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* Resummation uncertainties




Renormalisation and factorisation scales

Any fixed-order cross section in hadron collisions depends on two
unphysical parameters, the renormalisation and factorisation scales
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Varying these scales produces higher order contributions, e.g
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Scale uncertainties

Varying renormalisation and factorisation scales is a natural way to
estimate theoretical uncertainties

dopp— x (Tpr, yur) = doppo x (Br, pr) +O0(ag™)
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Relevant questions are:
e how to choose the default (central) value of ur and ur?
e over what range should we vary these scales?
* how should we add uncertainties?

Although is no theoretically sound answer to any of these questions, we
will try to reflect on how to reasonably assess theory uncertainties




Short-distance observables
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e Consider a simple counting observable in e e~ annihilation

o(eTe™ — hadrons)
oete” — ptpu~)

R =




The ratio Rin QCD

e Since the ratio R is infrared and collinear safe, it admits a massless limit
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Renormalisation group analysis

o The massless limit R does not depend on the renormalisation scale i r
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e The formal solution of the above renormalisation group equation is
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e Renormalisation group, and the fact that R depends on a single scale give
enough conditions to determine the central value of ur




Setting the central scale as a resummation

« For a one-scale observable like R, the dependence on (tr appears in the
following form

2

2
(i), %) = o+ Ruceud) + (Rusom & + s a20) + 0
R R

 Choosing u% = Q* resums terms In(u%/Q?*) at all orders in a,(Q?)

T 4
10 . J/e | w(2s) B
Zn
107 f
R 'K |
10 R l }}‘fm
\i/” B e
7 P
-\""I 2
'0 -1 &
1 10 10°

Q [GeV]




Meaning of renormalisation scale

e The renormalisation scale is the price to pay for the renormalisation of UV
divergences

» The renormalised coupling as(ur) contains all quantum fluctuations
with virtuality larger than ur

* The ratio R is fully inclusive, so it is not able to probe quantum
fluctuations above the com energy @)




Renormalisation scale: central value

 In hadronic collisions, especially in multi-jet events, observables depend
on multiple scales
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» One possibility to set a default scale is to cancel the logarithm of 1r that
appears at one loop = % = (51 52...5,)""

» Possible caveats with such choice

e The similarity with R can be deceiving, since this log-enhanced term has
the same kinematics as tree-level, and does not account for the physics
of extra-gluon radiation = physical meaning of renormalisation scale?

* |n multi-scale observables, these are not the only logs around, so you
can have extra logs of ratios of scales = soft-collinear resummation
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Renormalisation scale: central value

 In inclusive production of a particle of mass M (e.g. Higgs), we have two
scales, the mass of the particle and the partonic com energy square s

» Without extra gluons, s = M, so we're back to the one-scale problem

« With additional gluons, s and M can be different
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e The partonic com energy is sensitive to the typical energy scale of extra
gluon radiation
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Renormalisation scale: central value

e For one emission at fixed transverse momentum k; (one-scale problem),
one can show that a; = a,(k:) resums In(u%/k7) at all orders

VaVAVaVaVaV V4 + VaVAVaVAVAV VI 4 + ...

Na]
O

* Physical meaning: integrate out of all quantum fluctuations from the cutoff
to the scale k; into the running coupling a(k;)
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Renormalisation scale: central value

o Strategy: with QCD emissions, set the renormalisation scale close to the
upper bound of transverse momentum of emitted gluons

e For instance, for the Higgs total cross section, an “optimal” scale can be
obtained by imposing that the perturbative series is well convergent
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a(pp — H) [pb]
LHE Higas N8 WE N0

Lt

1k -
. de Flerian and Grazzin \
/Ar»astasic.l. Boughezzl, Petric'lo and Stoeckh .
lll.ll.lllAll.ll.lll Illll.Ll.A.&.El W PN - W 1
100 150 200 250 300 350 400 450 500 550 600
M, [GeV]

NNLL threshold resummation NNLO fixed-order
central scale My central scale My /2

e This choice in general depends on the observable, and on the accuracy
of the calculation = threshold resummations of In(A /) help
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Renormalisation scale variation

* |s varying renormalisation a good probe of theory uncertainties?

oo(TuR,-..) :\0'0(,LLR, )+ mbBoInz) as(pr)oo(pr,---) +o1(pr,--.)+-..
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* Varying x by a factor of two is sensible only after one has identified a
suitable central scale, otherwise o1 will contain large logs of ¢#r
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Renormalisation scale variation

* |s varying renormalisation a good probe of theory uncertainties?
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* Varying x by a factor of two is sensible only after one has identified a
suitable central scale, otherwise o1 will contain large logs of ¢#r
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« The procedures gives an estimate of missing higher orders as long as
K-factors (e.g. o1 /0¢) are not too large
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Renormalisation scale variation

* Large K-factors can have different origins than a bad choice of default
renormalisation scale
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Factorisation scale: central value

Consider a cross section in hadron collisions

dopp—x ~ Zf’b/p (wr) ® fj/p(MF) ® doij—x (O‘s(MR) ZZ )
i,J

“renormalised” through parton distribution functions

A= di—sl
SN T TN
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The price to pay for this renormalisation is the introduction of the
factorisation scale ur

Choosing pr = pr Will make In(ur/ur) to disappear formally, but
logarithms of collinear origin might appear as logs of other scales

The partonic cross section dg;,; contains collinear singularities that are
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Factorisation scale: central value

* The parton distribution function f; 4 (1) inclusively resums the
contribution of multiple emissions collinear to hadron A

« Collinear emissions with transverse momenta up to ur inside f; a(1r)
are not observed (unresolved)

A +[ fq/EA(QO) ]+ ‘{ fq/Al(,UF) T Qo
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Factorisation scale: central value

* The parton distribution function f; 4 (1) inclusively resums the
contribution of multiple emissions collinear to hadron A

« Collinear emissions with transverse momenta up to ur inside f; a(1r)
are not observed (unresolved)

A +[ fq/EA(QO) ]+ ‘{ fq/Al(,UF) T Qo

______________________________________________________________________________________

B e — _»{ e L 2

« Strategy: set the central value of ur close to the minimum transverse
momentum of resolved partons, and allow it to vary independently of g,
since it accounts for a different physical effect
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Higgs production with a

jet veto

require that all jets have a transverse

In order to suppress the large top-antitop background to H — WW we

momentum below Pt veto
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e This works: the zero-jet cross section
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‘lllllll‘lll

PR N—
6 8 10
N

jets

oo—jet IS least contaminated by the

20



Higgs plus zero jets: infrared sensitivity

e Scale variations sometimes highlight the pathological behaviour of some
cross sections, for instance their infrared sensitivity
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e The cancellation of two large effects gives a spurious vanishing of scale

cut

at low values of the jet-veto resolution pr Stewart Tackmann 12

o Zero-jet cross sections are the typical example of a two-scale problem,
that cannot be solved by simply adjusting g and pr
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Higgs plus zero jets as a two-scale problem

e The zero-jet cross section is characterised by two scales, the Higgs
mass M g and the jet resolution Pt veto

* In QCD, large logarithms such as In(m /p; veto) appear whenever the
phase space for the emission of soft and/or collinear gluons is restricted
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One gluon emission

* Example: veto one soft (£ < mpg) and collinear (6 < 1) gluon &

(g
k
—————— H ------H ------H
BORN REAL VIRTUAL
soft collinear
Qg >E dh? as [ dE db?
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\

factorisation of T B P - LY |
soft radiation 0=jet — ©0 4 Dt veto
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All-order resummation

* The zero-jet cross section contains logarithmic contributions which can
become large when ps veto K< My

AN m
O-O—jetzo-O (1—20A S( H) 1n2 H —|-)
™ pt,veto
LO NLO

breakdown of perturbation theory!

24



All-order resummation

 All-order resummation of large logarithms =- reorganisation of the
perturbative series in the region asL ~ 1, with L = In(m g /pt veto)

O00—jet ™~ 00 €XP {p91@18L24g20m5L2%9%93013L2F---]

-~

LL NLL NNLL
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All-order resummation

 All-order resummation of large logarithms =- reorganisation of the
perturbative series in the region asL ~ 1, with L = In(mu /p veto)

Lg:(asL) 1 + as  + ...
———
00—jet ~ 00 € LL X (GQ(QSL)+OZSG3<OZSL)+...)

"~

NLL NNLL

e To achieve NLL accuracy we have to consider

» Double logarithms «a,L* they come from soft and collinear
contributions, and have to exponentiate

 Single logarithms «,L: they come from soft and/or collinear
contributions, and have to factorise from double logarithms
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Final-state observables

» We consider a generic final-state observable, a function V(p1, ..., pn)
of all final-state momenta p1,...,pn
 Examples: leading jet transverse momentum in Higgs production or

thrust in e" e~ — hadrons

Pt max — max Pi,j T = max Zz |pz' ’ ’I?,|

mpy  j€jets mpy i) |pil

Pencil-like events T < 1 Planar events T 2 2/3
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Collinear and infrared safety

 All final-state observables we consider are infrared and collinear (IRC)
safe, so we can safely compute their distributions using the quark-gluon
language of perturbative QCD

w

e Example: jets obtained from parton momenta are close to those
obtained from hadron momenta if they do not change after

 the addition of any number of soft patrons

e any number of collinear splittings
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Departure from the Born limit
* Final-state observables have the property that, for configurations close to
the Born limit (e.g. a back-to-back ¢q pair), their value is close to zero

* Example: in two-jet events, one minus the thrust is the sum of the
invariant masses of the two jets, which vanishes in the Born limit

zzzzz

 To quantify the departure from the Born limit, we consider X(v), the
fraction of events such that V(p,...,p,) <wv
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Boosted object searches

» At the LHC it is possible to look for a boosted Higgs decaying into a »b pair

e The decay products of the Higgs tend to fall into the same jet = consider
the invariant mass of a fat jet and look for a peak for mje, ~ mp

* If ptjet ~ 1TeV we have a two-scale problem because mjet < Pt jet
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The Lund plane

e For resummations, it is very useful to visualise emissions as points in the

Lund plane
Sudakov decomposition

1-T<r k
Q. Q.
[ .ﬁj‘g\ _____ n Pr=-(Ln)  P=(1,-1)

q k:Z(l)P1+Z(2)P2+kt
1. (2 1
‘ Ink/Q
collinear limit k=Q 7 o M
p Y
i | %,
21,20 < 1= |n| <In (Q> NG %,
kt .\\\\\ d

soft-collinear matrix element

g dktd d¢
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i
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The thrust in the Lund plane

 Behaviour of the thrust in the soft-collinear limit

recoiling qq pair

1— T({ﬁ}7k17 . 7kn) = Z @G_MH + Z

» Soft and collinear N

e Soft and large angle

e Hard and collinear

2

1 |Zi€’He kti

(43)
i€H, ~i

Q*1-%
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The thrust in the Lund plane

 Behaviour of the thrust in the soft-collinear limit

recoiling ¢q pair

TP Ky K Z’“m el 1 3 Q2

o Soft and collinear

T k) =
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Q
e Soft and large angle

o T({ﬁ}v k) ~ kt
e Hard and collinear
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An IRC observable in the Lund plane

e For a single soft/collinear emission, the behaviour of an IRC safe
observable is as follows

« Soft and collineartoleg ¢ =1,2 A
Ink,/Q
N ke\ "y k QT .
V{pt k) =de| 5| € ge(®) ~ %,
Q Pl %
o %
& B S
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g 5 ok vl Q
N . c

, o

3
e Hard and collinear A o

- &
4 .
~ b i
V({p}7 k) ™~ kg—i_ ¢ pararrlle%rilzation
- ok Vl/aQ
leg2 leg 1
parametrization parametrization
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Multiple soft-collinear emissions

* We first consider an ensemble of soft-collinear emissions widely separated
in angle (rapidity)

e Due to QCD coherence, the multi-gluon matrix element factorises into the
product of single-emission matrix elements

SN LLL

» Contribution of multiple soft-collinear emissions to Y;(v)

S(v) = e~ JIFIME(R) i % /H[dki]MQ(ki) O(v—V{p}, ki,..., kn))

virtual corrections, ensure that the inclusive sum over all emissions gives one
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Leading logarithmic resummation

o Strategy: split the exponent in two parts

Jawiarzo = [z + [ [ = rw

v )

E(’U) _ e—R(v) {6 [V [dk]M? (k) i % /H[dkz]M2(kz) @(”U . V({ﬁ}, ki, ... kn))}

Sudakov form factor multiple-emission correction
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Leading logarithmic resummation

* The Sudakov exponent, a.k.a. as radiator, is just the area of the shaded
region in the Lund plane

Amm@
—
k, Q \ o
_ 2 ~ . %,
R() = [@MP R OV ({hH) —0)
K
1/(a+by) =
k v 2) Q o /x/
0% Lk, vl@bD Q
= .
o
a
:
\//4
6;&
R\
leg ll.
parametrization
leg-z k Vl/aQ
parametrization

e Since it is an area in the Lund plane, its contribution is double logarithmic
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Exponentiation of double logarithms

Double logarithms exponentiate if the contribution of multiple emissions is
single-logarithmic

Fo) = e 20 S L[ Takgare ) 0 - vOB) ki k) + .
n=0 %Y 4

cutoff

Phase-space massage

V({{p}, k) = Cu 't =Wl 1) ~ In~
v
dC d¢ dR
2 (0) 49 / P
[dk] M2( E:Re d¢ R—%:Re_ v
L

NER’il'ﬁ<ZR£/ “r g<e>/”d¢z> (1 VL)
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Exponentiation of double logarithms

* The logarithmic derivative of the radiator is the boundary of the shaded
region in the Lund plane

leg2
parametrization

leg 1
parametrization

In k,/Q
—
Oo///'
%
@
//.
%{3
— Ny
&8 R(’U) 7+
(¢} 7
0%; K, UC Ve
@
o
=
a
g
- /
1(v)
/A
2
AR
S
Q
leg ll
parametrization
kt yl/a Q

e Since itis a line in the Lund plane, its contribution is single logarithmic
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Perfectly exponentiating observable

e Consider an observable that takes contribution only from the emission for
which V' ({p}, k) is the largest

VY koo k) = max V({p}, ki), eg.  2omax gy D6
’ myg Jjejets Mg
Vb k) vk |
° (1 v =01 - max —= =1Je-¢)

* For such observables the cumulative distribution is a Sudakov form factor!

»(v) = e B
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Additive observable

* Consider an observable that is the sum of the contributions of individual
emissions

V<{15}7 ki,..., kn) — Z V<{]5}7 kz) ,e.g. 1— T({ﬁ}, ki,... Z ki —|m

@(1_ V({ﬁ},k;,-~-,kn)> _o|1- 3 VUBkE) @<1§:Q>

=1\

.
RN LT G - e Pl
S (CVRSRIES R =

» The crucial property that ensures that (v) does not give rise to double
logarithms is the fact that V ({p}, k1, ..., k) ~ v whenever V ({p}, k;) ~ v
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Non-exponentiating double logarithms

In the case of the two-jet rate in the JADE algorithm, double logarithms

do not exponentiate Brown Stirling ‘90

Cra, 1 1 5 ) 1 2
Y (Yeur) = 1 — F%s 1?2 + — X — X Cra In”
Tr ycut 2! 6 T ycut

This is due to the peculiar way in which the JADE algorithm performs
sequential recombinations

_ (pi+py)?

« The JADE algorithm is able to recombine together two soft emissions
collinear to two different legs
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Non-exponentiating double logarithms

* The way in which the JADE algorithm changes the scaling properties of
the three-jet resolution

(k1 +p1)?  ka .,

Ykipr = y3({ﬁ}7 kl) — Q? — 56 — Yeut
. ko +p2)?  k
Ykapa = y3({p}a kZ) — ( - Q2 2) = é2€+n2 = Yeut

k1—|—]€22 P
y‘“’”:( 0 ) ~yih T o e GG <

ﬁ 7k 7k —&1—82 1
ys({p}, k1, k2) :yclut5 2o depends on Yecut = F(yeus) gives double logs

ycut
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Recursive IRC safety condition 1

The requirement that the observable scales in the same way
irrespectively of the number of emission is formalised as follows

i VB Fa[0G,  Ka0G)

— finite, and non-zero
v—0 U

Ink,/Q Ink,/Q

generalised
rescaling

e This is the first of the requirements known as “recursive” IRC safety

* rIRC safe observables are the only ones that can be resummed so far
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Recursive IRC safety condition 2a

* This condition ensures that all emissions with V' ({p}, k;) < ev can be
neglected, and furthermore ¢ > v, independent of v

Alnkt/Q
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Recursive IRC safety condition 2b

e This condition ensures that the contribution of correlated gluon emissions,
hard collinear and soft large-angle emissions is NNLL

Ink,/Q Ink,/Q

\ 7
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\ ° ,
N s
\ ’
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\ s
\ s
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N s
N s
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\ s
\ s
N [ 2
7
\ s
\ 7/
< s
\ s
s
In 1/¢ A
L= P
@

* At NLL accuracy, relevant emissions are soft and collinear, widely
separated in angle, and in a strip of size Inv X In€

* This is a line in the Lund plane, hence a single logarithmic contribution
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NLL resummation of rIRC safe observables

* NLL resummation of rIRC safe observables can be performed with a

universal master formula Banfi Salam Zanderighi ‘05
lnkt/Q lnkt/Q
\
\\ 'o/
\ //.
4 \ 7
[ ] \ 7/
\ 4 \0 ° ///
\ /.. \\ ,/
... \\\ ////
\\\ .////
)((((?< M - AR

R {ERIi ! /H(; R / d¢: / o /2ﬂd¢> (1_ tim V({ﬁ},k;,...,kn)>}

n=0 =1

A\ 4

single-logarithmic correctlon FnLL(R)
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Higgs plus zero jets at NLL

* In the presence of initial state radiation, the zero-jet cross section
inclusive with respect to hard-collinear emission up to the scale p; veto

Banfi Salam Zanderighi ‘12

Ink/Q
hard scattering
n
In(pe,véto/ Q) hard collinear

* No kstype algorithm can recombi
angle = perfectly exponentiating

00—jet == Lgg(p,

ne gluons that are widely separated in
observable

VGtO) e_R(pt,veto)
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Higgs plus zero jets at NNLL

* Recombination effects start to matter at NNLL accuracy
Banfi Monni Salam Zanderighi ‘12

Two nearby gluons clustered in one jet One gluon giving two jets

K T ||

O-O_jet = ‘ng (pt,veto) 1 + ?S (pt,veto) R/ (pt,veto> f(R) e_R(pt,veto)

7

~"

NNLL

* The function f(R) ~ In R due to a cut off collinear singularity in gluon

splitting. Leading logarithm of the jet radius can be also resummed at all

orders Dasgupta Dreyer Salam Soyez ‘15
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Resummation uncertainties

* Resummation has more handles to assess theoretical uncertainties
Banfi Caola Dreyer Monni Salam Zanderighi Dulat ‘16

» Variation of renormalisation and
factorisation scales in the range

Jet veto efficiency uncertainty breakdown, pg=mpy/2
mH/4§,LLR7,LLF<mH 1 T T ' T ' L
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0.6 PDF4LHC15 (NNLO), a; = 0.118
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04 | | L | L | L L |
1.1 ¢ | | : | ' L
1.05
1 pmmmmm—-
MR = 2Ho, MF = Hg - = - -
0.95 F MR=MF=2Hg = = = = MR = Ho, HF = Ho/2
c MR = Mo/2, UF = Ho MR = Mo, MF = 2Hg - - - -
09 ¢t | | . | . L
20 30 50 70 100 150

Pt,veto [GEV]
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Resummation uncertainties

* Resummation has more handles to assess theoretical uncertainties
Banfi Caola Dreyer Monni Salam Zanderighi Dulat ‘16
» Variation of renormalisation and

factorisation scales in the range

Jet veto efficiency uncertainty breakdown, pg=my/2

mH/4§MR,MF<mH 1 T T - T T T
0.9 |
1/2§/LR//LF < 2 Tg 0.8 - pp 13 TeV, anti-k¢ R = 0.4 |
6_,>_~ 0.7 Finite mgp, Ho = Qo= Mp/2
* Resummation scale: change & 06 ADFALHCLS (NNLOY, ay = 0,318 ]
the log to be resummed, to L NLO+NNLLLLg
probe subleading logs b1 | | |
ln(mH/pt,veto) — ln(Q/pt,veto) 1'Oi ;
i Q/Qo = 3/2
0.95 E Q/Qp=2/3 ----
09 o | | 1 | 1 | 1 1 |
20 30 50 70 100 150

Pt,veto [GEV]
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Resummation uncertainties

* Resummation has more handles to assess theoretical uncertainties
Banfi Caola Dreyer Monni Salam Zanderighi Dulat ‘16

» Variation of renormalisation and
factorisation scales in the range

Jet veto efficiency uncertainty breakdown, pg=my/2

mH/4§MR,MF<mH 1 T T - T T T
0.9 -
1/2§/LR//LF < 2 Tg 0.8 - pp 13 TeV, anti-k¢ R = 0.4 |
6_,>_~ 0.7 Finite mgp, Ho = Qo= Mp/2
» Resummation scale: change % 06 TSI TR
the log to be resummed, to L NLO+NNLLLLg
probe subleading logs 11
ln(mH/pt,veto) — ln(Q/pt,veto) 1.0?
« Prescription to match to exact 095 ¢ scheme b —
. 09 E | | . | . | L
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Resummation uncertainties

* Resummation has more handles to assess theoretical uncertainties
Banfi Caola Dreyer Monni Salam Zanderighi Dulat ‘16
» Variation of renormalisation and

factorisation scales in the range

Jet veto efficiency uncertainty breakdown, pg=my/2

mpy /4 < PR, pr < mpy 1 ] S

pp 13 TeV, anti-k; R = 0.4 ]

Finite m¢p, o = Qo= mp/2

Ro = 1.0, JVE a(7 scl.,Q,Rp),b |
PDF4LHC15 (NNLO), ag = 0.118

N3LO+INNLL+LLB

€(Pt,veto)

0.9
1/2 < pp/pr <2 08
» Resummation scale: change 0.6
the log to be resummed, to 82 ] ]
probe subleading logs 11 :
ln(mH/pt,VetO) — ln(Q/pt,veto) 1.05 =

o 0.95 b Rp= 2.0 ——
* Prescription to match to exact el Rg=05 - ---
. 09t L L . L . L L
fixed-order 20 30 50 70 100 150
e Upper scale for small-R Pt veto [GEV]

resummation
In(1/R) — In(Ry/R)
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Resummation uncertainties

* Resummation has more handles to assess theoretical uncertainties
Banfi Caola Dreyer Monni Salam Zanderighi Dulat ‘16
» Variation of renormalisation and

factorisation scales in the range

Jet veto efficiency uncertainty breakdown, pg=my/2

mpy /4 < PR, pr < mpy 1 ] S

pp 13 TeV, anti-k; R = 0.4 ]

Finite m¢p, o = Qo= mp/2

Ro = 1.0, JVE a(7 scl.,Q,Rp),b |
PDF4LHC15 (NNLO), ag = 0.118

N3LO+INNLL+LLB

€(Pt,veto)

0.9
1/2 < pp/pr <2 08
» Resummation scale: change 0.6
the log to be resummed, to 82 ] ]
probe subleading logs 11 :
ln(mH/pt,VetO) — ln(Q/pt,veto) 1.05 =

o Ro=2.0 —
* Prescription to match to exact O E | Rg=05 ----
fixed-order %20 30 50 70 100 150
 Upper scale for small-R Pt,veto [GeV]
resummation - Total uncertainty: envelope of all
In(1/R) = In(Ry/R) these curves
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Resummation uncertainties

 In all resummed predictions for Higgs plus zero jets, theoretical
uncertainties consistently reduce with increasing order

20-jet(Pt,veto) [Pb]

ratio to N3LO+NNLL+LLg

Banfi Caola Dreyer Monni Salam Zanderighi Dulat ‘16

N3LO+NNLL+LLg v. NNLO+NNLL jet veto cross section
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Learning outcomes

At the and of this lecture you should be able to

e give arguments for the choice of renormalisation and
factorisation scales in fixed-order calculations

e understand the basic principles of final-state resummations

e provide strategies to estimate theory uncertainties in fixed-
order and resummed calculations
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