Parton distribution functions

Sven-Olaf Moch

Universität Hamburg

Terascale alliance Monte Carlo school, DESY Hamburg, Mar 17, 2017

Based on work done in collaboration with:

- Parton Distribution Functions, α_s and Heavy-Quark Masses for LHC Run II
 S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arXiv:1701.05838
- A Critical Appraisal and Evaluation of Modern PDFs
 A. Accardi, S. Alekhin, J. Blümlein, M.V. Garzelli, K. Lipka, W. Melnitchouk, S. M., J.F. Owens, R. Plačakytė, E. Reya, N. Sato, A. Vogt and O. Zenaiev arXiv:1603.08906
- Iso-spin asymmetry of quark distributions and implications for single top-quark production at the LHC
 S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arXiv:1508.07923
- Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data S. Alekhin, J. Blümlein, L. Caminada, K. Lipka, K. Lohwasser, S. M., R. Petti, and R. Plačakytė arXiv:1404.6469
- Many more papers of ABM and friends ...
 2008 ...

PDF landscape

- Significant number of active groups ABMP16, CJ15, CT14, HERAPDF2.0, JR14, MMHT14, NNPDF3.0
 - PDFs accurate to NNLO in QCD, except for CJ15 (NLO)
 - different choices of data sets
 - different fitting procedures ($\Delta \chi^2$ criterium)

PDF sets	$\Delta \chi^2$ criterion	data sets used in analysis
ABMP16 arXiv:1701.05838	1	incl. DIS, DIS charm, DY, $t\bar{t}$, single t
CJ15 arXiv:1602.03154	1	incl. DIS, DY (incl. $p\bar{p} \rightarrow W^{\pm}X$), $p\bar{p}$ jets, γ +jet
CT14 arXiv:1506.07443	100	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets
HERAPDF2.0 arXiv:1506.06042	1	incl. DIS, DIS charm, DIS jets
JR14 arXiv:1403.1852	1	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, DIS jets
MMHT14 arXiv:1510.02332	2.3 42.3 (dynamical)	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets, $t\bar{t}$
NNPDF3.0 arXiv:1410.8849	n.a.	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets, $t\bar{t}$, W + charm

Recommendations (I)

PDF4LHC recommendations for LHC Run II

- Recommendations by CT14, MMHT14, NNPDF3.0
- PDFs averaged in set PDF4LHC15
 - to be used for Higgs cross sections, in seaches, for PDF uncertainties and for Monte Carlo simulations

Feltesse⁶, Stefano Forte², Jun Gao⁷, Sasha Glazov⁸, Joey Huston⁹, Zahari Kassabov^{2,10}, Ronan McNulty¹¹, Andreas Morsch⁴, Pavel Nadolsky¹², Voica Radescu¹³, Juan Rojo¹⁴ and Robert Thorne¹. ¹Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK. ² TIF Lab, Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy ³ Particle Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK. ⁴PH Department, CERN, CH-1211 Geneva 23, Switzerland ⁵Antwerp University, B2610 Wilrijk, Belgium ⁶ CEA, DSM/IRFU, CE-Saclay, Gif-sur-Yvette, France ⁷ High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. ⁸ Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85. D-22607 Hamburg, Germany. ⁹ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 U.S.A. ¹⁰ Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy ¹¹ School of Physics, University College Dublin Science Centre North, UCD Belfeld, Dublin 4, Ireland ¹² Department of Physics, Southern Methodist University, Dallas, TX 75275-0181, U.S.A. ¹³ Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany. ¹⁴ Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, University of Oxford, OX1 3NP Oxford, UK

PDF4LHC recommendations for LHC Run II

Jon Butterworth¹, Stefano Carrazza^{2,4}, Amanda Cooper-Sarkar³, Albert De Roeck^{4,5}, Joël

Sven-Olat Moch

Xiv:1510.03865v2 [hep-ph] 12 Nov 2015

Abstract:

Parton distribution functions - p.4

Recommendations (II)

Recommendations for PDF usage in LHC predictions

- Shortcomings in PDF4LHC recommendations addressed
- Recommendations by ABMP16, CJ15, HERAPDF2.0, JR14

Recommendations for PDF usage in LHC predictions

A. Accardi^{a,b}, S. Alekhin^{c,d}, J. Blümlein^e, M.V. Garzelli^c, K. Lipka^f,
W. Melnitchouk^b, S. Moch^c, R. Plačakytė^f, J.F. Owens^g, E. Reya^h, N. Sato^b, A. Vogtⁱ and O. Zenaiev^f

 ^a Hampton University, Hampton, VA 23668, USA
 ^b Jefferson Lab, Newport News, VA 23606, USA
 ^c II. Institut für Theoretische Physik, Universität Hamburg Luruper Chaussee 149, D–22761 Hamburg, Germany
 ^d Institute for High Energy Physics
 142281 Protvino, Moscow region, Russia
 ^e Deutsches Elektronensynchrotron DESY Platanenallee 6, D–15738 Zeuthen, Germany
 ^f Deutsches Elektronensynchrotron DESY Notkestraße 85, D–22607 Hamburg, Germany
 ^g Florida State University, Tallahassee, FL 32306, USA
 ^h Institut für Physik, Technische Universität Partonudistribution functions – p.5 D–44221 Dortmund, Germany

How 2016 [hep-ph] 29 Mar 2016

Recommendations (II)

Recommendations for PDF usage in LHC predictions

- Shortcomings in PDF4LHC recommendations addressed
- Recommendations by ABMP16, CJ15, HERAPDF2.0, JR14

(i) Precision theory predictions

Recommendation: Use the individual PDF sets ABMP16, CJ15, CT14, HERAPDF2.0, JR14, MMHT14, NNPDF3.0 (or as many as possible), together with the respective uncertainties for the chosen PDF set, the strong coupling $\alpha_s(M_Z)$ and the heavy quark masses m_c , m_b and m_t .

Recommendations (II)

Recommendations for PDF usage in LHC predictions

- Shortcomings in PDF4LHC recommendations addressed
- Recommendations by ABMP16, CJ15, HERAPDF2.0, JR14

(i) Precision theory predictions

Recommendation: Use the individual PDF sets ABMP16, CJ15, CT14, HERAPDF2.0, JR14, MMHT14, NNPDF3.0 (or as many as possible), together with the respective uncertainties for the chosen PDF set, the strong coupling $\alpha_s(M_Z)$ and the heavy quark masses m_c , m_b and m_t .

(ii) Other theory predictions

Recommendation: Use any one of the PDF sets listed in LHAPDF(v6).

QCD factorization

QCD factorization

- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - cross section $\hat{\sigma}_{ij \to k}$ for parton types i, j and hadronic final state X
- Parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Parton luminosity

Long distance dynamics due to proton structure

• Cross section depends on parton distributions f_i

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

- Parton distributions known from global fits to exp. data
 - available fits accurate to NNLO
 - information on proton structure depends on kinematic coverage

Hard scattering cross section

- Parton cross section $\hat{\sigma}_{ij \to k}$ calculable pertubatively in powers of α_s
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%)$ theory uncertainty)

- Accuracy of perturbative predictions
 - LO (leading order)
 - NLO (next-to-leading order)
 - NNLO (next-to-next-to-leading order)
 - N³LO (next-to-next-to-next-to-leading order)

 $(\mathcal{O}(50 - 100\%) \text{ unc.})$ $(\mathcal{O}(10 - 30\%) \text{ unc.})$ $(\lesssim \mathcal{O}(10\%) \text{ unc.})$ Higgs boson production

Higgs cross section (1995)

NLO QCD corrections

One of the main uncertainties in the prediction of the Higgs production cross section is due to the **gluon density**. [...] Adopting a set of representative parton distributions [...], we find a **variation of about 7%** between the maximum and minimum values of the cross section for Higgs masses above ~ 100 GeV.

Higgs cross section (2017)

Exact N³LO QCD corrections

- Apparent convergence of perturbative expansion
- Scale dependence of exact N³LO prediction with residual uncertainty 3%
- Minimal sensitivity at scale $\mu = m_H/2$

Approximate N⁴LO QCD corrections

Higgs cross section and PDFs

• Cross section $\sigma(H)$ at NNLO with uncertainties: $\sigma(H) + \Delta \sigma(PDF + \alpha_s)$ for $m_H = 125.0$ GeV at $\sqrt{s} = 13$ TeV with $\mu_R, \mu_F = m_H$ and nominal α_s

PDF sets	$\sigma(H)^{\text{NNLO}}$ [pb] nominal $\alpha_s(M_Z)$
ABMP16 Alekhin, Blümlein, S.M., Placakyte '17	40.20 ± 0.63
CJ15 Accardi, Brady, Melnitchouk et al. '16	$42.45 \begin{array}{c} + 1.73 \\ - 1.12 \end{array}$
CT14 Dulat et al. '15	42.33 + 1.43 - 1.68
HERAPDF2.0 H1+Zeus Coll.	$42.62 \begin{array}{c} + 0.35 \\ - 0.43 \end{array}$
JR14 (dyn) Jimenez-Delgado, Reya '14	38.01 ± 0.34
MMHT14 Martin, Motylinski, Harland-Lang, Thorne '14	$42.36 \begin{array}{c} + 0.56 \\ - 0.78 \end{array}$
NNPDF3.0 Ball et al. '14	42.59 ± 0.80
PDF4LHC15 Butterworth et al. '15	42.42 ± 0.78

- Large spread for predictions from different PDFs $\sigma(H) = 38.0 \dots 42.6$ pb
- PDF and α_s differences between sets amount to up to 11%
 - significantly larger than residual theory uncertainty at N³LO QCD

 $\alpha_s(M_Z)$ in PDFs

PDF sets	$\alpha_s(M_Z)$	method of determination
ABMP16 Alekhin, Blümlein, S.M., Placakyte '17	0.1147 ± 0.0008	fit at NNLO
CJ15 Accardi, Brady, Melnitchouk et al. '16	0.118 ± 0.002	fit at NLO
CT14 Dulat et al. '15	0.118	assumed at NNLO
HERAPDF2.0 H1+Zeus Coll.	$0.1183 \begin{array}{c} +0.0040 \\ -0.0034 \end{array}$	fit at NLO
JR14 Jimenez-Delgado, Reya '14	0.1136 ± 0.0004	dynamical fit at NNLO
	0.1162 ± 0.0006	standard fit at NNLO
MMHT14 Martin, Motylinski, Harland-Lang, Thorne '14	0.118	assumed at NNLO
	0.1172 ± 0.0013	best fit at NNLO
NNPDF3.0 Ball et al. '14	0.118	assumed at NNLO
PDF4LHC15 Butterworth et al. '15	0.118	assumed at NLO
	0.118	assumed at NNLO

- Values of $\alpha_s(M_Z)$ often assumed and not fitted (no correlations)
- Large spread of fitted values at NNLO: $\alpha_s(M_Z) = 0.1136...0.1172$
- PDF4LHC: order independent recommendation
 - use $\alpha_s(M_Z) = 0.118$ at NLO and NNLO

Parton content of the proton

Data in global PDF fits

Data sets considered in ABMP16 analysis

- Analysis of world data for deep-inelastic scattering and fixed-target data for Drell-Yan process
 - inclusive DIS data HERA, BCDMS, NMC, SLAC (NDP = 2155)
 - DIS heavy-quark production data HERA, CCFR, Chorus, NOMAD, NuTeV
 - Drell-Yan data (fixed target) E-605, E-866

• Tevatron & LHC data for W^{\pm} - and Z-boson production D0, ATLAS, CMS, LHCb (NDP = 172)

Top-quark production D0, ATLAS, CMS, LHCb

Iterative cycle of PDF fits

- i) check of compatibility of new data set with available world data
- ii) study of potential constraints due to addition of new data set to fit
- iii) perform high precision measurement of parton distributions, strong coupling $\alpha_s(M_Z)$ and heavy quark masses

(NDP = 313)

(NDP = 158)

(NDP = 36)

Parton kinematics at LHC

Information on proton structure depends on kinematic coverage

• LHC run at $\sqrt{s} = 7/8$ TeV

 parton kinematics well covered by HERA and fixed target experiments

• Parton kinematics with $x_{1,2} = M/\sqrt{S}e^{\pm y}$

- forward rapidities sensitive to small-x
- Cross section depends on convolution of parton distributions
 - small-x part of f_i and large-x PDFs f_j

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

Theory considerations in PDF fits

Theory considerations in ABMP16

- Strictly NNLO QCD for determination of PDFs and α_s
- Consistent scheme for treatment of heavy quarks
 - $\overline{\mathrm{MS}}$ -scheme for quark masses and $lpha_s$
 - fixed-flavor number scheme for $n_f = 3, 4, 5$
- Consistent theory description for consistent data sets
 - low scale DIS data with account of higher twist
- Full account of error correlations

Interplay with perturbation theory

- Accuracy of determination driven by precision of theory predictions
- PDF parameters, α_s , m_c , m_b and m_t sensitive to
 - radiative corrections at higher orders
 - chosen scheme (e.g. $(\overline{MS} \text{ scheme})$
 - renormalization and factorization scales μ_R , μ_F

• . . .

Benchmark measurements

DIS

• Structure functions for neutral and charged current known to $\mathcal{O}(\alpha_s^3)$

- F_2 , F_3 , known N³LO, F_L known NNLO S.M, Vermaseren, Vogt '04–'08
- Heavy-quark structure functions
 - asymptotic NNLO terms at large $Q^2 \gg m^2$ Bierenbaum, Blümlein, Klein '09; Behring, Bierenbaum, Blümlein, De Freitas, Klein, Wissbrock '14
 - approximate NNLO expressions for neutral and charged current Lo Presti, Kawamura, S.M., Vogt '12, Blümlein, A. Hasselhuhn, and T. Pfoh '14
- Dijet production in DIS at NNLO Currie, Gehrmann, Niehues '16 LHC
 - W[±]- and Z-boson production at NNLO Hamberg, van Neerven, Matsuura '91; Harlander, Kilgore '02
 - Hadro-production of top-quark pairs Czakon, Fiedler, Mitov '13
 - Single top-quark production (*t*-channel) Brucherseifer, Caola, Melnikov '14
 - Z + 1 jet Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello '15; Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan '15
 - Hadroproduction of jets
 - all partonic channels; leading color only Currie, Glover, Pires '16
 Sven-Olaf Moch
 Parton distribution functions p.20

ABMP16 PDF ansatz

- PDFs parameterization at scale $\mu_0 = 3 \text{GeV}$ in scheme with $n_f = 3$ Alekhin, Blümlein, S.M., Placakyte '17
 - ansatz for valence-/sea-quarks, gluon

$$\begin{aligned} xq_v(x,\mu_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} x^{a_q} (1-x)^{b_q} x^{P_{qv}(x)} \\ xq_s(x,\mu_0^2) &= x\bar{q}_s(x,\mu_0^2) = A_{qs} (1-x)^{b_{qs}} x^{a_{qs}P_{qs}(x)} \\ xg(x,\mu_0^2) &= A_g x^{a_g} (1-x)^{b_g} x^{a_g} P_{g}(x) \end{aligned}$$

- strange quark is taken in charge-symmetric form
- function $P_p(x)$

$$P_p(x) = (1 + \gamma_{-1,p} \ln x) \left(1 + \gamma_{1,p} x + \gamma_{2,p} x^2 + \gamma_{3,p} x^3 \right) ,$$

- 29 parameters in fit including $\alpha_s^{(n_f=3)}(\mu_0=3 \text{ GeV}), m_c, m_b$ and m_t
- simultaneous fit of higher twist parameters (twist-4)
- Ansatz provides sufficient flexibility; no additional terms required to improve the quality of fit

Quality of fit

Statistical tests

- Goodness-of-fit estimator
 - χ^2 values compared to number of data points (typically a few thousand in global fit)

0.4853 0.0506 - 0.0759

0.4119 0.0807 0.0443

0.3844 - 0.0949 - 0.0951

0.0365 0.3198 0.0263

0.4380 0.2527 - 0.2565

0 3592

0 4957

0.3771 0.1509 0.2380

0.0001

0.2611

0.6479

0.0086 0.2983

0.0076 0.0515 - 0.1608

0.0781

0.0010

0.1286

0.0102 0.2412 0.2688

0.0462

0.2635 0.0755 - 0.0573

0.0064 - 0.2560

0.5310 0.9719

0.8258 - 0.3995

0.1460 - 0.0404

0.0039 - 0.2493

0.2648 - 0.1715

0.1296 - 0.0489

0.0209 - 0.0298

0.1648 0.2541

0.2350 - 0.2666

> 0.0 0.2849

- 0.7829

- 0.6479 0.0086

0.3055 0.9152

0.2811

0.1193 - 0.1579

0.3493 0.1110 - 0.0604

0.1182 0.0849 0.0452 - 0.0492

0.0197 - 0.0809

0.0345 0.0101

0.0589 - 0.1791

0.2084 - 0.5576

0.0190 - 0.2029

0.1841 0 4 5 8 4 0 1739 0.066

0.0522 0.0946 0.2407 0.1054

0.0221 - 0.1190

0.0076 0.1460

0.0515

1.0 0.7834

- 0.3022 - 0.1838

0.0390 - 0.1373

0.0454 - 0.1031

0.0503 0.1409

- 0.1265 - 0.1811

0.7834

0.0260 0.0169

0.0180 0.0960 0.1797 0.9280

0.0917 0.2130

0.0547 0.0413

0.0332 0.0695

0.1067 0.2003 0.0869 0.0169

0.0 0.0 0.0 0.0

0.0241 - 0.0470

0.0156 0.0501

0.0404 0.3055

1.0

0.0683 0.1309

- 0.0382

0.0

0.0467

- 0.1695

0.2983

0.0719

0.2941

- 0.2190

- 0.0515

- 0.0137

- 0.0006

1 (0.1608 0.0719 0.1980 0 2034

0.1262 0.1285

0.2349 0.2362

0.1526 0.2328

- 0.1113 0.0960

0.2167 0.1596

0.2983 0.4131

0.1856 0.0291

0.2117

0.0781 0.0010

0.9152 0.2941

0.3022 0.0390

0.1833

0.0896 0.6522

0.2571 0.0626

0.0469 0.0092

0.1193 0.0728

- 0.0432 0.0159

0.0022 - 0.0279

- 0.1330 - 0.0841

0.1838 - 0.1373

1.0 - 0.1833

1.0

0 7 1 9 1

0.2811

0.1428 - 0.2080

Covariance matrix

- Positive-definite covariance matrix
 - correlations for fit parameters of ABMP16 PDFs

		a_u	b_u	$\gamma_{1,u}$	$\gamma_{2,u}$	$\gamma_{3,u}$	a_d	b_d	$\gamma_{1,d}$	$\gamma_{2,d}$	$\gamma_{3,d}$			a _{us}	b_{us}	$\gamma_{-1,us}$
	a_u	1.0	0.7617	0.9372	- 0.5078	0.4839	0.4069	0.3591	0.4344	- 0.3475	0.0001	1	au	- 0.0683	- 0.3508	0.2296
	b_u	0.7617	1.0	0.6124	- 0.1533	- 0.0346	0.3596	0.2958	0.3748	- 0.2748	0.0001		b_u	- 0.0081	- 0.3089	0.1387
	$\gamma_{1,u}$	0.9372	0.6124	1.0	- 0.7526	0.7154	0.2231	0.2441	0.2812	- 0.2606	0.0001		γ1,u	- 0.2094	- 0.3462	0.3367
	$\gamma_{2,u}$	- 0.5078	- 0.1533	- 0.7526	1.0	- 0.9409	0.2779	0.2276	0.2266	- 0.1860	0.0		γ2, <i>u</i>	0.3881	0.0906	- 0.4043
	$\gamma_{3,u}$	0.4839	- 0.0346	0.7154	- 0.9409	1.0	- 0.1738	- 0.1829	- 0.1327	0.1488	0.0		γ3,u	- 0.3206	- 0.0537	0.3474
	a_d	0.4069	0.3596	0.2231	0.2779	- 0.1738	1.0	0.7209	0.9697	- 0.6529	0.0001		a_d	0.2266	- 0.1045	- 0.1171
	b_d	0.3591	0.2958	0.2441	0.2276	- 0.1829	0.7209	1.0	0.7681	- 0.9786	- 0.0001		b_d	0.1502	- 0.2000	- 0.1127
	$\gamma_{1,d}$	0.4344	0.3748	0.2812	0.2266	- 0.1327	0.9697	0.7681	1.0	- 0.7454	0.0002		$\gamma_{1,d}$	0.2000	- 0.2241	- 0.0810
	$\gamma_{2,d}$	- 0.3475	- 0.2748	- 0.2606	- 0.1860	0.1488	- 0.6529	- 0.9786	- 0.7454	1.0	- 0.0002		$\gamma_{2,d}$	- 0.1293	0.2798	0.0767
	$\gamma_{3,d}$	0.0001	0.0001	0.0001	0.0	0.0	0.0001	- 0.0001	0.0002	- 0.0002	1.0		$\gamma_{3,d}$	0.0	0.0	0.0
	aus	- 0.0683	- 0.0081	- 0.2094	0.3881	- 0.3206	0.2266	0.1502	0.2000	- 0.1293	0.0		aus	1.0	- 0.3156	- 0.8947
	b_{us}	- 0.3508	- 0.3089	- 0.3462	0.0906	- 0.0537	- 0.1045	- 0.2000	- 0.2241	0.2798	0.0		b_{us}	- 0.3156	1.0	0.1372
	$\gamma_{-1,us}$	0.2296	0.1387	0.3367	- 0.4043	0.3474	- 0.1171	- 0.1127	- 0.0810	0.0767	0.0		$\gamma_{-1,us}$	- 0.8947	0.1372	1.0
	$\gamma_{1,us}$	- 0.4853	- 0.4119	- 0.3844	- 0.0365	0.0064	- 0.4380	- 0.3592	- 0.4957	0.3771	- 0.0001		$\gamma_{1,us}$	- 0.5310	0.8258	0.2611
	A_{us}	0.0506	0.0807	- 0.0949	0.3198	- 0.2560	0.2527	0.1648	0.2350	- 0.1509	0.0		A_{us}	0.9719	- 0.3995	- 0.7829
	a_{ds}	- 0.0759	- 0.0443	- 0.0951	0.0263	- 0.0382	- 0.2565	- 0.2541	- 0.2666	0.2380	0.0		a_{ds}	0.2849	0.0467	- 0.1695
	b_{bs}	0.0452	- 0.0197	0.0345	- 0.0589	0.0683	- 0.2084	0.0190	- 0.1841	- 0.0522	0.0		b_{bs}	0.0241	- 0.0221	0.0156
	$\gamma_{1,ds}$	- 0.0492	- 0.0809	0.0101	- 0.1791	0.1309	- 0.5576	- 0.2029	- 0.4584	0.0946	0.0		$\gamma_{1,ds}$	- 0.0470	- 0.1190	0.0501
	A_{ds}	- 0.1980	- 0.1262	- 0.2349	0.1526	- 0.1428	- 0.1113	- 0.2167	- 0.1739	0.2407	0.0		A_{ds}	0.2983	0.1856	- 0.2117
	a_{ss}	- 0.2034	- 0.1285	- 0.2362	0.2328	- 0.2080	0.0960	0.1596	0.0661	- 0.1054	0.0		ass	0.4131	0.0291	- 0.7191
	b_{ss}	- 0.1186	- 0.0480	- 0.1532	0.1549	- 0.1536	0.0486	0.1508	0.0267	- 0.1161	0.0		b _{ss}	0.2197	0.0643	- 0.4479
	A_{ss}	- 0.1013	- 0.0411	- 0.1458	0.1802	- 0.1625	0.1216	0.1678	0.0924	- 0.1196	0.0		A_{ss}	0.3627	0.0261	- 0.6319
	a_g	0.0046	- 0.0374	0.1109	- 0.1934	0.1653	- 0.0288	- 0.0122	0.0053	0.0059	0.0		a_g	- 0.2570	0.0001	0.2196
	b_g	0.2662	0.3141	0.1579	- 0.0050	- 0.0207	0.0973	0.0870	0.0646	- 0.0666	0.0		b_g	- 0.1419	0.1266	0.0694
	$\gamma_{1,g}$	0.2008	0.2274	0.0706	0.0876	- 0.0835	0.0919	0.0574	0.0493	- 0.0364	0.0		$\gamma_{1,g}$	- 0.0241	0.0332	- 0.0226
α_{i}^{0}	$\mu_{f}^{n_{f}=3)}(\mu_{0})$	0.1083	- 0.0607	0.0848	- 0.0250	0.0765	0.0763	- 0.0306	0.0725	0.0243	0.0		$\alpha_{s}^{(n_{f}=3)}(\mu_{0})$	0.0954	- 0.2866	- 0.0341
	$m_c(m_c)$	- 0.0006	0.0170	- 0.0104	0.0206	- 0.0201	- 0.0123	- 0.0161	- 0.0114	0.0108	0.0		$m_c(m_c)$	0.0704	- 0.0093	- 0.0033
	$m_b(m_b)$	0.0661	0.0554	0.0605	- 0.0367	0.0287	- 0.0116	0.0029	- 0.0074	- 0.0051	0.0		$m_b(m_b)$	- 0.0183	- 0.0132	0.0044
	$m_t(m_t)$	- 0.1339	- 0.2170	- 0.0816	0.0081	0.0250	- 0.0616	- 0.0813	- 0.0491	0.0736	0.0		$m_t(m_t)$	0.0641	- 0.1841	- 0.0408

			-				-	-	r
	b_{ss}	A_{ss}	a_g	b_g	$\gamma_{1,g}$	$\alpha_s^{(n_f=3)}(\mu_0)$	$m_c(m_c)$	$m_b(m_b)$	$m_t(m_t)$
a _u	- 0.1186	- 0.1013	0.0046	0.2662	0.2008	0.1083	- 0.0006	0.0661	- 0.1339
b_u	- 0.0480	- 0.0411	- 0.0374	0.3141	0.2274	- 0.0607	0.0170	0.0554	- 0.2170
γ1, <i>u</i>	- 0.1532	- 0.1458	0.1109	0.1579	0.0706	0.0848	- 0.0104	0.0605	- 0.0816
γ2,и	0.1549	0.1802	- 0.1934	- 0.0050	0.0876	- 0.0250	0.0206	- 0.0367	0.0081
γз,и	- 0.1536	- 0.1625	0.1653	- 0.0207	- 0.0835	0.0765	- 0.0201	0.0287	0.0250
a_d	0.0486	0.1216	- 0.0288	0.0973	0.0919	0.0763	- 0.0123	- 0.0116	- 0.0616
b_d	0.1508	0.1678	- 0.0122	0.0870	0.0574	- 0.0306	- 0.0161	0.0029	- 0.0813
$\gamma_{1,d}$	0.0267	0.0924	0.0053	0.0646	0.0493	0.0725	- 0.0114	- 0.0074	- 0.0491
$\gamma_{2,d}$	- 0.1161	- 0.1196	0.0059	- 0.0666	- 0.0364	0.0243	0.0108	- 0.0051	0.0736
γ3,d	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
aus	0.2197	0.3627	- 0.2570	- 0.1419	- 0.0241	0.0954	0.0704	- 0.0183	0.0641
bus	0.0643	0.0261	0.0001	0.1266	0.0332	- 0.2866	- 0.0093	- 0.0132	- 0.1841
$\gamma_{-1,us}$	- 0.4479	- 0.6319	0.2197	0.0694	- 0.0226	- 0.0341	- 0.0034	0.0044	- 0.0408
$\gamma_{1,us}$	0.1286	0.0102	0.0039	0.2648	0.1296	- 0.3493	- 0.0462	0.0209	- 0.2635
A_{us}	0.1193	0.2412	- 0.2493	- 0.1715	- 0.0489	0.1110	0.1182	- 0.0298	0.0755
a_{ds}	- 0.1579	- 0.2688	- 0.2190	- 0.0515	- 0.0137	- 0.0604	0.0849	- 0.0006	- 0.0573
b_{bs}	- 0.0260	- 0.0180	- 0.0454	0.0917	0.0503	- 0.1265	0.0547	0.0332	- 0.1067
$\gamma_{1,ds}$	0.0169	- 0.0960	- 0.1031	0.2130	0.1409	- 0.1811	0.0413	0.0695	- 0.2003
A_{ds}	- 0.0896	- 0.1797	- 0.2571	- 0.0469	0.0022	- 0.1330	0.1193	- 0.0432	- 0.0869
ass	0.6522	0.9280	0.0626	- 0.0092	- 0.0279	- 0.0841	- 0.0728	- 0.0159	0.0169
b _{ss}	1.0	0.6427	- 0.0179	0.1967	0.1164	- 0.2390	- 0.0965	0.0169	- 0.1675
A_{ss}	0.6427	1.0	- 0.0211	0.1403	0.0997	- 0.1385	0.0216	0.0072	- 0.1109
a_g	- 0.0179	- 0.0211	1.0	- 0.5279	- 0.8046	0.1838	- 0.2829	0.0076	0.3310
b_g	0.1967	0.1403	- 0.5279	1.0	0.8837	- 0.5124	0.1438	0.1255	- 0.7275
$\gamma_{1,g}$	0.1164	0.0997	- 0.8046	0.8837	1.0	- 0.2511	0.1829	0.0814	- 0.5180
$\alpha_s^{(n_f=3)}(\mu_0)$	- 0.2390	- 0.1385	0.1838	- 0.5124	- 0.2511	1.0	- 0.1048	0.0423	0.6924
$m_c(m_c)$	- 0.0965	0.0216	- 0.2829	0.1438	0.1829	- 0.1048	1.0	0.0328	- 0.1577
$m_b(m_b)$	0.0169	0.0072	0.0076	0.1255	0.0814	0.0423	0.0328	1.0	- 0.0900
$m_t(m_t)$	- 0.1675	- 0.1109	0.3310	- 0.7275	- 0.5180	0.6924	- 0.1577	- 0.0900	1.0

Sven-Olaf Moch

Results for parton distributions (I)

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Gluon g(x)

Results for parton distributions (II)

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Light valence quarks u(x), d(x)

Results for parton distributions (III)

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Iso-spin asymmetry $x(\overline{d}(x) \overline{u}(x))$; ratio d(x)/u(x); strange s(x)

Sven-Olaf Moch

Parton distribution functions - p.25

Results for parton distributions (IV)

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Sea quarks $\overline{u}(x) + \overline{d}(x)$

Tools

Accessibility of PDFs

- PDFs stored as grid in x and Q^2 ; size $\mathcal{O}(5)$ to $\mathcal{O}(100)$ MB
 - LHAPDF library for table look-up Buckley et al. '14; http://projects.hepforge.org/lhapdf
- PDF evolution 'on-the-fly'
 - use PDF parametrization (function of x) at initial scale μ_0^2 ; solution of differential quation; little computational overhead
 - Public codes for NNLO evolution of PDFs PEGASUS Vogt hep-ph/0408244, QCDNUM Botje arXiv:1005.1481, HOPPET Salam, Rojo arXiv:0804.3755, CANDIA Cafarella, Coriano, Guzzi arXiv:0803.0462, APFEL Bertone, Carrazza, Rojo arXiv:1310.1394

Reproducibility of PDF fits

- Public code OPENQCDRAD for cross section computations in ABMP16; http://www-zeuthen.desy.de/~alekhin/OPENQCDRAD
- XFitter library Alekhin et al. '14 for statistical tests (χ^2 values) and fits of individual data sets; https://www.xfitter.org/xFitter

Heavy quarks in deep-inelastic scattering

Treatment of heavy-quarks

Light quarks

- Neglect "light quark" masses $m_u, m_d \ll \Lambda_{QCD}$ and $m_s < \Lambda_{QCD}$ in hard scattering process
 - scale-dependent u, d, s, g PDFs from mass singularities

Heavy quarks

- No mass singularities for $m_c, m_b, m_t \gg \Lambda_{QCD}$, no (evolving) PDFs
 - c and b PDFs for $Q \gg m_c, m_b$ generated perturbatively

matching of two distinct theories $\longrightarrow n_f$ light flavors + heavy quark of mass m at low scales $\longrightarrow n_f + 1$ light flavors at high scales

Strong coupling with flavor thresholds

- Solution of QCD β -function for $\alpha_s^{n_l} \longrightarrow \alpha_s^{(n_l+n_h)}$
 - discontinuities for $n_f = 3 \rightarrow n_f = 4 \rightarrow n_f = 5$
- Big picture

Bethke for PDG 2014

Strong coupling with flavor thresholds

- Solution of QCD β -function for $\alpha_s^{n_l} \longrightarrow \alpha_s^{(n_l+n_h)}$
 - discontinuities for $n_f = 3 \rightarrow n_f = 4 \rightarrow n_f = 5$
- Zoom 0.3

PDFs with flavor thresholds (I)

- Generate heavy-quark PDFs $h^{(n_f+1)}$ from light-flavor PDFs
 - heavy-quark operator matrix elements (OMEs) A_{ji} at three loops
 Bierenbaum, Blümlein, Klein '09; Ablinger, Behring, Blümlein, De Freitas, von Manteuffel,
 Schneider '14

 $h^{(n_f+1)}(x,\mu) + \bar{h}^{(n_f+1)}(x,\mu) = A_{hq}(x) \otimes \Sigma^{(n_f)}(x,\mu) + A_{hg}(x) \otimes g^{(n_f)}(x,\mu)$

• likewise light-quark PDFs $l_i^{(n_f)} \rightarrow l_i^{(n_f+1)}$ and gluon and the quark singlet PDFs $(\Sigma^{(n_f)}, g^{(n_f)}) \rightarrow (\Sigma^{(n_f+1)}, g^{(n_f+1)})$

Perturbative expansion of OME A_{hg}

$$A_{hg}^{(1)}(x) = \underbrace{a_{hg}^{(10)}}_{=0} + \ln\left(\frac{\mu^2}{m^2}\right) P_{qg}^{(0)}$$

• charm density at leading order with matching $c(x, \mu^2 = m_c^2) = 0$

$$c(x,\mu^{2})\Big|_{\rm LO} = a_{s}(\mu^{2}) \int_{x}^{1} \frac{dz}{z} \ln\left(\frac{\mu^{2}}{m_{c}^{2}}\right) P_{qg}^{(0)}(z) g\left(\frac{x}{z},\mu^{2}\right)$$

• higher order matching $c(x, \mu^2 = m_c^2) \neq 0$

$$A_{hg}^{(2)}(x) = \underbrace{a_{hg}^{(20)}}_{\neq 0} + \ln\left(\frac{\mu^2}{m^2}\right) a_{hg}^{(21)} + \ln^2\left(\frac{\mu^2}{m^2}\right) a_{hg}^{(22)}$$

Sven-Olaf Moch

PDFs with flavor thresholds (II)

- Solution of evolution equations between thresholds for $n_f \longrightarrow (n_f + 1)$ with fixed $n_f = 3 \rightarrow n_f = 4 \rightarrow n_f = 5$
 - discontinuities in PDFs across flavor thresholds
 - matching conditions known to NLO; $A_{hg}^{(3)}$ currently unknown

Cross sections with flavor thresholds

Fixed flavor number scheme (FFNS) ("fixed order $\ln(Q^2/m^2)$ ")

- Cross section with massive quarks at scales $Q \gg m_c$
 - top-quark hadro-production ($t\bar{t}$ pairs, single top in 4FS or 5FS, ...]
- F_2^c at HERA with u, d, s, g partons and massive charm coeff. fcts.
 - complete NLO predictions Laenen, Riemersma, Smith, van Neerven '92
 - approximations at NNLO Bierenbaum, Blümlein, Klein '09; Lo Presti, Kawamura, S.M., Vogt '12; Behring, Bierenbaum, Blümlein, De Freitas, Klein, Wissbrock '14

Variable flavor number scheme (VFNS) ("resum $\ln(Q^2/m^2)$ ")

- (Smooth) matching of two distinct theories: n_f light + heavy quark at low scales $\longrightarrow n_f + 1$ light flavors at high scales
 - Higgs boson production in bb-annihilation ("Santander matching" Harlander, Krämer, Schumacher '11)
- F_2^c at HERA with ACOT Aivazis, Collins, Olness, Tung '94, BMSN Buza, Matiounine, Smith, van Neerven '98, RT Thorne, Roberts '98, FONLL Forte, Laenen, Nason, Rojo '10
 - model assumptions in matching conditions
 - details of implementation matter in global fits
GM-VFNS implementation

- GM-VFNS implementation using BSMN Buza, Matiounine, Smith, van Neerven '98
 - other variant: FONLL Cacciari, Greco, Nason '98; Forte, Laenen, Nason, Rojo '10
- DIS structure function F_2^h for heavy-quark h

 $F_2^{h,\mathrm{BMSN}}(N_f + 1, x, Q^2) =$

- $= F_2^{h,\text{exact}}(N_f, x, Q^2) + \left\{ F_2^{h,\text{ZMVFN}}(N_f + 1, x, Q^2) F_2^{h,\text{asymp}}(N_f, x, Q^2) \right\}$
- $F_2^{h,\text{exact}}$: massive heavy-quark structure function ($m \neq 0$)
- $F_2^{h,\text{ZMVFN}}$: DIS structure function with zero mass (m = 0)
- $F_2^{h, \text{asymp}}$: asymptotic expansion of heavy-quark structure function (logarithms $\ln(Q^2/m^2)$)
- Difference $\{\dots\}$ has to vanish at threshold $Q \simeq m$
 - details differ for other GM-VFNS implementations: ACOT: S-ACOT- χ for slow rescaling $x \to \chi(x) = x \left(1 + \frac{4m^2}{Q^2}\right)$ FONLL: suppression of $\{\dots\}$ with damping factor $\left(1 + \frac{m^2}{Q^2}\right)^2$ RT: continuity of physical observables in threshold region

Statistical check of big logarithms

No indications for big logarithms

$Q^2_{ m min}$ (GeV 2)	χ^2/NDP
10	366/324
100	193/201
1000	95/83

- F_2^c in different schemes compared to H1- and ZEUS-data
 - GMVFN scheme in BMSN prescription (solid lines)
 - 3-flavor scheme (dash-dotted lines)
 - 4-flavor scheme (dashed lines)
 - charm-quark mass $m_c = 1.43 \text{ GeV}$ (vertical dotted line)

- F_2^b in different schemes compared to H1- and ZEUS-data
 - GMVFN scheme in BMSN prescription (solid lines)
 - 3-flavor scheme (dash-dotted lines)
 - 4-flavor scheme (dashed lines)
 - bottom-quark mass $m_b = 4.30 \text{ GeV}$ (vertical dotted line) Sven-Olaf Moch Parton distribution functions – p.36

- Comparision of theory predictions for the DIS pair-production of charm quarks to the combined HERA data H1 & ZEUS coll. arXiv:1211.1182
 - ABM12 and JR14 using FFNS scheme

- Comparision of theory predictions for the DIS pair-production of charm quarks to the combined HERA data H1 & ZEUS coll. arXiv:1211.1182
 - HERAPDF2.0 using the RT optimal GM-VFNS scheme

- Comparision of theory predictions for the DIS pair-production of charm quarks to the combined HERA data H1 & ZEUS coll. arXiv:1211.1182
 - CT14, MMHT14 and NNPDF3.0 using FFNS scheme

- Comparision of theory predictions for the DIS pair-production of charm quarks to the combined HERA data H1 & ZEUS coll. arXiv:1211.1182
 - ABM12 and JR14 using FFNS scheme

Charm quark mass vs. data

• Data on F_2^c at HERA has correlation of m_c , $\alpha_S(M_Z)$, gluon PDF

 $\sigma_{c\bar{c}} \sim \alpha_s \, m_c^2 \, g(x)$

- Comparison of measured data with predictions in various VFNS schemes
 - data shows very good sensitivity to value of m_c
 - fit of value of m_c strongly dependent on particular choice of VFNS H1 coll. arxiv:1211.1182

Charm quark mass in PDF fits

	m_c (GeV)	m_c scheme	χ^2 /NDP (HERA data)	F_2^c scheme	NNLO Wilson coeff.
ABMP16 arXiv:1701.05838	1.252 ± 0.018	m ^{MS}	62/52	$FFNS(n_f = 3)$	yes
CT14 arXiv:1506.07443	1.3 (assumed)	m ^{pole}	582/52 (64/47)	S-ACOT- χ	no
MMHT arXiv:1510.02332	1.25	m ^{pole}	75/52	RT optimal	no
NNPDF3.0 arXiv:1410.8849	1.275 (assumed)	<i>m</i> ^{pole}	67/52	FONLL-C	no
PDF4LHC15	-	-	58/52	FONLL-B	-
arXiv:1510.03865	-	-	71/52	RT optimal	-
	-	-	51/47	S-ACOT- χ	-

- PDG quotes running masses: charm: $m_c(m_c) = 1.27^{+0.07}_{-0.11}$ GeV, bottom: $m_b(m_b) = 4.20^{+0.17}_{-0.07}$ GeV
- Values of charm-quark pole mass for CT14, MMHT14 and NNPDF3.0 not compatible with world average of PDG

Quark mass renormalization

Pole mass

Based on (unphysical) concept of heavy-quark being a free parton

- heavy-quark self-energy $\Sigma(p, m_q)$ receives contributions from regions of all loop momenta also from momenta of $\mathcal{O}(\Lambda_{QCD})$
- Renormalon ambiguity in definition of pole mass of $\mathcal{O}(\Lambda_{QCD})$ Bigi, Shifman, Uraltsev, Vainshtein '94; Beneke, Braun '94; Smith, Willenbrock '97

\overline{MS} mass

- Free of infrared renormalon ambiguity
- Conversion between m_{pole} and \overline{MS} mass $m(\mu_R)$ in perturbation theory known to four loops in QCD Marquard, Smirnov, Smirnov, Steinhauser '15

• does not converge in case of charm quark

$$m_c(m_c) = 1.27 \text{ GeV} \longrightarrow m_c^{\text{pole}} = 1.47 \text{ GeV}$$
 (one loop)
 $\longrightarrow m_c^{\text{pole}} = 1.67 \text{ GeV}$ (two loops)
 $\longrightarrow m_c^{\text{pole}} = 1.93 \text{ GeV}$ (three loops)
 $\longrightarrow m_c^{\text{pole}} = 2.39 \text{ GeV}$ (four loops)

Parton distribution functions - p.40

Charm quark mass and the Higgs cross section

MMHT14

- "Tuning" of charm mass m_c parameter effects the Higgs cross section
 - linear rise in $\sigma(H) = 40.5 \dots 42.6$ pb for $m_c = 1.15 \dots 1.55$ GeV with MMHT14 PDFs Martin, Motylinski, Harland-Lang, Thorne '15

m_c^{pole} [GeV]	$\alpha_s(M_Z)$	χ^2/NDP	$\sigma(H)^{\rm NNLO}$ [pb]	$\sigma(H)^{\rm NNLO}$ [pb]
	(best fit)	(HERA data on $\sigma^{c\bar{c}}$)	best fit $\alpha_s(M_Z)$	$\alpha_s(M_Z) = 0.118$
1.15	0.1164	78/52	40.48	(42.05)
1.2	0.1166	76/52	40.74	(42.11)
1.25	0.1167	75/52	40.89	(42.17)
1.3	0.1169	76/52	41.16	(42.25)
1.35	0.1171	78/52	41.41	(42.30)
1.4	0.1172	82/52	41.56	(42.36)
1.45	0.1173	88/52	41.75	(42.45)
1.5	0.1173	96/52	41.81	(42.51)
1.55	0.1175	105/52	42.08	(42.58)

Charm quark mass and the Higgs cross section

NNPDF

- Same trend: lighter charm mass implies smaller Higgs cross section
 - fit range for m_c too small and no correlation with value of $\alpha_s(M_Z)$
 - best fits with NNPDF2.1 and NNPDF30 give range $\sigma(H) = 42.6 \dots 44.2 \text{ pb}$

PDF sets	m_c^{pole} [GeV]	$\alpha_s(M_Z)$ (fixed)	χ^2/NDP (HERA data on $\sigma^{c\bar{c}}$)	$\sigma(H)^{\text{NNLO}}$ [pb] fixed $\alpha_s(M_Z)$
NNPDF2.1 [arXiv:1107.2652]	$\sqrt{2}$	0.119	65/52	44.18 ± 0.49
	1.5	0.119	78/52	44.54 ± 0.51
	1.6	0.119	92/52	44.74 ± 0.50
	1.7	0.119	110/52	44.95 ± 0.51
NNPDF2.3 [arXiv:1207.1303]	$\sqrt{2}$	0.118	71/52	43.77 ± 0.41
NNPDF3.0 [arXiv:1410.8849]	1.275	0.118	67/52	42.59 ± 0.80

Strong coupling constant

Strong coupling constant (1992)

	·	in QCD - 20 Years Latery CEBN-TH-6623-92
Average	0.118 ± 0.007	G. Altarelli (1992)
Jets at LEP	0.122 ± 0.009	
$\Gamma(Z \to \text{hadrons}) / \Gamma(Z \to l\bar{l})$	0.132 ± 0.012	
$p\overline{p} \to W + jets$	0.121 ± 0.024	
$R_{e^+e^-}(s < 62 {\rm GeV})$	0.140 ± 0.020	
Ƴ Decays	0.110 ± 0.010	
DIS	0.112 ± 0.007	
$R_{ au}$	$0.117 {}^{+\ 0.010}_{-\ 0.016}$	
	$\alpha_s(\mathrm{M}^2_\mathrm{Z})$	

Essential facts

- World average 1992 $\alpha_s(M_Z) = 0.118 \pm 0.007$
- Central value at NLO QCD
 - still right, but for very different reasons
- Error at NLO QCD
 - now down to $\sim 0.0050 0.0040$ (theory scale uncertainty)

Strong coupling constant (2016)

Measurements at NNLO

• Values of $\alpha_s(M_Z)$ at NNLO from PDF fits

SY	0.1166 ± 0.013	F_2^{ep}	Santiago, Yndurain '01
	0.1153 ± 0.063	$xF_3^{\nu N}$ (heavy nucl.)	
A02	0.1143 ± 0.013	DIS	Alekhin '01
MRST03	0.1153 ± 0.0020		Martin, Roberts, Stirling, Thorne '03
BBG	$0.1134 \ {}^{+\ 0.0019}_{-\ 0.0021}$	valence analysis, NNLO	Blümlein, Böttcher, Guffanti '06
GRS	0.112	valence analysis, NNLO	Glück, Reya, Schuck '06
A06	0.1128 ± 0.015		Alekhin '06
JR08	0.1128 ± 0.0010	dynamical approach	Jimenez-Delgado, Reya '08
	0.1162 ± 0.0006	including NLO jets	
ABKM09	0.1135 ± 0.0014	HQ: FFNS $n_f = 3$	Alekhin, Blümlein, Klein, S.M. '09
	0.1129 ± 0.0014	HQ: BSMN	
MSTW	0.1171 ± 0.0014		Martin, Stirling, Thorne, Watt '09
Thorne	0.1136	[DIS+DY, HT*] (2013)	Thorne '13
ABM11 _J	$0.11340.1149 \pm 0.0012$	Tevatron jets (NLO) incl.	Alekhin, Blümlein, S.M. '11
NN21	0.1173 ± 0.0007	(+ heavy nucl.)	NNPDF '11
ABM12	0.1133 ± 0.0011		Alekhin, Blümlein, S.M. '13
	0.1132 ± 0.0011	(without jets)	
CT10	0.1140	(without jets)	Gao et al. '13
CT14	$0.1150 \begin{array}{c} + \ 0.0060 \\ - \ 0.0040 \end{array}$	$\Delta \chi^2 > 1$ (+ heavy nucl.)	Dulat et al. '15
MMHT	0.1172 ± 0.0013	(+ heavy nucl.) Martin, M	Aotylinski, Harland-Lang, Thorne '15

Sven-Olaf Moch

Parton distribution functions - p.45

Strong coupling constant (2017)

Other measurements of α_s at NNLO

• Values of $\alpha_s(M_Z)$ at NNLO from measurements at colliders

3-jet rate	0.1175 ± 0.0025	Dissertori et al. 200	9 arXiv:0910.4283
e^+e^- thrust	$0.1131 \begin{array}{c} + \ 0.0028 \\ - \ 0.0022 \end{array}$	Gehrmann et al.	arXiv:1210.6945
e^+e^- thrust	0.1140 ± 0.0015	Abbate et al.	arXiv:1204.5746
<i>C</i> -parameter	0.1123 ± 0.0013	Hoang et al.	arXiv:1501.04111
CMS	0.1151 ± 0.0033	tī	arXiv:1307.1907
NLO Jets ATLAS	$0.111 ^{+ 0.0017}_{- 0.0007}$		arXiv:1312.5694
NLO Jets CMS	0.1148 ± 0.0055		arXiv:1312.5694

PDG average

Some tension with the PDG average at NNLO

```
PDG (Bethke, Dissertori, Salam) '16
```

 $\alpha_s(M_Z) = 0.1181 \pm 0.0013$

• PDG value driven by lattice determinations (and low scale τ -data)

Differences in α_s determinations

Why α_s values from MSTW and NNPDF are large

- Differences result from different physics models and analysis procedures
- Fits of DIS data
 - target mass corrections (powers of nucleon mass M_N^2/Q^2)
 - higher twist $F_2^{\text{ht}} = F_2 + ht^{(4)}(x)/Q^2 + ht^{(6)}(x)/Q^4 + \dots$
 - correlation of errors among different data sets

	$lpha_s$	NNLO	target mass corr.	higher twist	error correl.
ABM12	0.1132 ± 0.0011	yes	yes	yes	yes
NNPDF21	0.1173 ± 0.0007	(yes)	yes	no	yes
MSTW	0.1171 ± 0.0014	(yes)	no	no	no
MMHT	0.1172 ± 0.0013	(yes)	no	no	_

- Effects for differences are understood
 - variants of ABM with no higher twist etc. reproduce larger α_s values Alekhin, Blümlein, S.M. '11

Zooming in on ABM

α_s from DIS and PDFs

• Profile of χ^2 for different data sets in ABM11 PDF fit Alekhin, Blümlein, S.M. '12

Zooming in on NNPDF

α_s from DIS and PDFs

• Profile of χ^2 for different data sets in NNPDF21 fit Ball et al. '11

Sven-Olaf Moch

Zooming in on NNPDF

α_s from DIS and PDFs

• Profile of χ^2 for different data sets in NNPDF21 fit Ball et al. '11

Sven-Olaf Moch

World DIS data and the value of α_s

- Value of $\alpha_{(M_Z)}$ is lower than PDG average
 - value of $\alpha_{(M_Z)}$ is pulled up by SLAC and NMC and pulled down by BCDMS and HERA data
- Only $\alpha_{(M_Z)}$ preferred by SLAC data is compatible with PDG average (provided higher twist terms are accounted for)
- Update of the α_s determination with combined data HERA I+II
 - value of $lpha_(M_Z)$ increases by 1σ

 W^{\pm} - and Z-boson production

W- and Z-boson cross sections

- High precision data from LHC ATLAS, CMS, LHCb and Tevatron D0
 - differential distributions extend to forward region
 - sensitivity to light quark flavors at $x \simeq 10^{-4}$
 - statistically significant: NDP = 172 in ABMP16
- ATLAS measurement at $\sqrt{s} = 13$ TeV from arXiv:1603.09222

 Spread in predictions from different PDFs significantly larger than experimental precision

Tevatron charged lepton asymmetry

- Do data for $p\bar{p} \rightarrow W^{\pm} + X \rightarrow l^{\pm}\nu$ (electrons and muons) at $\sqrt{s} = 1.96 \text{ TeV}$
- Charged lepton asymmetry as function of pseudo-lepton rapidity η_l
- NNLO QCD predictions with FEWZ (version 3.1)
- Comparison with ABM12 (including combined PDF+ α_s uncertainty), CT10, CT14, MMHT, and NN3.0

Muon charge asymmetry from LHC

- CMS and LHCb data for $pp \to W^{\pm} + X \to \mu^{\pm} \nu$ at $\sqrt{s} = 7$ TeV
- Problematic data points at $\eta_{\mu} = 3.375$ in LHCb data are omitted in fit

Z-boson production from LHC

- LHCb data for $pp \to Z + X \to l\bar{l}$ (muon and electron) at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV
- Comparison with ABM12 (including combined PDF+ α_s uncertainty), CT14, MMHT, and NNPDF3.0

Theory issues (I)

Final-state-radiation effects

- QED corrections in W^{\pm} and Z-boson decays applied to data of LHCb
 - left: FSR effects from mean of simulations with Herwig++ and Pythia8 with anomalous irregularity at $\eta_{\mu} = 3.375$
 - right: earlier analysis of LHCb with smooth FSR corrections from PHOTOS Monte Carlo Golonka, Was '05

Dropping problematic data points at $\eta_{\mu} = 3.375$ reduces χ^2 value by some 10 units Sven-Olaf Moch Parton distribution functions – p.56

Theory issues (II)

- Data on electron asymmetry with high precision at central rapidities D0
- NNLO corrections in coefficient functions not uniform in η_e (dashed curve)
- Numerical accuracy at NNLO (shaded area) obtained with FEWZ (v3.1)
- Accuracy of O(1 ppm) to meet uncertainties in experimental data requires $O(10^4 \text{h})$ of running FEWZ (v3.1) at NNLO

Parton distribution functions - p.57

Theory issues (III)

Sven-Olaf Moch

Gluon PDF at small x

Longitudinal structure function

Discrimination of the small-x gluons

Charm quark hadro-production (I)

- Charm-quark hadro-production at high energies
 - quark-gluon parton luminosity dominates
- Gluon PDF at small-*x*
 - fits yield $xg(x) \simeq x^a$; e.g. $a \simeq -0.2$ in ABM12
 - kinematic coverage of data down to $x \simeq 10^{-5}$ (DIS structure function F_L)
- Predictions compatible with LHC measurements (Alice, ATLAS, LHCb)

Sven-Olaf Moch

Charm quark hadro-production (II)

Issues

- Extrapolation of gluon PDF towards smaller x
 - some PDFs feature large uncertainities for extrapolation to unmeasured regions —> this invalidates predictive potential

Charm quark hadro-production (III)

More issues

- Some PDFs predict negative gluon PDF at small-x and low scales $\mu_F \simeq 2m_c$
 - negative cross section is unphysical; consequence of modelling in variable flavor number schemes applied and description of structure function F_L at NNLO
 - large differences between gluon PDFs fitted at NLO and NNLO

Summary

- Precision determination of non-perturbative parameters is essential
 - parton content of proton (PDFs), strong coupling constant $\alpha_s(M_Z)$, quark masses m_c , m_b , m_t
- Experimental precision of $\lesssim 1\%$ makes theoretical predictions at NNLO in QCD mandatory
- Uncertainties due model assumption in PDF fits often neglected
 - implementations of variable flavor number schemes use charm-quark mass m_c for tuning
 - low value of pole mass $m_c^{\rm pole} \simeq 1.25 {\rm GeV}$ in contradiction to world average
- Values of $\alpha_s(M_Z)$ at NNLO from measurements at colliders lower than world average
 - $\alpha_s(M_Z) = 0.118$ at NNLO not preferred by data
 - data analysis with fixed value of $\alpha_s(M_Z)$ lacks correlation with parameters of PDF fits
- PDF4LHC recommendations introduce bias and inflated uncertainties
 - very difficult to quantify potential discrepancies between individual PDF sets

Sven-Olaf Moch