
Andrea Banfi 
   – University of Sussex

Theory uncertainties 

1MC School - DESY - 17 March 2017

and resummation 



Outline
• Renormalisation scale uncertainties 

• Factorisation scale uncertainties 

• Two-scale problems: the need for resummation 

• Principles of NLL resummation 

• Resummation uncertainties
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Renormalisation and factorisation scales
• Any fixed-order cross section in hadron collisions depends on two 

unphysical parameters, the renormalisation and factorisation scales   
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Scale uncertainties
• Varying renormalisation and factorisation scales is a natural way to 

estimate theoretical uncertainties 
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• Relevant questions are: 

• how to choose the default (central) value of       and     ? 

• over what range should we vary these scales? 
• how should we add uncertainties? 

d�pp!X(xµR, yµF ) = d�pp!X(µR, µF )| {z }
⇠↵n

s

+O(↵n+1
s )

µR µF

Although is no theoretically sound answer to any of these questions, we 
will try to reflect on how to reasonably assess theory uncertainties  



Short-distance observables
• Consider a simple counting observable in          annihilation 
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The ratio R in QCD
• Since the ratio R is infrared and collinear safe, it admits a massless limit
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Renormalisation group analysis
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• The massless limit     does not depend on the renormalisation scale           R̂ µR
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• The formal solution of the above renormalisation group equation is
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• Renormalisation group, and the fact that     depends on a single scale give 
enough conditions to determine the central value of  
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Setting the central scale as a resummation
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• For a one-scale observable like    , the dependence on      appears in the 
following form      

R̂ µR

• Choosing                resums terms                   at all orders in   µ2
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Meaning of renormalisation scale
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• The renormalisation scale is the price to pay for the renormalisation of UV 
divergences       

• The renormalised coupling             contains all quantum fluctuations 
with virtuality larger than 

• The ratio R is fully inclusive, so it is not able to probe quantum 
fluctuations above the com energy   
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Renormalisation scale: central value
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• In hadronic collisions, especially in multi-jet events, observables depend 
on multiple scales

• One possibility to set a default scale is to cancel the logarithm of       that 
appears at one loop

µR

) µ2
R = (s1 s2 . . . sn)

1/n

• Possible caveats with such choice 

• The similarity with R can be deceiving, since this log-enhanced term has 
the same kinematics as tree-level, and does not account for the physics 
of extra-gluon radiation      physical meaning of renormalisation scale?    

• In multi-scale observables, these are not the only logs around, so you 
can have extra logs of ratios of scales     soft-collinear resummation 
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Renormalisation scale: central value
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• In inclusive production of a particle of mass M (e.g. Higgs), we have two 
scales, the mass of the particle and the partonic com energy square   ̂s

• Without extra gluons,           , so we’re back to the one-scale problemŝ = M

• With additional gluons,   and M can be differentŝ

• The partonic com energy is sensitive to the typical energy scale of extra 
gluon radiation

ŝ =
M
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Renormalisation scale: central value
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• For one emission at fixed transverse momentum     (one-scale problem), 
one can show that                     resums                   at all orders                 

kt
↵s = ↵s(kt) ln(µ2

R/k
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• Physical meaning: integrate out of all quantum fluctuations from the cutoff 
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Renormalisation scale: central value
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• Strategy: with QCD emissions, set the renormalisation scale close to the 
upper bound of transverse momentum of emitted gluons

• For instance, for the Higgs total cross section, an “optimal” scale can be 
obtained by imposing that the perturbative series is well convergent

• This choice in general depends on the observable, and on the accuracy 
of the calculation     threshold resummations of               help ) ln(M/ŝ)

NNLL threshold resummation 
central scale MH

NNLO fixed-order 
central scale MH/2



Renormalisation scale variation
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• Varying x by a factor of two is sensible only after one has identified a 
suitable central scale, otherwise      will contain large logs of 

• Is varying renormalisation a good probe of theory uncertainties?
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Renormalisation scale variation
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• Is varying renormalisation a good probe of theory uncertainties?

• The procedures gives an estimate of missing higher orders as long as 
K-factors (e.g.          ) are not too large�1/�0

�0(xµR, . . . ) = �0(µR, . . . )| {z }
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• Varying x by a factor of two is sensible only after one has identified a 
suitable central scale, otherwise      will contain large logs of �1 µR

Anastasiou Melnikov Petriello '04



Renormalisation scale variation
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• Large K-factors can have different origins than a bad choice of default 
renormalisation scale 

• It is nowadays possible to perform 
approximate higher-order calculations 
that account for the opening of new 
channels Salam Sapeta ‘10g
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Figure 2: A) a LO contribution to Z+jet production; B) and C) two contributions that
are NLO corrections to Z+jet observables but whose topology is that of a dijet event with
additional radiation of a soft or collinear Z-boson either from a final-state quark (B) or
an initial-state one (C).

kinematic topologies at NLO. This is illustrated in fig. 2: at LO the only event topology
(A) is that of a Z-boson recoiling against a quark or gluon jet. One type of NLO diagram
involves gluon radiation from this basic topology, giving modest corrections to all our
observables. However, there are also NLO diagrams (B,C) whose topology is that of a
dijet event, in which a soft or collinear Z-boson is radiated from outgoing or incoming
legs. These diagrams do not contribute significantly to the pt,Z distribution, because the
Z-boson carries only a moderate fraction of the total pt. However when examining pt,j1,
it is irrelevant whether the Z boson is soft or not. Contributions B and C then lead to
a result that is of order α2

sαew ln2 pt,j1/mZ, where the double logarithm comes from the
integration over soft and collinear divergences for Z emission. The ratio of the NLO to
LO results is therefore O

(

αs ln
2 pt,j1/mZ

)

,1 rather than just O(αs), hence the K-factor
that grows large with increasing pt.2 For the HT,jets observable the enhancement is even
bigger because the dijet topology leads to HT,jets ∼ 2pt,j1 instead of HT,jets = pt,j1 at LO.

While it is reassuring that we can understand the physical origins of the large K-
factors in fig. 1, we are still left with doubts as to the accuracy of the NLO Z+jet
predictions for pt,j1 and HT,jets, since they are dominated by the LO result for the Z+2-
parton topologies. One way forward would be to calculate the full NNLO corrections for
the Z+jet process. However, while work is progressing on NNLO calculations of 2 → 2
processes with QCD final states (see e.g. [22] and references therein), results are not yet
available; nor are they likely to become available any time soon for some of the more
complex processes where giant K-factors have been observed (e.g. some observables in
pp → Wbb̄ [13, 17]). Alternatively one could simply try to avoid observables like pt,j1
and HT,jets in inclusive event samples. For example, with additional cuts on the vector-
boson momentum or a second jet, refs. [13, 15] showed that the K-factors are significantly
reduced. However, given the many analyses that are foreseen at the LHC, it is likely that
at least a few will end up probing regions where giant K-factors are present.

To understand how else one might address the problem of giant K-factors, one can
observe that in our Z+jet example, the bottleneck in obtaining a NNLO prediction is the
inclusion of the two-loop 2 → Z + 1parton contributions and proper cancellation of all
infrared and collinear divergences. Yet the two-loop (and squared one-loop) contribution

1This differs from double electroweak (EW) logarithms, which involve terms like αew ln2 pt/mZ , and
are usually much smaller. Examples do exist of “giant” EW effects when tagging flavour [21].

2Part of the enhancement at high pt also comes from the fact that one can have qq → qq scattering
that emits a Z, whereas the qq partonic channel does not contribute at LO.
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Figure 1: The LO and NLO distributions obtained with MCFM 5.7 [19] for three ob-
servables in Z+jet production: the Z transverse momentum (left), the pt of the hardest
jet (middle), and the scalar sum of the transverse momenta of all the jets, HT,jets (right).
The bands correspond to the uncertainty from a simultaneous variation of µR = µF by
a factor of two either side of a default µ =

√
p2t,j1 +m2

Z. The jet algorithm is anti-kt [20]
with R = 0.7 and only events whose hardest jet passes a cut pt > 200GeV are accepted.
The cross sections include the branching ratio Z → e+e−.

and obtaining the first two terms (leading order (LO) and NLO) for a given process,
one often obtains predictions that are accurate to 10 − 20%. The importance of NLO
predictions in the LHC programme has motivated a large calculational effort destined to
extend the range of processes known at NLO (for reviews, see refs. [9, 10]).

While the majority of NLO calculations show some degree of convergence relative
to the LO results, several groups have commented in recent years on the appearance of
K factors, ratios of NLO to LO results, that grow dramatically towards high transverse
momenta [11, 12, 13, 14, 15, 16] (similar behaviour is visible also in [17, 18]). The problem
generally occurs for hadronic observables (jet transverse momenta, etc.) in processes that
involve heavy vector bosons or heavy quarks, at scales far above the boson or quark mass.

Fig. 1 illustrates this for the pp → Z+jet process at LHC (14TeV) energies. It shows
the distributions of three observables that are non-zero for configurations involving a
Z-boson and one or more partons: the transverse-momentum of the Z-boson (pt,Z), the
transverse-momentum of the highest-pt jet (pt,j1) and the effective mass (scalar sum of
the transverse momenta) of all jets (HT,jets). At LO, all three distributions are identical.
At NLO, the pt,Z observable is rather typical of a QCD observable: its distribution has
a NLO K-factor of about 1.5, fairly independently of pt,Z, and its scale dependence is
reduced with respect to LO. The pt,j1 distribution is more unusual: at high pt it has
a K-factor that grows noticeably with pt,j1, reaching values of about 4 − 6, which is
anomalously large for a QCD correction. The HT,jets observable is even more striking,
with K-factors approaching 100.

Given that fig. 1 involves momentum scales where αs ∼ 0.1, one is driven to ask how
it is that such “giant” K-factors can arise. As touched on in [13], and discussed in more
detail in [14, 15] for the pt,j1 case, the answer lies in the appearance of diagrams with new
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Factorisation scale: central value
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• Consider a cross section in hadron collisions
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i,j

fi/p(µF )⌦ fj/p(µF )⌦ d�̂ij!X

✓
↵s(µR),

µF

µR
, . . .

◆

• The partonic cross section        contains collinear singularities that are 
“renormalised” through parton distribution functions  

d�̂ij

• The price to pay for this renormalisation is the introduction of the 
factorisation scale 

• Choosing                will make                   to disappear formally, but 
logarithms of collinear origin might appear as logs of other scales   
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Factorisation scale: central value

18

• The parton distribution function                inclusively resums the 
contribution of multiple emissions collinear to hadron A  

• Collinear emissions with transverse momenta up to      inside                
are not observed (unresolved) 

fi/A(µF )

µF fi/A(µF )

A

B

fq/A(Q0)

fq̄/B(Q0)
fq̄/B(µF )

fq/A(µF )
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Factorisation scale: central value
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• The parton distribution function                inclusively resums the 
contribution of multiple emissions collinear to hadron A  

• Collinear emissions with transverse momenta up to      inside                
are not observed (unresolved) 

fi/A(µF )

µF fi/A(µF )

A

B

fq/A(Q0)

fq̄/B(Q0)
fq̄/B(µF )

fq/A(µF )

µF

Q0

µF

Q0

µR

• Strategy: set the central value of       close to the minimum transverse 
momentum of resolved partons, and allow it to vary independently of     ,  
since it accounts for a different physical effect  

µF

µR



Higgs production with a jet veto
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• In order to suppress the large top-antitop background to                   we 
require that all jets have a transverse momentum below   

H ! WW
p
t,veto

• This works: the zero-jet cross section             is least contaminated by the 
huge (yellow) top-antitop background 

�0�jet



Higgs plus zero jets: infrared sensitivity
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• Scale variations sometimes highlight the pathological behaviour of some 
cross sections, for instance their infrared sensitivity

• The cancellation of two large effects gives a spurious vanishing of scale 
at low values of the jet-veto resolution 

• Zero-jet cross sections are the typical example of a two-scale problem, 
that cannot be solved by simply adjusting      and

pcutT

µR µF

�
0�jet

= �
tot

� ��1�jet

large K-factor large logs
ln(mH/pcutT )

Stewart Tackmann ‘12



Higgs plus zero jets as a two-scale problem
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• The zero-jet cross section is characterised by two scales, the Higgs 
mass       and the jet resolution  

• In QCD, large logarithms such as                          appear whenever the 
phase space for the emission of soft and/or collinear gluons is restricted                          

ln(mH/p
t,veto)

mH p
t,veto

X



One gluon emission
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• Example: veto one soft (               ) and collinear (          ) gluon

X
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All-order resummation
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• The zero-jet cross section contains logarithmic contributions which can 
become large when p

t,veto ⌧ mH

⇤
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All-order resummation
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• All-order resummation of large logarithms      reorganisation of the 
perturbative series in the region               , with 

)
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All-order resummation
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• All-order resummation of large logarithms      reorganisation of the 
perturbative series in the region               , with 

)
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• To achieve NLL accuracy we have to consider 
• Double logarithms         : they come from soft and collinear 

contributions, and have to exponentiate 

• Single logarithms        : they come from soft and/or collinear 
contributions, and have to factorise from double logarithms

↵sL
2
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Final-state observables

27

• We consider a generic final-state observable, a function                         
of all final-state momenta 

• Examples: leading jet transverse momentum in Higgs production or 
thrust in 

V (p1, . . . , pn)
p1, . . . , pn

e+e� ! hadrons

p
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Collinear and infrared safety
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• All final-state observables we consider are infrared and collinear (IRC) 
safe, so we can safely compute their distributions using the quark-gluon 
language of perturbative QCD

• Example: jets obtained from parton momenta are close to those 
obtained from hadron momenta if they do not change after 
• the addition of any number of soft patrons 

• any number of collinear splittings

)



Departure from the Born limit
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• Final-state observables have the property that, for configurations close to 
the Born limit (e.g. a back-to-back      pair), their value is close to zero 

• Example: in two-jet events, one minus the thrust is the sum of the 
invariant masses of the two jets, which vanishes in the Born limit

• To quantify the departure from the Born limit, we consider        , the 
fraction of events such that 

⌃(v) = Prob[V (p1, . . . , pn) < v]
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Boosted object searches
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• At the LHC it is possible to look for a boosted Higgs decaying into a     pair bb̄A hadron-collider parallel

At the LHC it is possible to look for a boosted Higgs decaying into a      pair 

The decay products of the Higgs tend to fall into the same jet      consider the 
invariant mass of fat jet and look for a peak for  

If                        , for background QCD jets                                              , so 
that we have again a two-scale problem when  

bb̄

Hb

b̄

)
mjet ⇠ mH

pt,jet ⇠ 1TeV ↵s(pt,jet) ln(pt,jet/mjet) ⇠ 1

mjet ⌧ pt,jet

• The decay products of the Higgs tend to fall into the same jet     consider 
the invariant mass of a fat jet and look for a peak for  

• If                        we have a two-scale problem because       pt,jet ⇠ 1TeV mjet ⌧ pt,jet

mjet ⇠ mH

)



The Lund plane
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One-gluon emission
We consider one-gluon emission    and compute the distribution  

Example of kinematics: two light-like momenta along the thrust axis 

Sudakov decomposition of    along      and 

Phase space and matrix element squared in the soft-collinear limit   

k ⌃(v)

One gluon emission

We consider one gluon emission     and we compute the distribution   

Example of kinematics: two lightlike momenta along the thrust axis

Sudakov decomposition of k along      and  

Phase space and matrix element in the soft-collinear limit 
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• For resummations, it is very useful to visualise emissions as points in the 
Lund plane
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The thrust in the Lund plane
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The thrust in the Lund plane
Exercise. Behaviour of                        in the soft-collinear region 

• Soft and collinear 

• Soft large-angle 

• Hard collinear
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Exercise: the thrust at NLL accuracy

For soft and/or collinear emissions, the thrust can be written as

1. Determine the scaling behaviour of the thrust in the soft-collinear, hard collinear and soft 
large-angle region

2. Prove that the thrust is recursively infrared and collinear safe

3. Show that the multiple emission correction is given by 

• Behaviour of the thrust in the soft-collinear limit
recoiling     pair qq̄
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• Soft and collinear

• Hard and collinear

• Soft and large angle



The thrust in the Lund plane
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• Behaviour of the thrust in the soft-collinear limit

• Soft and collinear

• Hard and collinear

• Soft and large angle

1� T ({p̃}, k) ' kt
Q
e�|⌘|

1� T ({p̃}, k) ⇠ k2t

1� T ({p̃}, k) ⇠ kt

The thrust in the Lund plane
Exercise. Behaviour of                        in the soft-collinear region 

• Soft and collinear 

• Soft large-angle 

• Hard collinear
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An IRC observable in the Lund plane
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• For a single soft/collinear emission, the behaviour of an IRC safe 
observable is as follows

• Soft and collinear to leg

• Soft and large angle

• Hard and collinear

` = 1, 2
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Multiple soft-collinear emissions
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• We first consider an ensemble of soft-collinear emissions widely separated 
in angle (rapidity) 

• Due to QCD coherence, the multi-gluon matrix element factorises into the 
product of single-emission matrix elements

Multiple soft-collinear emissions

We first neglect correlated emission. Then the multi-gluon matrix element 
factorises into the product of single emission matrix elements 

The all-order cumulative distribution          becomes 

M2(k1, k2, . . . , kn) ' M2(k1)M
2(k2) . . .M

2(kn)

Multiple soft-collinear emissions

We first neglect correlated emission. Then the multi-gluon matrix element is simply

In this case the cumulative distribution of an event shape becomes

virtual corrections, ensure 
that the inclusive sum of all 
emissions gives 1

⌃(v)

virtual corrections, ensure that the inclusive sum over emissions gives one

⌃(v) = e�
R
[dk]M2(k)

1X

n=0

1

n!

Z Y

i

[dki]M
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• Contribution of multiple soft-collinear emissions to ⌃(v)

virtual corrections, ensure that the inclusive sum over all emissions gives one

⌃(v) = e�
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Leading logarithmic resummation
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• Strategy: split the exponent in two parts 
Z

[dk]M2(k) =
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v
[dk]M2(k) +

Z v

[dk]M2(k)
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Sudakov form factor multiple-emission correction
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Z Y

i
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Leading logarithmic resummation
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• The Sudakov exponent, a.k.a. as radiator, is just the area of the shaded 
region in the Lund plane 

R(v) =

Z
[dk]M2(k)⇥(V ({p̃}, k)� v)
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• Since it is an area in the Lund plane, its contribution is double logarithmic



Exponentiation of double logarithms
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• Double logarithms exponentiate if the contribution of multiple emissions is 
single-logarithmic 

cutoff

• Phase-space massage 
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Exponentiation of double logarithms
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• The logarithmic derivative of the radiator is the boundary of the shaded 
region in the Lund plane

• Since it is a line in the Lund plane, its contribution is single logarithmic
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Perfectly exponentiating observable
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• Consider an observable that takes contribution only from the emission for 
which                 is the largestV ({p̃}, k)
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• For such observables the cumulative distribution is a Sudakov form factor!
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Additive observable
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• Consider an observable that is the sum of the contributions of individual 
emissions

V ({p̃}, k1, . . . , kn) =
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• The crucial property that ensures that          does not give rise to double 
logarithms is the fact that                                     whenever    
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Non-exponentiating double logarithms
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• In the case of the two-jet rate in the JADE algorithm, double logarithms 
do not exponentiate

Non-exponentiating leading logarithms

In the case of the JADE jet algorithm, double logarithms do not exponentiate 

We try to identify what can go wrong  

We need to enforce that the corrections do not give double logarithms
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)
• This is due to the peculiar way in which the JADE algorithm performs 

sequential recombinations

• The JADE algorithm is able to recombine together two soft emissions 
collinear to two different legs

Failure of recursive IRC condition 1

Exercise.* Show that the JADE three-jet resolution fails either 1 or 2a 

Solution. The distance measure of the JADE algorithm is the invariant mass 
of two partons. The JADE can cluster together two soft and collinear gluons 
belonging to different hemispheres
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Non-exponentiating double logarithms
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• The way in which the JADE algorithm changes the scaling properties of 
the three-jet resolutionFailure of recursive IRC condition 1

Exercise.* Show that the JADE three-jet resolution fails either 1 or 2a 

Solution. The distance measure of the JADE algorithm is the invariant mass 
of two partons. The JADE can cluster together two soft and collinear gluons 
belonging to different hemispheres
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Recursive IRC safety condition 1
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• The requirement that the observable scales in the same way 
irrespectively of the number of emission is formalised as follows

lim

v!0

V ({p̃}, k1[v⇣1], . . . , kn[v⇣n])
v

= finite, and non-zero

• This is the first of the requirements known as “recursive” IRC safety 

• rIRC safe observables are the only ones that can be resummed so far 

generalised
rescaling
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Recursive IRC safety condition 2a
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• This condition ensures that all emissions with                          can be 
neglected, and furthermore           , independent of   

V ({p̃}, ki) < ✏v
✏ � v v

ln kt

 

/Q

ln
1

v

ln
1
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Recursive IRC safety condition 2b
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• This condition ensures that the contribution of correlated gluon emissions, 
hard collinear and soft large-angle emissions is NNLL 

ln 1/

ln kt

 

/Qln kt

 

/Q

ln v ⇥ ln ✏
• At NLL accuracy, relevant emissions are soft and collinear, widely 

separated in angle, and in a strip of size 
• This is a line in the Lund plane, hence a single logarithmic contribution

rIRC safety 2b in the Lund plane
Clustering emissions close in rapidity does not produce extra logarithms  

The relevant emissions are soft and collinear, widely separated in angle, and 
in a strip of size                 : this is a line, i.e. a single logarithmic contribution 

rIRC safety 2.bis in the Lund plane

Clustering emissions close in rapidity does not produce extra logarithms

The relevant emissions are soft and collinear, widely separated in angle, and in a strip 
of size                  : this is a line, i.e. a single logarithmic contribution ln v ⇥ ln ✏



NLL resummation of rIRC safe observables
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• NLL resummation of rIRC safe observables can be performed with a 
universal master formula

ln 1/

ln kt

 

/Qln kt

 

/Q

rIRC safety 2b in the Lund plane
Clustering emissions close in rapidity does not produce extra logarithms  

The relevant emissions are soft and collinear, widely separated in angle, and 
in a strip of size                 : this is a line, i.e. a single logarithmic contribution 

rIRC safety 2.bis in the Lund plane

Clustering emissions close in rapidity does not produce extra logarithms

The relevant emissions are soft and collinear, widely separated in angle, and in a strip 
of size                  : this is a line, i.e. a single logarithmic contribution ln v ⇥ ln ✏
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Higgs plus zero jets at NLL
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/Qµ 0ln 

soft collinear

ln kt /Q

hard collinear
hard collinear

soft collinear

hard scattering

soft large angle

η

• In the presence of initial state radiation, the zero-jet cross section 
inclusive with respect to hard-collinear emission up to the scale p

t,veto

�
0�jet

' Lgg(pt,veto) e
�R(p

t,veto)

ln(p
t,veto/Q)

• No    -type algorithm can recombine gluons that are widely separated in 
angle     perfectly exponentiating observable )

kt
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Higgs plus zero jets at NNLL
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• Recombination effects start to matter at NNLL accuracy

NNLL jet-veto distribution

Bringing all together one obtains a NNLL resummation formula, which contains for the 
first time a non-trivial dependence on the jet radius

Two nearby gluons clustered in one jet One gluon giving two jets

The function                             due to a cutoff collinear singularity in gluon splitting. 
There is general interest in understanding the structure of these logarithms, and the 
term                     has been recently computed by Alioli and Walsh   

NNLL jet-veto distribution

Bringing all together one obtains a NNLL resummation formula, which contains for the 
first time a non-trivial dependence on the jet radius

Two nearby gluons clustered in one jet One gluon giving two jets

The function                             due to a cutoff collinear singularity in gluon splitting. 
There is general interest in understanding the structure of these logarithms, and the 
term                     has been recently computed by Alioli and Walsh   

�
0�jet

' Lgg(pt,veto)

0

B@1 + ↵s(pt,veto)R
0(p

t,veto) f(R)
| {z }

NNLL

1

CA e�R(p
t,veto)

• The function                     due to a cut off collinear singularity in gluon 
splitting. Leading logarithm of the jet radius can be also resummed at all 
orders

f(R) ⇠ lnR

Banfi Monni Salam Zanderighi ‘12
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Resummation uncertainties
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• Resummation has more handles to assess theoretical uncertainties

pp 13 TeV, anti-kt R = 0.4
Finite mt,b, µ0 = Q0 = mH/2

R0 = 1.0, JVE a(7 scl.,Q,R0),b
PDF4LHC15 (NNLO), αs = 0.118ε(
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Jet veto efficiency uncertainty breakdown, µ0=mH/2
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Figure 15. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (red band), with a
breakdown (lower panels) comparing the overall relative uncertainty envelope to the different con-
tributions from which it is built up. The left and right-hand plots show results respectively for
scale choices µ

0

= mH/2 and mH . In both plots, ratios are taken with respect to a reference result
determined with µ

0

= mH/2.

Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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Figure 15. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (red band), with a
breakdown (lower panels) comparing the overall relative uncertainty envelope to the different con-
tributions from which it is built up. The left and right-hand plots show results respectively for
scale choices µ
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= mH/2 and mH . In both plots, ratios are taken with respect to a reference result
determined with µ

0

= mH/2.

Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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• Variation of renormalisation and 
factorisation scales in the range 

1/2  µR/µF < 2

mH/4  µR, µF < mH
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Figure 15. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (red band), with a
breakdown (lower panels) comparing the overall relative uncertainty envelope to the different con-
tributions from which it is built up. The left and right-hand plots show results respectively for
scale choices µ

0

= mH/2 and mH . In both plots, ratios are taken with respect to a reference result
determined with µ

0

= mH/2.

Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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Resummation uncertainties
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• Resummation has more handles to assess theoretical uncertainties
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Figure 15. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (red band), with a
breakdown (lower panels) comparing the overall relative uncertainty envelope to the different con-
tributions from which it is built up. The left and right-hand plots show results respectively for
scale choices µ

0

= mH/2 and mH . In both plots, ratios are taken with respect to a reference result
determined with µ

0

= mH/2.

Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.

– 26 –

Banfi Caola Dreyer Monni Salam Zanderighi Dulat ‘16



Resummation uncertainties

52

• Resummation has more handles to assess theoretical uncertainties

pp 13 TeV, anti-kt R = 0.4
Finite mt,b, µ0 = Q0 = mH/2

R0 = 1.0, JVE a(7 scl.,Q,R0),b
PDF4LHC15 (NNLO), αs = 0.118ε(

p
t,

ve
to
)

Jet veto efficiency uncertainty breakdown, µ0=mH/2

N3LO+NNLL+LLR
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

µR = µF = µ0/2
µR = µF = 2µ0

µR = µ0/2, µF = µ0

µR = 2µ0, µF = µ0
µR = µ0, µF = µ0/2
µR = µ0, µF = 2µ0

 0.9

 0.95

 1

 1.05

 1.1

ε(
p

t,
ve

to
)/
εr

ef
. (
p

t,
ve

to
)

Q/Q0 = 3/2
Q/Q0 = 2/3

 0.9

 0.95

 1

 1.05

 1.1

scheme b
 0.9

 0.95

 1

 1.05

 1.1

pt,veto [GeV]

R0 = 2.0
R0 = 0.5

 0.9

 0.95

 1

 1.05

 1.1

20 30 50 70 100 150

Figure 15. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (red band), with a
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tributions from which it is built up. The left and right-hand plots show results respectively for
scale choices µ

0

= mH/2 and mH . In both plots, ratios are taken with respect to a reference result
determined with µ

0

= mH/2.

Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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determined with µ
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Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
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which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
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Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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scale choices µ
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determined with µ

0

= mH/2.

Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
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scale choices µ

0
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determined with µ
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= mH/2.

Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.

– 26 –

• Resummation scale: change 
the log to be resummed, to 
probe subleading logs

• Variation of renormalisation and 
factorisation scales in the range 

1/2  µR/µF < 2

mH/4  µR, µF < mH

ln(mH/p
t,veto) ! ln(Q/p

t,veto)

• Prescription to match to exact 
fixed-order

• Upper scale for small-R 
resummation

ln(1/R) ! ln(R0/R)

pp 13 TeV, anti-kt R = 0.4
Finite mt,b, µ0 = Q0 = mH/2

R0 = 1.0, JVE a(7 scl.,Q,R0),b
PDF4LHC15 (NNLO), αs = 0.118ε(

p
t,

ve
to
)

Jet veto efficiency uncertainty breakdown, µ0=mH/2

N3LO+NNLL+LLR
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

µR = µF = µ0/2
µR = µF = 2µ0

µR = µ0/2, µF = µ0

µR = 2µ0, µF = µ0
µR = µ0, µF = µ0/2
µR = µ0, µF = 2µ0

 0.9

 0.95

 1

 1.05

 1.1

ε(
p

t,
ve

to
)/
εr

ef
. (
p

t,
ve

to
)

Q/Q0 = 3/2
Q/Q0 = 2/3

 0.9

 0.95

 1

 1.05

 1.1

scheme b
 0.9

 0.95

 1

 1.05

 1.1

pt,veto [GeV]

R0 = 2.0
R0 = 0.5

 0.9

 0.95

 1

 1.05

 1.1

20 30 50 70 100 150

Figure 15. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (red band), with a
breakdown (lower panels) comparing the overall relative uncertainty envelope to the different con-
tributions from which it is built up. The left and right-hand plots show results respectively for
scale choices µ

0

= mH/2 and mH . In both plots, ratios are taken with respect to a reference result
determined with µ

0
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Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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Figure 15. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (red band), with a
breakdown (lower panels) comparing the overall relative uncertainty envelope to the different con-
tributions from which it is built up. The left and right-hand plots show results respectively for
scale choices µ

0

= mH/2 and mH . In both plots, ratios are taken with respect to a reference result
determined with µ

0

= mH/2.

Fig. 16, one notices that the JVE uncertainty band, especially its upper edge, is larger than
scale variation even at transverse momenta of the order of mH . This larger uncertainty for
the JVE result appears to be associated with the variation between schemes (a) and (b),
which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference
between �tot,2 and �tot,3 that is visible in table 4. This effect is not present for the results
with central scale µ0 = mH/2, Fig. 7, where the difference between the two schemes is
much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results
grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate
at high pt.
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• Total uncertainty: envelope of all 
these curves
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Resummation uncertainties

55

• In all resummed predictions for Higgs plus zero jets, theoretical 
uncertainties consistently reduce with increasing order

Resummation uncertainties

In all resummed calculations for the jet-veto cross section, uncertainties reduce 
consistently when increasing the resummation order

Banfi Monni Salam Zanderighi

Stewart Tackmann Walsh Zuberi

Becher Neubert Rothen

Σ 0
-j

et
(p

t,
ve

to
) 

[p
b
]

N3LO+NNLL+LLR v. NNLO+NNLL jet veto cross section

NNLO+NNLL

N3LO+NNLL+LLR
 15
 20
 25
 30
 35
 40
 45
 50

20 30 50 70 100 150

ra
ti

o
 t

o
 N

3
LO

+
N

N
LL

+
LL

R

pt,veto [GeV]

 0.8

 0.9

 1

 1.1

 1.2

20 30 50 70 100 150

pp 13 TeV, anti-kt R = 0.4
Finite mt,b, µ0 = Q0 = mH/2, R0 = 1.0, JVE

PDF4LHC15 (NNLO), αs = 0.118

Figure 6. N3LO+NNLL+LLR best prediction for the jet-veto cross section (blue/hatched) com-
pared to NNLO+NNLL (left) and fixed-order at N3LO (right).

Figure 7. Matched NNLO+NNLL+LLR prediction for the inclusive one-jet cross section
(blue/hatched) compared to fixed-order at NNLO (left) and to the matched result with direct
scale variation for the uncertainty (right), as explained in the text.

Figure 7 shows the inclusive one-jet cross section ⌃�1-jet, for which the state-of-the-art
fixed-order prediction is NNLO [9–11]. The left-hand plot shows the comparison between
the best prediction at NNLO+NNLL+LLR, and the fixed-order at NNLO. Both uncertainty
bands are obtained with the JVE method outlined in Sec. 2.3. We observe that the effect of
the resummation on the central value at moderately small values of pt,veto is at the percent
level. Moreover, the inclusion of the resummation leads to a slight increase of the theory
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Learning outcomes

• give arguments for the choice of renormalisation and 
factorisation scales in fixed-order calculations 

• understand the basic principles of final-state resummations 

• provide strategies to estimate theory uncertainties in fixed-
order and resummed calculations
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At the and of this lecture you should be able to


