distribution above 1 TeV. The full predictions have been obtained by interfacing

the NLO EW and strong corrections with QCD (PYTHIA) and QED (PHOTOS) showers.

For the sake of comparison, the pure QCD predictions of the standard POWHEG BOX are

also given, together with the pure NLO EW results. These absolute predictions for the

various distributions are shown in the upper panels of each plot. The lower panels display

the relative di↵erence, in per cent, between the results of the new version of the POWHEG

BOX and the standard QCD release, as well as the relative e↵ect due to pure NLO EW

corrections. Therefore the comparison between the two lines in each lower panel provides

a measure of the combination of QCD and EW corrections and, more precisely, of mixed

EW⌦QCD contributions at order ↵n
em↵n

s , n � 1 in perturbation theory.9
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Figure 3. Upper panel: the W transverse mass distribution according to the full QCD⌦EW
predictions of the POWHEG BOX (denoted as PWG EW w PYTHIA+PHOTOS), the standard QCD POWHEG

BOX (PWG w PYTHIA), the LO and the NLO EW approximations. Lower panel: relative di↵erence,
in per cent, between the full QCD⌦EW predictions and the pure QCD ones (red, solid line), in
comparison with the relative contribution due to pure NLO EW corrections (green, dotted line).
The di↵erence between the two lines is a measure of the mixed QCD⌦EW corrections.

From the upper panels, one can clearly see that NLO QCD corrections in association

with QCD shower e↵ects are strictly needed for a correct simulation of both the nor-
9The exact O(↵

em

↵s) corrections to DY processes are presently unknown, albeit partial results are

available in the literature [30–33, 50] and further work is in progress along this direction.
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FIG. 3: MT (W ) distributions and relative corrections δEW, δQCD, δQCDEW for pp̄ → W+ → µ+νµ,
√
S = 1.96 TeV, obtained with POWHEG-W EW, with bare cuts. Parton showering (denoted by PS) is

performed by interfacing with Pythia.
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FIG. 4: MT (W ) distributions and relative corrections δEW, δQCD, δQCDEW for pp → W+ → µ+νµ,
√
S = 7 TeV, obtained with POWHEG-W EW, with bare cuts. Parton showering (denoted by PS) is

performed by interfacing with Pythia.
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Conclusions

In the last couple of years the accuracy of event generation has greatly 
improved, and full automation has been achieved at NLO accuracy

First results for matching NNLO ME to PS

A lot of freedom in tuning has been replaced by accurate theory 
descriptions:

More predictive power

Better control on uncertainties

Greater trust in the measurements

Latest developments include the merging matrix elements of various 
multiplicities and matching those to the parton shower, including some 
EW corrections
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