Theory uncertainties and resummation

Andrea Banfi – University of Sussex

MC School - DESY - 17 March 2017

Outline

- Renormalisation scale uncertainties
- Factorisation scale uncertainties
- Two-scale problems: the need for resummation
- Principles of NLL resummation
- Resummation uncertainties

Renormalisation and factorisation scales

• Any fixed-order cross section in hadron collisions depends on two unphysical parameters, the renormalisation and factorisation scales

$$d\sigma_{pp \to X} \sim \sum_{i,j} f_{i/p}(\mu_F) \otimes f_{j/p}(\mu_F) \otimes d\hat{\sigma}_{ij \to X} \left(\alpha_s(\mu_R), \frac{\mu_F}{\mu_R}, \dots \right)$$
factorisation scale renormalisation scale

• Varying these scales produces higher order contributions, e.g.

$$\alpha_s^n(x\mu_R) = \alpha_s^n + (n\,\beta_0\ln x)\,\alpha_s^{n+1}(\mu_R)$$

Scale uncertainties

 Varying renormalisation and factorisation scales is a natural way to estimate theoretical uncertainties

$$d\sigma_{pp\to X}(x\mu_R, y\mu_F) = \underbrace{d\sigma_{pp\to X}(\mu_R, \mu_F)}_{\sim \alpha_s^n} + \mathcal{O}(\alpha_s^{n+1})$$

- Relevant questions are:
 - how to choose the default (central) value of μ_R and μ_F ?
 - over what range should we vary these scales?
 - how should we add uncertainties?

Although is no theoretically sound answer to any of these questions, we will try to reflect on how to reasonably assess theory uncertainties

Short-distance observables

• Consider a simple counting observable in e^+e^- annihilation

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

The ratio R in QCD

• Since the ratio *R* is infrared and collinear safe, it admits a massless limit

$$R\left(\alpha_s(\mu_R^2), \frac{Q^2}{\mu_R^2}, \frac{m_q^2}{\mu_R^2}\right) = \hat{R}\left(\alpha_s(\mu_R^2), \frac{Q^2}{\mu_R^2}\right) + \mathcal{O}\left(\left(\frac{m_q^2}{Q^2}\right)^p\right)$$

$$\hat{R} = \frac{\sigma(e^+e^- \to \text{partons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Renormalisation group analysis

• The massless limit \hat{R} does not depend on the renormalisation scale μ_R

$$\left(\mu_R^2 \frac{\partial}{\partial \mu_R^2} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s}\right) \hat{R} \left(\alpha_s(\mu^2), \frac{Q^2}{\mu_R^2}\right) = 0 \quad \Rightarrow \quad Q^2 \frac{\partial \hat{R}}{\partial Q^2} = \beta(\alpha_s) \frac{\partial \hat{R}}{\partial \alpha_s}$$

• The formal solution of the above renormalisation group equation is

$$\hat{R}\left(\alpha_s(\mu_R^2), \frac{Q^2}{\mu_R^2}\right) = \hat{R}\left(\alpha_s(Q^2), 1\right)$$

• Renormalisation group, and the fact that \hat{R} depends on a single scale give enough conditions to determine the central value of μ_R

Setting the central scale as a resummation

- For a one-scale observable like \hat{R} , the dependence on μ_R appears in the following form

$$\hat{R}\left(\alpha_{s}(\mu_{R}), \frac{Q^{2}}{\mu_{R}^{2}}\right) = R_{0} + R_{1}\alpha_{s}(\mu_{R}^{2}) + \left(R_{1}\beta_{0}\ln\frac{Q^{2}}{\mu_{R}^{2}} + R_{2}\right)\alpha_{s}^{2}(\mu_{R}^{2}) + \mathcal{O}(\alpha_{s}^{3})$$

- Choosing $\mu_R^2 = Q^2$ resums terms $\ln(\mu_R^2/Q^2)$ at all orders in $\alpha_s(Q^2)$

Meaning of renormalisation scale

The renormalisation scale is the price to pay for the renormalisation of UV divergences

- The renormalised coupling $\alpha_s(\mu_R)$ contains all quantum fluctuations with virtuality larger than μ_R
- The ratio *R* is fully inclusive, so it is not able to probe quantum fluctuations above the com energy *Q*

 In hadronic collisions, especially in multi-jet events, observables depend on multiple scales

$$\sigma\left(\alpha_s(\mu_R^2), \frac{s_1}{\mu_R^2}, \dots, \frac{s_1}{\mu_R^2}\right) = \underbrace{\sigma_0}_{\sim \alpha_s^n} + \underbrace{\alpha_s \beta_0 \ln \frac{s_1 \dots s_n}{\mu_R^{2n}}}_{\sim \alpha_s^{n+1} + \sigma_1} + \mathcal{O}(\alpha_s^{n+2})$$

- One possibility to set a default scale is to cancel the logarithm of μ_R that appears at one loop $\Rightarrow \mu_R^2 = (s_1 s_2 \dots s_n)^{1/n}$
- Possible caveats with such choice
- The similarity with R can be deceiving, since this log-enhanced term has the same kinematics as tree-level, and does not account for the physics of extra-gluon radiation ⇒ physical meaning of renormalisation scale?
- In multi-scale observables, these are not the only logs around, so you can have extra logs of ratios of scales ⇒ soft-collinear resummation

- In inclusive production of a particle of mass M (e.g. Higgs), we have two scales, the mass of the particle and the partonic com energy square \hat{s}
- Without extra gluons, $\hat{s} = M$, so we're back to the one-scale problem
- With additional gluons, \hat{s} and M can be different

 The partonic com energy is sensitive to the typical energy scale of extra gluon radiation

• For one emission at fixed transverse momentum k_t (one-scale problem), one can show that $\alpha_s = \alpha_s(k_t)$ resums $\ln(\mu_R^2/k_t^2)$ at all orders

 Physical meaning: integrate out of all quantum fluctuations from the cutoff to the scale k_t into the running coupling α_s(k_t)

- Strategy: with QCD emissions, set the renormalisation scale close to the upper bound of transverse momentum of emitted gluons
- For instance, for the Higgs total cross section, an "optimal" scale can be obtained by imposing that the perturbative series is well convergent

• This choice in general depends on the observable, and on the accuracy of the calculation \Rightarrow threshold resummations of $\ln(M/\hat{s})$ help

Renormalisation scale variation

• Is varying renormalisation a good probe of theory uncertainties?

$$\sigma_0(x\mu_R,\dots) = \underbrace{\sigma_0(\mu_R,\dots)}_{\sim \alpha_s^n} + \underbrace{(n\beta_0 \ln x) \,\alpha_s(\mu_R) \,\sigma_0(\mu_R,\dots) + \sigma_1(\mu_R,\dots)}_{\sim \alpha_s^{n+1}} + \dots$$

• Varying x by a factor of two is sensible only after one has identified a suitable central scale, otherwise σ_1 will contain large logs of μ_R

Renormalisation scale variation

Is varying renormalisation a good probe of theory uncertainties?

$$\sigma_0(x\mu_R,\dots) = \underbrace{\sigma_0(\mu_R,\dots)}_{\sim \alpha_s^n} + \underbrace{(n\beta_0 \ln x) \,\alpha_s(\mu_R) \,\sigma_0(\mu_R,\dots) + \sigma_1(\mu_R,\dots)}_{\sim \alpha_s^{n+1}} + \dots$$

• Varying x by a factor of two is sensible only after one has identified a suitable central scale, otherwise σ_1 will contain large logs of μ_R

• The procedures gives an estimate of missing higher orders as long as K-factors (e.g. σ_1/σ_0) are not too large

Renormalisation scale variation

 Large K-factors can have different origins than a bad choice of default renormalisation scale

Factorisation scale: central value

• Consider a cross section in hadron collisions

$$d\sigma_{pp \to X} \sim \sum_{i,j} f_{i/p}(\mu_F) \otimes f_{j/p}(\mu_F) \otimes d\hat{\sigma}_{ij \to X} \left(\alpha_s(\mu_R), \frac{\mu_F}{\mu_R}, \dots \right)$$

• The partonic cross section $d\hat{\sigma}_{ij}$ contains collinear singularities that are "renormalised" through parton distribution functions

- The price to pay for this renormalisation is the introduction of the factorisation scale μ_F
- Choosing $\mu_F = \mu_R$ will make $\ln(\mu_F/\mu_R)$ to disappear formally, but logarithms of collinear origin might appear as logs of other scales

Factorisation scale: central value

- The parton distribution function $f_{i/A}(\mu_F)$ inclusively resums the contribution of multiple emissions collinear to hadron A
- Collinear emissions with transverse momenta up to μ_F inside $f_{i/A}(\mu_F)$ are not observed (unresolved)

Factorisation scale: central value

- The parton distribution function $f_{i/A}(\mu_F)$ inclusively resums the contribution of multiple emissions collinear to hadron A
- Collinear emissions with transverse momenta up to μ_F inside $f_{i/A}(\mu_F)$ are not observed (unresolved)

 Strategy: set the central value of μ_F close to the minimum transverse momentum of resolved partons, and allow it to vary independently of μ_R, since it accounts for a different physical effect

Higgs production with a jet veto

• In order to suppress the large top-antitop background to $H \rightarrow WW$ we require that all jets have a transverse momentum below $p_{t,veto}$

• This works: the zero-jet cross section σ_{0-jet} is least contaminated by the huge (yellow) top-antitop background

Higgs plus zero jets: infrared sensitivity

 Scale variations sometimes highlight the pathological behaviour of some cross sections, for instance their infrared sensitivity

- The cancellation of two large effects gives a spurious vanishing of scale at low values of the jet-veto resolution $p_T^{\rm cut}$
- Zero-jet cross sections are the typical example of a two-scale problem, that cannot be solved by simply adjusting μ_R and μ_F

Higgs plus zero jets as a two-scale problem

• The zero-jet cross section is characterised by two scales, the Higgs mass m_H and the jet resolution $p_{t,veto}$

• In QCD, large logarithms such as $\ln(m_H/p_{\rm t,veto})$ appear whenever the phase space for the emission of soft and/or collinear gluons is restricted

One gluon emission

• Example: veto one soft ($E \ll m_H$) and collinear ($\theta \ll 1$) gluon k

All-order resummation

- The zero-jet cross section contains logarithmic contributions which can become large when $p_{\rm t,veto} \ll m_H$

$$\sigma_{0-\text{jet}} \simeq \sigma_0 \left(1 - 2C_A \frac{\alpha_s(m_H)}{\pi} \ln^2 \frac{m_H}{p_{\text{t,veto}}} + \dots \right)$$

LO NLO

breakdown of perturbation theory!

All-order resummation

• All-order resummation of large logarithms \Rightarrow reorganisation of the perturbative series in the region $\alpha_s L \sim 1$, with $L = \ln(m_H/p_{t,veto})$

$$\sigma_{0-\text{jet}} \sim \sigma_0 \exp\left[\underbrace{Lg_1(\alpha_s L)}_{\text{LL}} + \underbrace{g_2(\alpha_s L)}_{\text{NLL}} + \underbrace{\alpha_s g_3(\alpha_s L)}_{\text{NNLL}} + \dots\right]$$

All-order resummation

• All-order resummation of large logarithms \Rightarrow reorganisation of the perturbative series in the region $\alpha_s L \sim 1$, with $L = \ln(m_H/p_{\rm t,veto})$

$$\sigma_{0-\text{jet}} \sim \sigma_0 \, e^{\underbrace{Lg_1(\alpha_s L)}_{\text{LL}}} \times \left(\underbrace{\begin{array}{c}1 \\ G_2(\alpha_s L) \\ NLL \end{array}}_{\text{NLL}} + \underbrace{\alpha_s G_3(\alpha_s L)}_{\text{NNLL}} + \dots\right)$$

- To achieve NLL accuracy we have to consider
 - Double logarithms $\alpha_s L^2$: they come from soft *and* collinear contributions, and have to exponentiate
 - Single logarithms $\alpha_s L$: they come from soft and/or collinear contributions, and have to factorise from double logarithms

Final-state observables

- We consider a generic final-state observable, a function $V(p_1, \ldots, p_n)$ of all final-state momenta p_1, \ldots, p_n
- Examples: leading jet transverse momentum in Higgs production or thrust in $e^+e^- \rightarrow hadrons$

$$\frac{p_{\mathrm{t,max}}}{m_H} = \max_{j \in \mathrm{jets}} \frac{p_{t,j}}{m_H}$$

$$T \equiv \max_{\vec{n}} \frac{\sum_{i} |\vec{p_i} \cdot \vec{n}|}{\sum_{i} |\vec{p_i}|}$$

Pencil-like events $T \lesssim 1$

Planar events $T \gtrsim 2/3$

Collinear and infrared safety

 All final-state observables we consider are infrared and collinear (IRC) safe, so we can safely compute their distributions using the quark-gluon language of perturbative QCD

- Example: jets obtained from parton momenta are close to those obtained from hadron momenta if they do not change after
 - the addition of any number of soft patrons
 - any number of collinear splittings

Departure from the Born limit

- Final-state observables have the property that, for configurations close to the Born limit (e.g. a back-to-back qq pair), their value is close to zero
- Example: in two-jet events, one minus the thrust is the sum of the invariant masses of the two jets, which vanishes in the Born limit

• To quantify the departure from the Born limit, we consider $\Sigma(v)$, the fraction of events such that $V(p_1, \ldots, p_n) < v$

Boosted object searches

• At the LHC it is possible to look for a boosted Higgs decaying into a $b\overline{b}$ pair

- The decay products of the Higgs tend to fall into the same jet/mg consider the invariant mass of a fat jet and look for a peak for mage may multiple the mage to the invariant mass of a fat jet and look for a peak for multiple the same set of the mage the multiple t
- If $p_{\rm t,jet} \sim 1 \,{\rm TeV}$ we have a two-scale problem because $m_{\rm jet} \ll p_{\rm t,jet}$

The Lund plane k

 For resummations, it is very useful to visualise emissions as points in the Lund plane

 $\Sigma(v)$

The thrust in the Lund plane

• Behaviour of the thrust in the soft-collinear limit

$$\begin{array}{c} \operatorname{recoiling} q\bar{q} \ \operatorname{pair} & 1 - T(\{\tilde{p}\}, k) \\ 1 - T(\{\tilde{\underline{p}}\}_{T}^{k_{1}}, \dots, k_{n}^{k_{n}}) \cong \sum_{i} \frac{k_{ti}}{Q} e^{-|\eta_{i}|} + \sum_{\ell \in \overline{1,2}} \frac{1}{2} \frac{|\sum_{i \in \mathcal{H}_{\ell}} |z_{ti}|^{2}}{Q^{2} 1 + \sum_{\ell \in \overline{1,2}} |z_{\ell}|^{2}} \frac{|z_{ti}|^{2}}{|z_{\ell}|^{2}} \frac{|z_{\ell}|^{2}}{|z_{\ell}|^{2}} \frac{|z_{\ell}|^{2}}{|z$$

Soft and collinear

• Soft and large angle

Hard and collinear

The thrust in the Lund plane

Behaviour of the thrust in the soft-collinear limit

recoiling
$$q\bar{q}$$
 pair $1 - T(\{\tilde{p}\}, k)$
 $1 - T(\{\tilde{p}\}, k_1, \dots, k_n) \approx \sum_i k_{ti} k_{ti} e^{-|\eta_i|} + \sum_{\ell=1,2} \frac{\left|\sum_{i \in \mathcal{H}_\ell} \vec{k}_{ti}\right|^2}{1 - \sum_{i \in \mathcal{H}_\ell} k_{ti}} \frac{1}{2}$

Soft and collinear

$$1 - T(\mathbb{I}\{\tilde{p}\},\mathbb{K})^{\tilde{p}} \geq k \frac{k_t}{Q} e^{\frac{k_t}{Q}\eta|-|\eta|}$$

• Soft and large angle

$$1 - T(\{\tilde{p}\}, k) \stackrel{T}{\sim} k_t \stackrel{\sim}{\sim} k_t \stackrel{\sim}{\sim} k_t$$

• Hard and collinear $\begin{array}{c} 1 - T(\{\tilde{p}\},k) \sim k_t^2 \\ 1 - T(\{\tilde{p}\},k) \sim k_t^2 \end{array}$

An IRC observable in the Lund plane

 For a single soft/collinear emission, the behaviour of an IRC safe observable is as follows

Multiple soft-collinear emissions

- We first consider an ensemble of soft-collinear emissions widely separated in angle (rapidity)
- Due to QCD coherence, the multi-gluon matrix element factorises into the product of single-emission matrix elements $M^2(k_1) M^2(k_2) \dots M^2(k_n)$

• Contribution of multiple soft-collinear emissions to $\Sigma(v)$ $\Sigma(v) = e^{-\int [dk]M^{2}(k)} \sum_{n=0}^{\infty} \frac{1}{n!} \iint \prod_{i=1}^{dk_{i}} M^{2}(k_{i}) \Theta(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n})))$ $\sum_{n=0}^{\infty} \frac{1}{n!} \iint \prod_{i=1}^{dk_{i}} M^{2}(k_{i}) \Theta(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n})))$

virtual corrections, ensure that the inclusive sum over all emissions gives one

Leading logarithmic resummation

• Strategy: split the exponent in two parts

$$\begin{split} \int [dk] M^2(k) &= \int_v [dk] M^2(k) + \int^v [dk] M^2(k) \qquad \int_v [dk] M^2(k) \equiv R(v) \\ \Sigma(v) &= e^{-R(v)} \left\{ e^{-\int^v [dk] M^2(k)} \sum_{n=0}^\infty \frac{1}{n!} \int \prod_i [dk_i] M^2(k_i) \Theta(v - V(\{\tilde{p}\}, k_1, \dots, k_n)) \right\} \\ \\ \text{Sudakov form factor} \qquad \text{multiple-emission correction} \end{split}$$

Leading logarithmic resummation

 The Sudakov exponent, a.k.a. as radiator, is just the area of the shaded region in the Lund plane

• Since it is an area in the Lund plane, its contribution is double logarithmic

Exponentiation of double logarithms

Double logarithms exponentiate if the contribution of multiple emissions is single-logarithmic

$$\mathcal{F}(v) = e^{-\int_{\epsilon v}^{v} [dk] M^{2}(k)} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\epsilon v} \prod_{i} [dk_{i}] M^{2}(k_{i}) \Theta(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n})) + \dots$$

cutoff

Phase-space massage

$$V(\{\tilde{p}\},k) = \zeta v \qquad \eta^{(\ell)} = \xi^{(\ell)} \eta_{\max}^{(\ell)} \qquad \eta_{\max}^{(\ell)} \sim \ln \frac{1}{v}$$

$$[dk]M^{2}(k) \simeq \sum_{\ell} \underbrace{R'_{\ell}(v)}_{\sim \alpha_{s}L} \frac{d\zeta}{\zeta} d\xi^{(\ell)} \frac{d\phi}{2\pi} \qquad \qquad R' = \sum_{\ell} R'_{\ell} = -v \frac{dR}{dv}$$

$$\mathcal{F}(v) \simeq \epsilon^{R'} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \left(\sum_{\ell_i} R'_{\ell_i} \int_{\epsilon}^{\infty} \frac{d\zeta_i}{\zeta_i} \int_{0}^{1} d\xi_i^{(\ell_i)} \int_{0}^{2\pi} \frac{d\phi_i}{2\pi} \right) \Theta\left(1 - \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v}\right)$$

Exponentiation of double logarithms

 The logarithmic derivative of the radiator is the boundary of the shaded region in the Lund plane

• Since it is a line in the Lund plane, its contribution is single logarithmic

Perfectly exponentiating observable

• Consider an observable that takes contribution only from the emission for which $V(\{\tilde{p}\}, k)$ is the largest

$$V(\{\tilde{p}\}, k_1, \dots, k_n) = \max_i V(\{\tilde{p}\}, k_i) \quad \text{, e.g.} \quad \frac{p_{t,\max}}{m_H} = \max_{j \in jets} \frac{p_{t,j}}{m_H}$$
$$\Theta\left(1 - \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v}\right) = \Theta\left(1 - \max_{i=1,\dots,n} \frac{V(\{\tilde{p}\}, k_i)}{\underbrace{v}_{=\zeta_i}}\right) = \prod_{i=1}^n \Theta(1 - \zeta_i)$$
$$\mathcal{F}(v) \simeq \epsilon^{R'} \sum_{n=0}^\infty \frac{1}{n!} \prod_{i=1}^n \left(R' \int_{\epsilon}^\infty \frac{d\zeta_i}{\zeta_i} \Theta(1 - \zeta_i)\right) = 1$$

For such observables the cumulative distribution is a Sudakov form factor!

$$\Sigma(v) = e^{-R(v)}$$

Additive observable

 Consider an observable that is the sum of the contributions of individual emissions

$$V(\{\tilde{p}\}, k_1, \dots, k_n) = \sum_i V(\{\tilde{p}\}, k_i), \text{ e.g. } 1 - T(\{\tilde{p}\}, k_1, \dots, k_n) \simeq \sum_i \frac{k_{ti}}{Q} e^{-|\eta_i|}$$
$$\Theta\left(1 - \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v}\right) = \Theta\left(1 - \sum_{i=1}^n \frac{V(\{\tilde{p}\}, k_i)}{v}\right) = \Theta\left(1 - \sum_{i=1}^n \zeta_i\right)$$
$$P(\sum_{i=1}^\infty 1, \sum_{i=1}^n \zeta_i) = O\left(1 - \sum_{i=1}^n \zeta_i\right)$$

$$\mathcal{F}(v) \simeq \epsilon^{R'} \sum_{n=0} \frac{1}{n!} \prod_{i=1} \left(R' \int_{\epsilon}^{\infty} \frac{d\zeta_i}{\zeta_i} \right) \Theta \left(1 - \sum_{i=1} \zeta_i \right) = \frac{e^{-\gamma_E R}}{\Gamma(1+R')}$$

The crucial property that ensures that \$\mathcal{F}(v)\$ does not give rise to double logarithms is the fact that \$V({\tilde{p}}, k_1, \ldots, k_n) \sim v\$ whenever \$V({\tilde{p}}, k_i) \sim v\$

Non-exponentiating double logarithms

 In the case of the two-jet rate in the JADE algorithm, double logarithms do not exponentiate

$$\Sigma(y_{\rm cut}) = 1 - \frac{C_F \alpha_s}{\pi} \ln^2 \left(\frac{1}{y_{\rm cut}}\right) + \frac{1}{2!} \times \frac{5}{6} \times \left(\frac{C_F \alpha_s}{\pi} \ln^2 \left(\frac{1}{y_{\rm cut}}\right)\right)^2$$

 \mathbf{a}

 This is due to the peculiar way in which the JADE algorithm performs sequential recombinations

$$\Sigma(v) = e^{-R(v)} \left\{ e^{-\int^{v} [dk] M^{2}(k)} y_{i} \sum_{j=1}^{\infty} \frac{(p_{i} + p_{j})^{2}}{(dk_{i}) Q^{j}} [dk_{i}] M^{2}(k_{i}) \Theta(v - V(k_{1}, \dots, k_{n})) \right\}$$

$$k_{2} \underbrace{k_{2}}_{p_{2}} \underbrace{k_{2}}_{p_{2}} \underbrace{k_{1}}_{p_{1}} \underbrace{k_{2}}_{p_{1}} \underbrace{k_{2}}_{p_{2}} \underbrace{k_{2}}_{p_{2}} \underbrace{k_{2}}_{p_{1}} \underbrace{k_{2}}_{p_{2}} \underbrace{k_{2}}_{p_{$$

• y_k [he=JAD(Epalgo)ithm is able to recombine together two soft emissions collinear to two different legs

$$y_{k_2p_2} = y_3(\{\tilde{p}\}, k_2) = \frac{(k_2 + p_2)^2}{Q^2} \simeq \frac{k_{t2}}{Q} e^{+\eta_2} = y_{\text{cut}}$$

$$(l_{0} + l_{0})^{2}$$
 l_{0} l_{0} l_{2} l_{2} l_{2} l_{3} l_{4}

Non-exponentiating double logarithms

 The way in which the JADE algorithm changes the scaling properties of the three-jet resolution

$$y_{k_1p_1} = y_3(\{\tilde{p}\}, k_1) = \frac{(k_1 + p_1)^2}{Q^2} \simeq \frac{k_{t1}}{Q} e^{-\eta_1} = y_{cut}$$

$$y_{k_2p_2} = y_3(\{\tilde{p}\}, k_2) = \frac{(k_2 + p_2)^2}{Q^2} \simeq \frac{k_{t2}}{Q} e^{+\eta_2} = y_{cut}$$

$$k_1 + k_2$$

$$p_2 \xrightarrow{k_1} p_1 \xrightarrow{p_2} p_2 \xrightarrow{k_1} p_1$$

$$p_2 \xrightarrow{k_1 + k_2} p_2 \xrightarrow{k_1 + k_2} p_1$$

$$y_{k_1p_1} = y_3(\{\tilde{p}\}, k_2) \frac{(k_1(\underline{k_1k_2})p_1)^2}{Q^2Q^2} \cong \widehat{y}_{cut}^2 \overline{Q}^2 \overline{\zeta}^{\eta_1} = \overline{y}_{cut}$$

$$k_1 + k_2 \xrightarrow{q_1} p_1$$

$$y_{k_1p_1} = y_3(\{\tilde{p}\}, k_2) \frac{(k_1(\underline{k_1k_2})p_1)^2}{Q^2Q^2} \cong \widehat{y}_{cut}^2 \overline{\zeta}^{\eta_1} = \overline{y}_{cut}$$

$$y_3(\underline{k}\tilde{p}\}, \underline{k}_2) = \frac{(k_2 + p_2)^2}{y_{cut}} \cong \frac{k_{t2}}{Q^2} \exp(y_{cut}) = y_{cut}$$

$$y_{k_1k_2} = \frac{(k_1 + k_2)^2}{Q^2} \simeq \frac{k_{t1}k_{t2}}{Q^2} [\cosh(\eta_1 - \eta_2) - \cos(\phi_1 - \phi_2)] \simeq \frac{k_{t1}k_{t2}}{Q^2} e^{\eta_1 - \eta_2}$$

Recursive IRC safety condition 1

• The requirement that the observable scales in the same way irrespectively of the number of emission is formalised as follows

- This is the first of the requirements known as "recursive" IRC safety
- rIRC safe observables are the only ones that can be resummed so far

Recursive IRC safety condition 2a

• This condition ensures that all emissions with $V(\{\tilde{p}\}, k_i) < \epsilon v$ can be neglected, and furthermore $\epsilon \gg v$, independent of v

Recursive IRC safety condition 2b

 This condition ensures that the contribution of correlated gluon emissions, hard collinear and soft large-angle emissions is NNLL

- At NLL accuracy, relevant emissions are soft and collinear, widely lin $v \times \ln \epsilon$ in angle, and in a strip of size $\ln v \times \ln \epsilon$
- This is a line in the Lund plane, hence a single logarithmic contribution

NLL resummation of rIRC safe observables

 NLL resummation of rIRC safe observables can be performed with a universal master formula
 Banfi Salam Zanderighi '05

$$\Sigma(\underline{\eta}) = v \mathcal{E}_{\mathsf{X}}^{-R(v)} \left\{ e^{-R(v)} \int \left\{ e^{R'} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \left(\sum_{\ell_i} R'_{\ell_i} \int_{\epsilon}^{\infty} \frac{d\zeta_i}{\zeta_i} \int_{0}^{1} d\xi_i^{(\ell_i)} \int_{0}^{2\pi} \frac{d\phi}{2\pi} \right) \Theta\left(1 - \lim_{v \to 0} \frac{V(\{\tilde{p}\}, k_1, \dots, k_n)}{v}\right) \right\}$$

single-logarithmic correction $\mathcal{F}_{\mathrm{NLL}}(R')$

Higgs plus zero jets at NLL

• In the presence of initial state radiation, the zero-jet cross section inclusive with respect to hard-collinear emission up to the scale $p_{t,veto}$

 No k_t-type algorithm can recombine gluons that are widely separated in angle ⇒ perfectly exponentiating observable

$$\sigma_{0-\text{jet}} \simeq \mathcal{L}_{gg}(p_{\text{t,veto}}) e^{-R(p_{\text{t,veto}})}$$

Higgs plus zero jets at NNLL

Recombination effects start to matter at NNLL accuracy

Banfi Monni Salam Zanderighi '12

• The function $f(R) \sim \ln R$ due to a cut off collinear singularity in gluon splitting. Leading logarithm of the jet radius can be also resummed at all orders Dasgupta Dreyer Salam Soyez '15

- Resummation has more handles to assess theoretical uncertainties
- Variation of renormalisation and factorisation scales in the range

$$m_H/4 \le \mu_R, \mu_F < m_H$$

$$1/2 \le \mu_R/\mu_F < 2$$

Banfi Caola Dreyer Monni Salam Zanderighi Dulat '16

- Resummation has more handles to assess theoretical uncertainties
- Variation of renormalisation and factorisation scales in the range

$$m_H/4 \le \mu_R, \mu_F < m_H$$

 $1/2 \le \mu_R/\mu_F < 2$

Resummation scale: change the log to be resummed, to probe subleading logs

 $\ln(m_H/p_{\rm t,veto}) \rightarrow \ln(Q/p_{\rm t,veto})$

Banfi Caola Drever Monni Salam Zanderighi Dulat '16

Jet veto efficiency uncertainty breakdown, $\mu_0 = m_H/2$

- Resummation has more handles to assess theoretical uncertainties
- Variation of renormalisation and factorisation scales in the range

$$m_H/4 \le \mu_R, \mu_F < m_H$$

 $1/2 \le \mu_R/\mu_F < 2$

Resummation scale: change the log to be resummed, to probe subleading logs

 $\ln(m_H/p_{\rm t,veto}) \rightarrow \ln(Q/p_{\rm t,veto})$

Prescription to match to exact fixed-order

Banfi Caola Drever Monni Salam Zanderighi Dulat '16

Jet veto efficiency uncertainty breakdown, $\mu_0 = m_H/2$

- Resummation has more handles to assess theoretical uncertainties
- Variation of renormalisation and factorisation scales in the range

$$m_H/4 \le \mu_R, \mu_F < m_H$$

 $1/2 \le \mu_R/\mu_F < 2$

• Resummation scale: change the log to be resummed, to probe subleading logs $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

 Prescription to match to exact fixed-order

Upper scale for small-R resummation

 $\ln(1/R) \to \ln(R_0/R)$

Banfi Caola Dreyer Monni Salam Zanderighi Dulat '16

- Resummation has more handles to assess theoretical uncertainties
- Variation of renormalisation and factorisation scales in the range

$$m_H/4 \le \mu_R, \mu_F < m_H$$

 $1/2 \le \mu_R/\mu_F < 2$

• Resummation scale: change the log to be resummed, to probe subleading logs $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

 Prescription to match to exact fixed-order

Upper scale for small-R resummation

 $\ln(1/R) \to \ln(R_0/R)$

Banfi Caola Dreyer Monni Salam Zanderighi Dulat '16

• Total uncertainty: envelope of all these curves

 In all resummed predictions for Higgs plus zero jets, theoretical uncertainties consistently reduce with increasing order

Learning outcomes

At the and of this lecture you should be able to

- give arguments for the choice of renormalisation and factorisation scales in fixed-order calculations
- understand the basic principles of final-state resummations
- provide strategies to estimate theory uncertainties in fixedorder and resummed calculations