

Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik

Introduction to Monte Carlo event generators

Frank Siegert, TU Dresden

Terascale MC school, March 2017

[ATLAS event display from 13 TeV collisions]

• In our detectors: stable hadrons

- In our detectors: stable hadrons
- Interesting for our understanding: Fundamental physics!

eeeeeeee

- In our detectors: stable hadrons
- Interesting for our understanding: Fundamental physics!

50000000

 Connection: Monte Carlo simulation of QCD dynamics

1 Motivation

- 2 Introduction to QCD
- 3 Introduction to event generators
- 4 Hard interaction
- 5 Parton shower
- 6 Multiple parton interactions
- 7 Hadronization
- 8 Hadron decays
- 9 Generator programs

Motivation

- 2 Introduction to QCD
- 3 Introduction to event generators
- 4 Hard interaction
- 5 Parton shower
- 6 Multiple parton interactions
- 7 Hadronization
- 8 Hadron decays
- 9 Generator programs

- 1960's \rightarrow large zoo of hadrons dicovered, systematization needed
- Gell-Mann, Ne'eman '62 \rightarrow "eight-fold way", prediction of Ω

- Use SU(3) of flavor (isospin & strangeness) to classify hadrons
- Describes structure of low-lying multiplets very well

Decuplets contains state with three identical quarks

Isospin third component

- Corresponds to all symmetric state $\Delta^{++} = |u^{\uparrow}u^{\uparrow}u^{\uparrow}\rangle$ \rightarrow forbidden by Fermi statistics
- Rescue by postulating new degree of freedom \rightarrow "color" charge

 $\Delta^{++} = N \sum \varepsilon_{ijk} |u_i^{\uparrow} u_j^{\uparrow} u_k^{\uparrow}\rangle$

 \rightarrow described by SU(3) of color, i.e. 3 charges ("red", "green", "blue")

• Color "unobserved" experimentally \rightarrow SU(3) invariance of Lagrangian

- Lie algebra of SU(3) is $[T^a, T^b] = i f^{abc} T_c$
- Fundamental representation usually in terms of $T^a = \lambda^a/2$ with Gell-Mann matrices

$$\begin{aligned} \lambda_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \lambda_4 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_5 &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda_6 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ \lambda_7 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_8 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \end{aligned}$$

•
$$\lambda_a^{\dagger} = \lambda_a$$
, $\operatorname{Tr}(\lambda^a) = 0$, $\operatorname{Tr}(\lambda^a \lambda^b) = 2\delta^{ab}$

• Fierz identity

$$\lambda^a_{ij}\lambda^a_{kl} = 2\left(\delta_{il}\delta_{jk} - \frac{1}{3}\delta_{ij}\delta_{kl}\right)$$

• Adjoint representation: $F_{bc}^a = -if_{abc}$

• Behaviour of quark field under gauge transformation

$$|u\rangle = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \to |u'\rangle = \exp\left\{ig_s\alpha_a T^a\right\} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$

- Covariant derivative $D_{\mu} = \delta_{\mu} + ig_s T^a A^a_{\mu}$ with $A_{\mu} \rightarrow$ gauge fields \rightarrow quark kinetic and quark-gluon interaction term: $\mathcal{L} = \bar{q}(i\mathcal{D} - m)q$ q_j q_j q_i q_i
- Gluon kinetic and self-interaction term from QCD analog $\mathcal{L} = \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$

$$F^a_{\mu\nu} = \delta_\mu A^a_\nu - \delta_\nu A^a_\mu - g_s f_{abc} A^a_\mu A^b_\nu$$

ightarrow 3- and 4-gluon interaction terms

Non-abelian structure of QCD manifests itself in 3- and 4-gluon vertices

External quark splitting

• Consider process $q \rightarrow qg$ attached to some other diagrams

• Proportional to $g_s^2 T_{ij}^a T_{jk}^a = 4\pi \alpha_s C_F \delta_{ik}$, where

$$C_F = rac{N_c^2 - 1}{2N_c} = rac{4}{3}$$

Identical to QED case except for color factor C_F

• Consider process $g \rightarrow q\bar{q}$ attached to some other diagrams

• Proportional to $g_s^2 T_{ij}^a T_{ji}^b = 4\pi \alpha_s T_R \delta^{ab}$, where

$$T_R = \frac{1}{2}$$

• Consider process $g \rightarrow gg$ attached to some other diagrams

• Proportional to $g_s^2 f^{abc} f^{bcd} = 4\pi \alpha_s C_A \delta^{ad}$, where

$$C_A = N_c = 3$$

 $\bullet \ \rightarrow$ Gluons couple stronger to gluons than to quarks

• When $R \lesssim 1/m_e$, vacuum polarization effects set in

Potential changes to

$$V(R) = -\frac{\alpha}{R} \left[1 + \frac{2\alpha}{3\pi} \log \frac{1}{m_e R} + \mathcal{O}(\alpha^2) \right] = \frac{\bar{\alpha}(R)}{R}$$

where $\bar{\alpha}(R) \rightarrow$ effective (running) coupling

- Understand effective coupling in analogy to solid state physics:
 - In insulators, charge screened by polarization of atoms
 - In QED, charge screened by newly created e^+e pairs

• In QCD, gauge bosons carry color \rightarrow screening & anti-screening

Sum of contributions defines running of strong coupling at 1-loop

$$\mu^2 \frac{\partial \alpha_s(\mu^2)}{\partial \mu^2} = \beta(\alpha_s) \quad \text{where} \quad \beta(\alpha_s) = -\alpha_s \sum_{n=0} \frac{\alpha_s}{4\pi} \beta_n$$

Coefficients known up to four loops

. . .

$$\beta_0 = \frac{11}{3}C_A - \frac{4}{3}T_R n_f$$

$$\beta_1 = \frac{17}{12}C_A^2 - \left(\frac{5}{6}C_A + \frac{1}{2}C_F\right)T_R n_f$$

• Unless $n_f \ge 17$, 1-loop beta function is negative \rightarrow confinement

[Bethke] Proc. HP α_s (2015)

QCD in e^+e^- annihilation

- SPEAR (SLAC): Discovery of quark jets
- PETRA (DESY) & PEP (SLAC): First high energy (>10 GeV) jets Discovery of gluon jets (PETRA) & pioneering QCD studies
- LEP (CERN) & SLC (SLAC): Large energies → more reliable QCD calculations, smaller hadronization uncertainties Large data samples → precision tests of QCD

Basic process for $e^+e^- \to \text{hadrons}$

Discovery of the gluon

Typical three-jet event (right) vs. two-jet event (left)

[ALEPH]

• Identify hadronic activity in experiment with partonic activity in pQCD theory

\Rightarrow Requirements

- Applicable both to data and theory
 - partons
 - stable particles
 - measured objects (calorimeter objects, tracks, etc.)
- Gives close relationship between jets constructed from any of the above
- Independent of the details of the detector, e.g. calorimeter granularity

Further requirements from QCD

 $\bullet~$ Infrared safety \rightarrow no change when adding a soft particle

• Collinear safety \rightarrow no change when substituting particle with two collinear particles

Counterexample:

- Shape variables characterize event as a whole
- Thrust (introduced 1978 at PETRA)

$$T = \max_{\vec{n}} \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{j} |\vec{p}_{j}|}$$

- $T \rightarrow 1$ back-to-back event
- $T \rightarrow 1/2$ spherically symmetric event

Vector for which maximum is obtained \rightarrow thrust axis \vec{n}_T

• Thrust major/minor

$$T_{\text{maj}} = \max_{\vec{n}_{\text{maj}} \perp \vec{n}_T} \frac{\sum_i |\vec{p}_i \cdot \vec{n}_{\text{maj}}|}{\sum_j |\vec{p}_j|}$$
$$T_{\text{min}} = \frac{\sum_i |\vec{p}_i \cdot (\vec{n}_T \times \vec{n}_{\text{maj}})|}{\sum_j |\vec{p}_j|}$$

• Jet broadening, computed for two hemispheres w.r.t. \vec{n}_T :

$$B_i = \frac{\sum_{k \in H_i} |\vec{p}_k \times \vec{n}_T|}{2\sum_j |\vec{p}_j|}$$

- $B_W = \max(B_1, B_2)$ Wide jet broadening
- $B_N = \min(B_1, B_2)$ Narrow jet broadening

Jet mass

$$M_i^2 = \frac{1}{E_{cm}^2} \left(\sum_{k \in H_i} p_k\right)^2$$

Computed for two hemispheres w.r.t. \vec{n}_T , then

- $\rho = \max(M_1^2, M_2^2)$ Heavy jet mass
- $M_L = \min(\tilde{M}_1^2, \tilde{M}_2^2)$ Light jet mass
- Quadratic momentum tensor

$$M^{lphaeta} = rac{\sum_i p_i^lpha p_i^eta}{\sum_j |ec p_j|^2} \;, \qquad lpha, eta = 1, 2, 3$$

Eigenvalues $\lambda_1 \ge \lambda_2 \ge \lambda_3$ used to define

–
$$S = \frac{3}{2}(\lambda_2 + \lambda_3)$$
 – Sphericity

-
$$A = \frac{3}{2}\lambda_3$$
 – Aplanarity

- $P = \hat{\lambda}_2 \lambda_3$ Planarity
- C-Parameter

Linearized momentum tensor

$$\Theta^{\alpha\beta} = \frac{1}{\sum_j |\vec{p}_j|} \sum_i \frac{p_i^{\alpha} p_i^{\beta}}{|\vec{p}_i|} \; ,$$

Eigenvalues λ_i define $C = 3(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)$

- Discovery of quark and gluon jets Sphericity & Oblateness
- Measurement of strong coupling constant T, C, B, ρ, Durham jet rates

- Measurement of quark (and gluon) spin Thrust axis
- Measurement of triple-gluon vertex BZ angle

$$\mathrm{d}\sigma_3\sim\mathrm{d}\sigma_2\sum_{\mathrm{jets}}C_Frac{lpha_s}{2\pi}rac{\mathrm{d} heta^2}{ heta^2}\mathrm{d}z\,rac{1+(1-z)^2}{z}$$

- Same equation for any variable with same limiting behavior
 - Transverse momentum $k_T^2 = z^2(1-z)^2\theta^2 E^2$
 - Virtuality $t = z(1-z)\theta^2 E^2$
- Call this the "evolution variable"

 $\frac{d\theta^2}{\theta^2} = \frac{dk_T^2}{k_T^2} = \frac{dt}{t} \qquad \leftrightarrow \qquad \text{collinear divergence}$

• Absorb z-dependence into flavor-dependent splitting kernel $P_{ab}(z)$

DGLAP evolution equation emerges, but so far only pQCD, no PDF

$$\mathrm{d}\sigma_{n+1}\sim\mathrm{d}\sigma_n\sum_{\mathrm{jets}}rac{\mathrm{d}t}{t}\mathrm{d}z\,rac{lpha_s}{2\pi}P_{ab}(z)$$

Hadronic cross section factorizes into perturbative & non-perturbative piece

- Evolution from previous slide turns into evolution equation for $f_a(x, Q^2)$
- $f_a(x, Q^2)$ cannot be predicted as function of x but dependence on Q^2 can be computed order-by-order in pQCD
- DGLAP equation

10

PDF measurements

PDF measurements

PDF uncertainties

[plots from Gavin Salam]

Motivation

- 2 Introduction to QCD
- 3 Introduction to event generators
- 4 Hard interaction
- 5 Parton shower
- 6 Multiple parton interactions
- 7 Hadronization
- 8 Hadron decays
- 9 Generator programs

[Andersson, Gustafson, Ingelman, Sjöstrand] Phys. Rept. 97(1983)31

- Lund string model: ~ like rubber band that is pulled apart and breaks into pieces, or like a magnet broken into smaller pieces.
- Complete description of 2-jet events in *e*⁺*e*[−] →hadrons

[Andersson, Gustafson, Ingelman, Sjöstrand] Phys. Rept. 97(1983)31

SUBROUTINE JETGEN(N) COMMON /JET/ K(100+2)+ P(100+5) COMMON /PAR/ PUD: PS1: SIGMA: CX2: EBEG: WFIN: IFLBEG COMMON /DATA1/ MEBO(9:2); CHIX(4:2); PMAS(19) IFLS6N=(1D-IFLBEG)/5 W=2.*EBEG C 1 FLAVOUR AND PT FOR FIRST QUARK IFL1=IABS(IFLBEG) PT1=SISMA+SQRT(-ALOS(RANF(D))) PHI1=A.2832+RANE(D) PX1=PT1+COS(PHI1) PY1=PT1+SIN(PH11) n I=I+1 C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK TEL 2=1+INT (BANE (D) / PUD) PT2=SIGMA+SQRT(-ALOS(RANF(D))) PHI2=8:8849*8681(-ALO PHI2=6:2832*RANF(0) PHI2=PT2*COS(PHI2) PY2=PT2*SIN(PH12) C 3 MESON FORMED: SPIN ADDED AND FLAVOUR MIXED K(1,1)=MESO(3*(IFL1-1)+IFL2*(IFLSEN) ISPIN-INT(PS1+RANF(0)) IF(K(I,1),LE.6) GOTO 110 THIX=BANE(0) KM=K(I:1)-6+3+ISP10 K(1+2)=8+9+18PIN+1NT(TM1X+CM1X(KM+1))+1NT(TM1X+CM1X(KM+2)) C 4 MESON MASS FROM TABLE: PT FROM CONSTITUENTS 110 P(1.5)=PMAS(K(1.2)) P(1+1)=PX1+PX2 P(1,2)=PY14PY2 PMTS=P(1,1)++2+P(1,2)++2+P(1,5)++2 C 5 RANDOM CHOICE OF X=(E+PZ)MESON/(E+PZ)AVAILABLE GIVES E AND PZ I=RANF(0) IF(RANF(D).LT.CX2) X=1.-X**(1./3.)
P(1.3)=(X*W-PMTS/(X*W))/2. P(1,4)=(X*N*PMTS/(X*N))/2. C 6 IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES 120 IPD=IPD+1 IF(K(IPD:2).GE.8) CALL DECAY(IPD:1) IF(IPD.LT.I.AND.I.LE.96) 60T0 120 C 7 FLAVOUR AND PT OF QUARK FORMED IN PAIR WITH ANTIQUARK ABOUF 1EL 1#1EL 2 PX1=-PX2 PV1=-PV2 C & IF ENOUGH E+PZ LEFT, GO TO 2 W=(1.-X)*W IF(W.GT.WFIN.AND.I.LE.95) GOTO 100 RETURN SUBROUTINE LIST(N) COMMON /JET/ K(100+2)+ P(100+5) COMMON /DATA3/ CHA1(9)+ CHA2(19)+ CHA3(2) WRITE(A+110) DO 100 1-1-N IF(K(1,1).GT.0) C1=CHA1(K(1,1)) IF(K(1,1).LE.0) IC1=-K(1,1) C2=CHA2(K(I,2)) C3=CHA3((47-K(I,2))/20) IF(K(1,1).GT.0) WRITE(6,120) I, C1, C2, C3, (P(1,J), J=1,5) 100 IF(K(1:1).LE.0) WRITE(6:130) I: IC1: C2: C3: (P(1:J): J=1:5) 110 FORMAT(////T11+'1'+T17+'OR1'+T24+'PART'+T32+'STAB'+ \$T44+'PX'+T56+'PY'+T68+'PZ'+T80+'E'+T92+'M'/) FORMAT(1DX+12+4X+A2+1X+2(4X+A4)+5(4X+F8.1)) 120 FORMAT(101+12+4X+11+12+2(4X+44)+5(4X+F8.1)) 130 FORMAT(10X+12+4X+11+12+2(4X+44)+5(4X+F8.1)) END

SUBROUTINE DECAY(1PD+1) COMMON /JET/ K(100:2); P(100:5) COMMON /DATA1/ MES0(9:2); CM1X(5:2); PMAS(19) COMMON /DATA2/ IDCD(12); CBR(29); KDP(29;3) DIMENSION U(3), BE(3) C 1 DECAY CHANNEL CHOICE, GIVES DECAY PRODUCTS IDC=IDCD(K(IPD+2)-7) 100 10C=10C+1 IF(TBR.GT.CBR(IDC)) 60T0 100 ND=(59+KDP(IDC+3))/20 D0 110 I1=I+1+I+N0 K([1,1)=-IPD K(11,2)=K0P(10C,11-1) 110 P(11.5)=PMAG(K(11.2) C 2 IN THREE-PARTICLE DECAY CHOICE OF INVARIANT MASS OF PRODUCTS 2+3 IF(ND, F9.2) 60TO 130 SA=(P(IPD:5)+P(1+1:5))++2 SB=(P(1PD,5)-P(1+1,5))++2 SB=(P(1PD,5)-P(1+1,5))++2 SC=(P(1+2,5)+P(1+3,5))++2 SD=(P([+2,5)-P(]+3,5))++2 TOU=(SA-SD)*(SB-SC)/(4.*SQRT(SB*SC)) IF(K(IPD:2),GE,11) TOU=SGRT(SB+SC)+TDU++3 120 SX=SC+(SB-SC)+RANF(0) TDF=S9RT((SX-SA)*(SX-SB)*(SX-SC)*(SX-SD))/SX JF(K(IPD+2),6E,11) TDF=SX*TDF**3 IF(RANF(0)+TDU.GT.TDF) GOTO 120 P(100+5)=SQRT(SX) C 3 TWO-PARTICLE DECAY IN CM. TWICE TO SIMULATE THREE-PARTICLE DECAY 130 D0 160 IL-1:NO-1 IO=(II-1)+100-(II-2)+1P0 I2=(N0-IL-1)*100-(N0-IL-2)*(I+IL+1) PA=S0RT((P(10)5)**2-(P(11)5)+P(I2)5))**2)* &(P(10+5)**2-(P(11+5)-P(12+5))**2))/(2.*P(10+5)) 140 U(3)=2.*RANF(0)-1. PH1=6.2532*RANF(0) U(1)=SQRT(1,=U(3)++2)+COS(FHI) U(2)=SQRT(1,-U(3)++2)+SIN(PHI) (U(1)*P(I0*1)*U(2)*P(I0*2)*U(3)*P(I0*3))**2/ A(P(10,1)++2+P(10,2)++2+P(10,3)++2) IF(K(IPD(2), 6E, 11, AND, IL, E9, 2, AND, RANF(0), GT, TDA) 60T0 140 00 150 J=1+3 P(11,J)=PA+U(J) 150 P(12+J)=-PA+U(J) P(11+4)=SORT(PA*#2+P(11+5)*#2) 160 P(12+4)=SORT(PA*#2+P(12+5)*#2) 540 P(32,4>=808T(A++2+P(12-5)++2) C + BCCAY PROUTSE LOBERT TRANSFORMED TO LAB SYSTEM 00 100 11-ND-114-1 00 100 11-ND-114-2>1P0 00 100 14-13 150 BE(J)=P(10,4)/P(10,4) GA+P(20,4)/P(10,4) GA+P(20,4)/P(10,5) D0 190 11=1+1L+I+ND BEP=BE(1)+P(I1+1)+BE(2)+P(I1+2)+BE(3)+P(I1+3) DO 180 J=1+3 180 P(11+J)=P(11+J)+GA*(GA/(1+GA)*BEP+P(11+4))#BE(J) 190 P(11+4)=EA*(P(11+4)+BEP)

 \approx 200 punched cards Fortran code

SUBROUTINE EDIT(N) COMMON /JET/ K(100+2)+ P(100+5) COMMON /EDPAR/ ITHROW, PZMIN: PMIN: THETA: PMI: BETA(3) REAL ROT(3+3)+ PR(3) C 1 THROW AWAY NEUTRALS OR UNSTABLE OR WITH TOO LOW P7 OR P I1=0 DO 110 I=1+N IF(ITHROW.GE.1.AND.K(1.2).GE.8) GOTO 110 IF(ITHROW.GE.1.AND.K(1.2).GE.6) G010 11
IF(ITHROW.GE.2.AND.K(1.2).GE.6) G010 11
IF(ITHROW.GE.3.AND.K(1.2).E0.10 000 11 IF(P(1+3).LT.PZMIN.OR.P(1+4)++2-P(1+5)++2.LT.PMIN++2) 60T0 K(11(1)=IDIM(K(I(1))) DO 100 J=1.5 100 P([1,J)=P([,J) 110 CONTINUE C 2 ROTATE TO GIVE JET PRODUCED IN DIRECTION THETA, PHI 1F(THETA.LT.1E-4) GOTO 140 ROT(1,1)=COS(THETA)+COS(PHI) ROT(1,2)=-SIN(PHI) ROT(1,3)=SIN(THETA) (COS(PHI) ROT(1+3)=SIN(THETA)*COS(PHI) ROT(2+1)=COS(THETA)*SIN(PHI) ROT(2+2)=COS(PHI) ROT(2:3)=SIN(THETA)*SIN(PHI) ROT(3+1)=-SIN(THETA) ROT(3:2)=0. ROT(3,3)=COS(THETA) 00 130 I=1.N 00 120 J=1,3 120 PR(J)=P(1,J) 120 PR(J)=PR(1)+PR(1)+PR(1)+PR(1)+PR(2)+PR(2)+PR(1)+PR(3) 130 P(1,J)=POT(J+1)+PR(1)+PR(1)+PR(2)+PR(2)+PR(2)+PR(3) C 3 OVERALL LORENTZ BOOST GIVEN BY BETA VECTOR 3 OVERALL LORGHIE BOVEN BIT DE LA VELLUA 140 IF (BETA(1)**2*BETA(2)**2*BETA(3)**2-BETA(2)**2*BETA(3)**2 SA*1, /SBRT(1, -BETA(1)**2-BETA(2)**2-BETA(3)**2) 00 140 1=1:N RFP=RFTA(1)*P(1:1)*BETA(2)*P(1:2)*BETA(3)*P(1:3) 00 150 Ja1+3 150 P(1;J)=P(1;J)+GA*(GA/(1;+GA)+BEP+P(1;4))+BETA(J) 160 P(1;4)=GA*(P(1;4)+BEP) RETURN ENO RI OCK DATA COMMON /PAR/ PUD, PB1, SIGMA, C12, EBEG, HFIN, IFLBEG COMMON /EDFAR/ ITHROM, FIMIN, FMIN, THETA, PH1, BETA(3) COMMON /EDFATA// HED(9-2), CHIX(4-2), PHAG(2) COMMON /DATA2/ HEED(102), CH2(8129), HAG(19) COMMON /DATA2/ IDCD(12), CBR(29), KDP(29;3) COMMON /DATA3/ CHA1(9), CH42(19), CH43(2) DATA PUD/0.4/; PS1/0.5/; SIGMA/350./; CX2/0.77/; \$E8E6/10000./+ WFIN/100./+ IFL8E6/1/ DATA ITHRON/1/, PZMIN/0./, PMIN/0./, THETA,PHI,BETA/3*0./ DATA MESO/7:13:22*8.5*5.5*7.7*72*6:5*63:3*5.5*7 DATA CHE/2*0.5*1.2*0.5*1.1*0.2*0.5*0.5*2*0.5*2*0 DATA PMAS/0, 2*139.6/2*493.7/2*477.7/135.5540.41/ DATA PMAS/0, 2*139.6/2*493.7/2*477.7/135.548.5/57.6/ 82*755.9/2*892.2/2*896.37770.2/782.6/1019.6/ DATA 1000/0+1+6+11+12+13+15+17+19+21+22+25/ DATA CBR/1, 10, 381:0, 681:0, 918:0, 969:1, 10, 426:0, 662:0, 959: \$0,980(1,11,11,0.667(1,0.667(1,0.667(1,0.667(1,0.667(1,1)))) \$0,899(0,987(1,0.666(0,837(0,984(1)))) DATA K0P/11148215112481511123364673514561577222 41224662211318372513381715515481822833838228 43338355773900088338999144068440800 DATA CHA1/U05*000*08538999144065440840800 DATA CHA1/U05*000*05575

Experimental situation in 2017

Need to cover large dynamic range

- Short distance interactions
 - Signal process
 - Radiative corrections
- Long-distance interactions
 - Hadronization
 - Particle decays

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int dx_1 dx_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short distance}}$$

Need to cover large dynamic range

- Short distance interactions
 - Signal process
 - Radiative corrections
- Long-distance interactions
 - Hadronization
 - Particle decays

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int dx_1 dx_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short distance}}$$

Need to cover large dynamic range

- Short distance interactions
 - Signal process
 - Radiative corrections
- Long-distance interactions
 - Hadronization
 - Particle decays

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int dx_1 dx_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short distance}}$$

Need to cover large dynamic range

- Short distance interactions
 - Signal process
 - Radiative corrections
- Long-distance interactions
 - Hadronization
 - Particle decays

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int dx_1 dx_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short distance}}$$

The structure of MC events

- Hard interaction
- Parton shower
- Multiple parton interactions
- Hadronisation
- Hadron decays
- Higher-order QED corrections

The structure of MC events

• Hard interaction

- Parton shower
- Multiple parton interactions
- Hadronisation
- Hadron decays
- Higher-order QED corrections

$$\hat{\sigma}_N = \int_{\text{cuts}} \mathrm{d}\hat{\sigma}_N = \int_{\text{cuts}} \left[\prod_{i=1}^N \frac{\mathrm{d}^3 q_i}{(2\pi)^3 2E_i} \right] \delta^4 \left(p_1 + p_2 - \sum_i^N q_i \right) \ |\mathcal{M}(p_1, p_2, q_1, \dots, q_N)|^2$$

$$\hat{\sigma}_N = \int_{\text{cuts}} \mathrm{d}\hat{\sigma}_N = \int_{\text{cuts}} \left[\prod_{i=1}^N \frac{\mathrm{d}^3 q_i}{(2\pi)^3 2E_i} \right] \delta^4 \left(p_1 + p_2 - \sum_i^N q_i \right) \ |\mathcal{M}(p_1, p_2, q_1, \dots, q_N)|^2$$

• Hard scattering matrix element

$$\hat{\sigma}_N = \int_{\text{cuts}} \mathrm{d}\hat{\sigma}_N = \int_{\text{cuts}} \left[\prod_{i=1}^N \frac{\mathrm{d}^3 q_i}{(2\pi)^3 2E_i} \right] \delta^4 \left(p_1 + p_2 - \sum_i^N q_i \right) \ |\mathcal{M}(p_1, p_2, q_1, \dots, q_N)|^2$$

- Hard scattering matrix element
- Phase space integration including cuts

$$\hat{\sigma}_N = \int_{\text{cuts}} \mathrm{d}\hat{\sigma}_N = \int_{\text{cuts}} \left[\prod_{i=1}^N \frac{\mathrm{d}^3 q_i}{(2\pi)^3 2E_i} \right] \delta^4 \left(p_1 + p_2 - \sum_i^N q_i \right) \ |\mathcal{M}(p_1, p_2, q_1, \dots, q_N)|^2$$

- Hard scattering matrix element
- Phase space integration including cuts

Monte Carlo task

- 1 Numerical integration for total cross section
 - Needs MC methods due to high dimensionality $D\gtrsim4$
- 2 Event generation
 - $\rightarrow (3 \cdot N 4)$ random numbers
 - $\rightarrow N$ final state momenta
 - \rightarrow natural "event" for 2 \rightarrow *n* scattering
 - ⇒ Simply histogram any observable of interest
 - \Rightarrow No need for dedicated calculations

Simple example: $t(\rightarrow bW) \rightarrow b\bar{l}\nu_l$

• Matrix element for hard process

$$|\mathcal{M}|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2\theta_W}\right)^2 \frac{p_t \cdot p_\nu \ p_b \cdot p_l}{(p_W^2 - m_W^2)^2 + \Gamma_W^2 m_W^2}$$

• Phase space integration in 5 dimensions

$$\Gamma = \frac{1}{2m_t} \frac{1}{128\pi^3} \int \mathrm{d}p_W^2 \frac{\mathrm{d}^2 \Omega_W}{4\pi} \frac{\mathrm{d}^2 \Omega}{4\pi} \left(1 - \frac{p_W^2}{m_t^2}\right) |\mathcal{M}|^2$$

• 5 random nos. for
$$p_W^2, \theta_W, \phi_W, \theta_{l,\nu}, \phi_{l,\nu}$$

 \rightarrow 3 momenta = event

Toy model: 1-dimensional integration

$$\int_{a}^{b} \mathrm{d}x f(x) \approx (b-a) \cdot \langle f \rangle$$

Toy model: 1-dimensional integration

$$\int_{a}^{b} \mathrm{d}x f(x) \approx (b-a) \cdot \langle f \rangle \pm (b-a) \cdot \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}}$$

Multi-dimensional integration

• What are "uniform random numbers" in

$$\int \left[\prod_{i=1}^{N} \frac{\mathrm{d}^{3} q_{i}}{(2\pi)^{3} 2 E_{i}}\right] \delta^{4} \left(p_{1} + p_{2} - \sum_{i}^{N} q_{i}\right) \left|\mathcal{M}(p_{1}, p_{2}, q_{1}, \dots, q_{N})\right|^{2} ?$$

 \rightarrow RAMBO algorithm as generator of flat phase space points

Multi-dimensional integration

• What are "uniform random numbers" in

$$\int \left[\prod_{i=1}^{N} \frac{\mathrm{d}^{3} q_{i}}{(2\pi)^{3} 2 E_{i}}\right] \delta^{4} \left(p_{1} + p_{2} - \sum_{i}^{N} q_{i}\right) \left|\mathcal{M}(p_{1}, p_{2}, q_{1}, \dots, q_{N})\right|^{2} \quad ?$$

 \rightarrow RAMBO algorithm as generator of flat phase space points

Improving convergence

Several ways to improve the convergence behaviour by reducing the variance:

Importance sampling

$$\int \mathrm{d}x f(x) = \int \mathrm{d}x \, g(x) \frac{f(x)}{g(x)} \equiv \int \mathrm{d}G \, \frac{f(x)}{g(x)}$$

using random numbers distributed according to $G(x) = \int_0^x dx' g(x')$

- Multi-channel integration
- VEGAS algorithm

g(y)'

Inverse transformation method

- Goal: Sample x according to f(x) using flat random numbers y as input
- Prescription: $x = F^{-1}(y)$
- Corresponds to variable transformation of the differential:

which is solved by T(x) = y = F(x)

• Example: $f(x) = \frac{1}{\tau} e^{-x/\tau} \rightarrow F(x) = 1 - e^{-x/\tau}$

Hit-or-miss method (Rejection method)

- Most often it is not possible to determine *F*⁻¹
- Workaround: Find simple helper function $c \cdot g(x)$ which overestimates f(x) and can be sampled

The closer the functions match, the more efficient
 ⇒ can use multiple estimators = multi-channel

Example: Growth of the number of diagrams contributing to the tree-level $gg \rightarrow ng$ amplitude.

n	#diagrams
2	4
3	25
4	220
5	2485
6	34300
7	559405
8	10525900

- Textbook: Use completeness relations to square amplitudes sum/average over external states (helicity and color) Computational effort grows quadratically with number of diagrams
- Real life: Amplitudes are complex numbers first compute them, then add and square Effort grows linearly with number of diagrams
- Applies to dynamical degrees of freedom only
 - Consider helicity: Polarizations depend on momenta need to recompute for each phase-space point
 - Consider color: Mostly summed over at low multiplicity independent of other d.o.f. \rightarrow no need to recompute

(Helicity)

[Dixon] hep-ph/9601359 [Dittmaier] hep-ph/9805445

• Weyl-van-der-Waerden spinors for helicity states +/-

$$\chi_{+}(p) = \begin{pmatrix} \sqrt{p^{+}} \\ \sqrt{p^{-}}e^{i\phi_{p}} \end{pmatrix} \qquad \chi_{-}(p) = \begin{pmatrix} \sqrt{p^{-}}e^{i\phi_{p}} \\ -\sqrt{p^{+}} \end{pmatrix} \qquad p^{\pm} = p^{0} \pm p^{3}$$
$$p_{\perp} = p^{1} + ip^{2}$$

Basic building blocks for all amplitudes $+,-,\perp$ directions define "spinor gauge"

Massive Dirac spinors in terms of WvdW spinors

$$u_{+}(p,m) = \frac{1}{\sqrt{2\bar{p}}} \left(\begin{array}{c} \sqrt{p_{0} - \bar{p}} \ \chi_{+}(\hat{p}) \\ \sqrt{p_{0} + \bar{p}} \ \chi_{+}(\hat{p}) \end{array} \right) \qquad \qquad \bar{p} = \operatorname{sgn}(p_{0}) |\vec{p}|$$
$$u_{-}(p,m) = \frac{1}{\sqrt{2\bar{p}}} \left(\begin{array}{c} \sqrt{p_{0} + \bar{p}} \ \chi_{-}(\hat{p}) \\ \sqrt{p_{0} - \bar{p}} \ \chi_{-}(\hat{p}) \end{array} \right) \qquad \qquad \hat{p} = (\bar{p}, \vec{p})$$

• γ^5 conveniently defined in Weyl representation

$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \left(egin{array}{cc} -\sigma^0 & 0 \ 0 & \sigma^0 \end{array}
ight)$$

Projection operator $P_{R,L} = P_{\pm} = (1 \pm \gamma^5)/2$ identifies lower/upper component of Dirac spinors as right-/left-handed

 Massless polarizations constructed from u_±(p) and u_±(k) with external light-like gauge vector k

$$\varepsilon^{\mu}_{\pm}(p,k) = \pm \frac{\bar{u}_{\mp}(k)\gamma^{\mu}u_{\mp}(p)}{\sqrt{2}\,\bar{u}_{\mp}(k)u_{\pm}(p)} \; .$$

Defines light-like axial gauge

For massive particles decompose momentum p using k

$$b = p - \kappa k$$
 $\kappa = \frac{p^2}{2pk}$ \Rightarrow $b^2 = 0$

Transverse polarizations as in massless case ($p \rightarrow b$) plus longitudinal

$$\varepsilon_0^{\mu}(p,k) = \frac{1}{m} \left(\bar{u}_-(b)\gamma^{\mu}u_-(b) - \kappa \,\bar{u}_-(k)\gamma^{\mu}u_-(k) \right)$$

- Vertices & propagators already known
- Building blocks for Standard model complete!

(Color)

[Maltoni,Stelzer,Willenbrock] hep-ph/0209271 [Duhr,SH,Maltoni] hep-ph/0607057

- QCD amplitudes can be stripped of color factors
- Fundamental representation for *n*-gluons

$$\mathcal{A}_n(p_1,\ldots,p_n) = \sum_{\vec{\sigma}\in P(2,\ldots,n)} \operatorname{Tr}(\lambda^{a_1}\lambda^{a_{\sigma_2}}\ldots\lambda^{a_{\sigma_n}}) A(p_1,p_{\sigma_2},\ldots,p_{\sigma_n})$$

• Adjoint representation for *n*-gluons

$$\mathcal{A}_{n}(p_{1},\ldots,p_{n}) = \sum_{\sigma \in P(2,\ldots,n-1)} \left[F^{a_{\sigma_{2}}} \ldots F^{a_{\sigma_{n-1}}} \right]_{a_{n}}^{a_{1}} A(p_{1},p_{\sigma_{2}},\ldots,p_{\sigma_{n-1}},p_{n})$$

• Color-flow representation for *n*-gluons

$$\mathcal{A}_{n}(p_{1},\ldots,p_{n}) = \sum_{\vec{\sigma}\in P(2,\ldots,n)} \delta_{j_{\sigma_{2}}}^{i_{1}} \delta_{j_{\sigma_{3}}}^{i_{\sigma_{2}}} \ldots \delta_{j_{1}}^{i_{\sigma_{n}}} A(p_{1},p_{\sigma_{2}},\ldots,p_{\sigma_{n}})$$

- We can sample colors just like we sample momenta
- Average number of partial amplitudes is then smallest in color-flow basis

	Average # of partials			
п	Gell-Mann	Color-flow	Adjoint	
4	4.83	1.28	1.15	
5	15.2	1.83	1.52	
6	56.5	3.21	2.55	
7	251	6.80	5.53	
8	1280	17.0	15.8	
9	7440	48.7	56.4	
10	47800	158	243	

	Time [s/10 ⁴ pt]		
n	со	CD	
4	1.20	1.04	
5	3.78	2.69	
6	14.2	7.19	
7	58.5	23.7	
8	276	82.1	
9	1450	270	
10	7960	864	

- Computational effort reduced further by not stripping amplitudes of color factors
- Evaluate dynamically at each vertex
 → straightforward computer algorithm
- Color dressing (CD) vs. color ordering (CO)

(Amplitude construction)

[James] CERN-68-15 [Byckling,Kajantie] NPB9(1969)568

• Need to evaluate in a process-independent way

$$d\Phi_n(p_a, p_b; p_1, ..., p_n) = \left[\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i}\right] \delta^4\left(p_a + p_b - \sum_{i=1}^n p_n\right)$$

• Use factorization properties of phase-space integral

$$\mathrm{d} \Phi_n(p_a,p_b;p_1,..,p_n) = \mathrm{d} \Phi_{n-m+1}(p_a,p_b;p_{1m},p_{m+1},..,p_n) \ imes rac{\mathrm{d} s_{1m}}{2\pi} \ \mathrm{d} \Phi_m(p_{1m};p_1,..,p_m)$$

• Apply repeatedly until only 2-particle phase spaces remain

$$\mathrm{d}\Phi_2 = rac{\lambda(s_{ij},m_i^2,m_j^2)}{16\pi^2 2s_{ij}}\mathrm{d}\cos heta_i\mathrm{d}\phi_i$$

 $\lambda^2(a,b,c) = (a-b-c)^2 - 4bc$ - Källen function

- Construct one integrator (= importance sampling) per diagram and combine into multi-channel
- Intuitive notion of pole structure, multi-channel determines balance
- Factorial growth with number of diagrams can be tamed by recursion

NLO matrix elements (\rightarrow talk + tutorial!)

- UV divergences in V removed by renormalization procedure
- V and R both still infrared divergent
- IR divergences cancel between V and R (KLN theorem)
- Exploit this fact to construct finite integrand for MC ⇒ NLO subtraction

• Commonly used ME generators

	Built-in models	$2 \rightarrow$	$ M_n ^2$	$d\Phi_n$	NLO
ALPGEN	SM	8	recursive	Multi	-
AMEGIC	SM,MSSM,ADD	6	diagrams	Multi	sub
Comix	SM	8	recursive	Multi	sub
CompHEP	SM,MSSM	4	textbook	Single	-
HELAC	SM	8	recursive	Multi	sub+loop
MadEvent	SM,MSSM,UED	6	diagrams	Multi	sub+loop
Whizard	SM,MSSM,LH	8	recursive	Multi	sub

[Christensen, Duhr] arXiv:0806.4194

- Most ME generators suited for any physics model, but implementing Feynman rules tedious and error-prone
- Automated by FeynRules package
- Extracts vertices from Lagrangian based on minimal information about particle content
- Writes generator-specific output permitting easy cross-checks

The structure of MC events

- Hard interaction
- Parton shower
- Multiple parton interactions
- Hadronisation
- Hadron decays
- Higher-order QED corrections

- Cannot solve QCD and calculate e.g. $pp \rightarrow t\bar{t}H$ exactly
- But can calculate parts of the perturbative series in *α_s*:

- Going beyond $\mathcal{O}(\alpha_s^2)$ non-trivial, only $gg \to H$ so far!
- $\alpha_s^2 \approx 1\% \Rightarrow$ high enough precision, right?
- Why is that not always true?

- Inclusive observables calculable at fixed-order (→ KLN theorem for cancellation of infrared divergences)
- But if not inclusive → finite remainders of infrared divergences:

logarithms of
$$rac{\mu_{
m hard}^2}{\mu_{
m cut}^2}$$
 with each $\mathcal{O}(lpha_s)$

- can become large and spoil perturbative convergence Examples:
 - Observables that resolve soft emissions, like $p_{\perp}^Z = \mathcal{O}(1 \; {\rm GeV})$ in DY
 - Hadron-level predictions: confinement at $\mu_{
 m had} \, \overline{pprox} \, 1 \, {
 m GeV}$
- $\Rightarrow~$ Need to resum the series to all orders
 - Problem: We are not smart enough for that.
 - Approximation in the collinear limit: Resum only the logarithmically enhanced terms in the series
 - What do they look like and how do we "resum" them?

Resummation of multiple emissions

- Higher terms ≡ additional QCD emissions
 → partons survive (no emissions) or split (real emission)
- \Rightarrow Resummation in analogy to radioactive decay, but:
 - evolution in energy scale "t"
 - generalisation to non-constant decay probability

Resummation of multiple emissions Radioactive decay

• Constant differential decay probability

 $f(t) = \text{const} \equiv \lambda$

• Survival probability $\mathcal{N}(t)$

$$-\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}t} = \lambda \,\mathcal{N}(t)$$

 $\Rightarrow \mathcal{N}(t) \sim \exp(-\lambda t)$

• Resummed decay probability $\mathcal{P}(t)$

 $\mathcal{P}(t) = f(t) \,\mathcal{N}(t) \sim \lambda \exp(-\lambda t)$

Resummation of multiple emissions Radioactive decay

• Constant differential decay probability

 $f(t) = \text{const} \equiv \lambda$

• Survival probability $\mathcal{N}(t)$

$$-\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}t} = \lambda \,\mathcal{N}(t)$$

$$\Rightarrow \mathcal{N}(t) \sim \exp(-\lambda t)$$

• Resummed decay probability $\mathcal{P}(t)$

 $\mathcal{P}(t) = f(t) \mathcal{N}(t) \sim \lambda \exp(-\lambda t)$

QCD emissions

Differential branching probability

$$f(t) \equiv \frac{\mathrm{d}\sigma_{n+1}^{(\mathrm{approx})}(t)}{\mathrm{d}\sigma_n} (\rightsquigarrow \text{ later})$$

• Survival probability $\mathcal{N}(t)$

$$-\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}t} = f(t)\,\mathcal{N}(t)$$

$$\Rightarrow \mathcal{N}(t) \sim \exp\left(-\int_0^t \mathrm{d}t' f(t')\right)$$

• Resummed branching probability $\mathcal{P}(t)$

$$\mathcal{P}(t) = f(t) \mathcal{N}(t) \sim f(t) \exp\left(-\int_0^t dt' f(t')\right)$$

Universal structure at all orders (cf. ee ightarrow 3 jets)

• Factorisation of QCD real emission ME for collinear partons (*i*, *j*):

$$|\mathcal{M}_{n+1}|^2 \xrightarrow{\text{approx}} |\mathcal{M}_n|^2 \times \left[8\pi\alpha_s \ \frac{1}{2p_i p_j} \ \mathcal{K}_{ij}(p_i, p_j)\right]$$

Universal structure at all orders (cf. ee ightarrow 3 jets)

• Factorisation of QCD real emission ME for collinear partons (*i*, *j*):

$$|\mathcal{M}_{n+1}|^2 \xrightarrow{\mathrm{approx}} |\mathcal{M}_n|^2 \times \left[8\pi\alpha_s \ \frac{1}{2p_i p_i} \ \mathcal{K}_{ij}(p_i, p_j)\right]$$

- M_{n+1} = real emission matrix element
- \mathcal{M}_n = Born matrix element
- Massless propagator $\frac{1}{2p_ip_j}$

ightarrow Evolution variable of shower $t \sim 2p_i p_j$, e.g. k_{\perp} , angle, ...

- \mathcal{K}_{ij} splitting kernel for branching $(ij) \rightarrow i + j$

Specific form depends on factorisation scheme (DGLAP, Catani-Seymour, Antenna, ...)

Universal structure at all orders (cf. ee ightarrow 3 jets)

• Factorisation of QCD real emission ME for collinear partons (*i*, *j*):

$$|\mathcal{M}_{n+1}|^2 \xrightarrow{\text{approx}} |\mathcal{M}_n|^2 \times \left[8\pi\alpha_s \ \frac{1}{2p_i p_i} \ \mathcal{K}_{ij}(p_i, p_j) \right]$$

- M_{n+1} = real emission matrix element
- M_n = Born matrix element
- Massless propagator $\frac{1}{2p_ip_j}$ \rightarrow Evolution variable of shower $t \sim 2p_ip_i$, e.g. k_{\perp} , angle, ...
- \mathcal{K}_{ij} splitting kernel for branching $(ij) \rightarrow i + j$

Specific form depends on factorisation scheme (DGLAP, Catani-Seymour, Antenna, ...)

• Factorisation of phase space element

$$\mathrm{d}\Phi_{n+1} \rightarrow \mathrm{d}\Phi_n \,\mathrm{d}\Phi_1 = \mathrm{d}\Phi_n \,\mathrm{d}t \,\frac{1}{16\pi^2} \,\mathrm{d}z \,\frac{\mathrm{d}\phi}{2\pi}$$

 \Rightarrow Combination gives differential branching probability

$$\frac{\mathrm{d}\sigma_{n+1}^{(\mathrm{approx})}}{\mathrm{d}\sigma_n} \sim \sum_{ij} \mathrm{d}t \left[8\pi\alpha_s \; \frac{1}{2p_i p_j} \; \mathcal{K}_{ij}(p_i, p_j) \right] \sim \frac{\mathrm{d}t}{t} \; \frac{\alpha_s}{2\pi} \; \mathcal{K}_{ij}$$

64/102

Summary of main parton shower ingredients

• "Sudakov form factor" = Survival probability of parton ensemble:

$$\mathcal{N}(t') \sim \exp\left(-\int_{0}^{t'} \mathrm{d}t f(t)
ight) \quad
ightarrow \Delta(t',t'') = \prod_{\{ij\}} \exp\left(-\int_{t'}^{t''} rac{\mathrm{d}t}{t} \, rac{lpha_s}{2\pi} \, \mathcal{K}_{ij}
ight)$$

- Evolution variable t: not time, but scale of collinearity from hard to soft t ~ 2p_ip_i ~ e.g. angle θ, virtuality Q², relative transverse momentum k²₁
- Starting scale μ_O^2 (time t = 0 in radioactive decay) defined by hard ME
- Cutoff scale related to hadronisation scale t₀ ~ μ²_{had}
- Other variables (z, ϕ) generated directly according to $d\sigma_{ii}^{(PS)}(t, z, \phi)$

Summary of main parton shower ingredients

• "Sudakov form factor" = Survival probability of parton ensemble:

$$\mathcal{N}(t') \sim \exp\left(-\int_{0}^{t'} \mathrm{d}t f(t)
ight) \quad
ightarrow \Delta(t',t'') = \prod_{\{ij\}} \exp\left(-\int_{t'}^{t''} rac{\mathrm{d}t}{t} \; rac{lpha_s}{2\pi} \; \mathcal{K}_{ij}
ight)$$

- Evolution variable t: not time, but scale of collinearity from hard to soft t ~ 2p_ip_i ~ e.g. angle θ, virtuality Q², relative transverse momentum k²₁
- Starting scale μ_O^2 (time t = 0 in radioactive decay) defined by hard ME
- Cutoff scale related to hadronisation scale $t_0 \sim \mu_{
 m had}^2$
- Other variables (z, ϕ) generated directly according to $d\sigma_{ii}^{(PS)}(t, z, \phi)$

\Rightarrow Differential cross section (up to first emission)

 $d\sigma^{(B)} = d\Phi_B \mathcal{B}$

Summary of main parton shower ingredients

• "Sudakov form factor" = Survival probability of parton ensemble:

$$\mathcal{N}(t') \sim \exp\left(-\int_{0}^{t'} \mathrm{d}t f(t)
ight) \quad
ightarrow \Delta(t',t'') = \prod_{\{ij\}} \exp\left(-\int_{t'}^{t''} rac{\mathrm{d}t}{t} \; rac{lpha_s}{2\pi} \; \mathcal{K}_{ij}
ight)$$

- Evolution variable t: not time, but scale of collinearity from hard to soft t ~ 2p_ip_i ~ e.g. angle θ, virtuality Q², relative transverse momentum k²₁
- Starting scale μ_O^2 (time t = 0 in radioactive decay) defined by hard ME
- Cutoff scale related to hadronisation scale t₀ ~ μ²_{had}
- Other variables (z, ϕ) generated directly according to $d\sigma_{ii}^{(PS)}(t, z, \phi)$

\Rightarrow Differential cross section (up to first emission)

$$d\sigma^{(PS)} = d\Phi_B \mathcal{B}\left[\underbrace{\Delta^{(PS)}(t_0, \mu_Q^2)}_{\text{unresolved}} + \underbrace{\sum_{\{ij\}} \int_{t_0}^{\mu_Q^2} dt \frac{d\sigma_{ij}^{(PS)}}{dt} \Delta^{(PS)}(t, \mu_Q^2)}_{\text{resolved}}\right]$$

Parton showers in a nutshell

$$\sigma_{\rm incl} \left| \Delta(t_0, \mu_Q^2) \right|$$

+...

 $+\int\limits_{\cdot}^{\mu_Q^2} \frac{\mathrm{d}t}{t} \int \mathrm{d}z \frac{\alpha_s}{2\pi} P(z) \ \Delta(t,\mu_Q^2)$ t₀

$$+\frac{1}{2}\left(\int_{t_0}^{\mu_Q^2} \frac{\mathrm{d}t}{t} \int \mathrm{d}z \frac{\alpha_s}{2\pi} P(z)\right)^2 \Delta(t,\mu_Q^2)$$

Simulation of parton shower cascade

- Start with parton ensemble from hard scattering
- Recursively generate branchings of each parton according to

$$\mathcal{P}(t) = f(t) \mathcal{N}(t) \sim f(t) \exp\left(-\int_0^t dt' f(t')\right)$$

Veto algorithm

- Generate next branching "time" *t* with probability $\mathcal{P}(t, t_{\text{previous}}) = f(t) \exp\left(-\int_{t_{\text{previous}}}^{t} f(t') dt'\right)$
- Analytically:

 $t = F^{-1} \left[F(t_{\text{previous}}) + \log(\#_{\text{random}}) \right]$ with $F(t) = \int_{t_0}^t dt' f(t')$

- If integral/its inverse are not known: "Veto algorithm" = extension of hit-or-miss
 - Overestimate $g(t) \ge f(t)$ with known integral G(t)

$$\rightarrow t = G^{-1} \left[G(t_{\text{previous}}) + \log(\#_{\text{random}}) \right]$$

- Accept t with probability $\frac{f(t)}{g(t)}$ using hit-or-miss

$$\frac{2d\cos\theta}{\sin^2\theta} = \frac{d\cos\theta}{1-\cos\theta} + \frac{d\cos\theta}{1+\cos\theta} = \frac{d\cos\theta}{1-\cos\theta} + \frac{d\cos\bar{\theta}}{1-\cos\bar{\theta}} \approx \frac{d\theta^2}{\theta^2} + \frac{d\bar{\theta}^2}{\bar{\theta}^2}$$

Independent jet evolution

$$\mathrm{d}\sigma_3 \sim \mathrm{d}\sigma_2 \sum_{\mathrm{jets}} C_F \frac{\alpha_s}{2\pi} \frac{\mathrm{d}\theta^2}{\theta^2} \mathrm{d}z \, \frac{1 + (1 - z)^2}{z} \to \mathrm{d}\sigma_2 \sum_{\mathrm{jets}} \frac{\mathrm{d}t}{t} \mathrm{d}z \, \frac{\alpha_s}{2\pi} P_{ab}(z)$$

[Sjöstrand] PLB175(1985)321

- Iteration leads to tree-like approximation of higher-order configuration
- Slight difference between final-state and initial-state evolution

 Initial-state emission probability must account for probability to resolve (different) parton at larger x

$$\mathrm{d}\mathcal{P}_{\mathrm{emit}}(x,t) = rac{\mathrm{d}t}{t}\int rac{\mathrm{d}z}{z}\;rac{lpha_s}{2\pi}P_{ab}(z)rac{f_b(x/z,t)}{f_a(x,t)}$$

- Hard to implement in forward evolution (increasing *t*)
- Standard method is to evolve backward in initial state

[Marchesini,Webber] NPB310(1988)461

 Gluons with large wavelength not capable of resolving charges of emitting color dipole individually

- Emission occurs with combined charge of mother parton instead
- Net effect is destructive interference outside cone with opening angle defined by emitting color dipole
- Can be implemented directly by angular ordering variable or additional ordering criterion in parton showers

[CDF] PRD50(1994)5562

- Color coherence observed experimentally in 3-jet events
- Purely virtuality ordered PS's produce too much radiation in central region
- Angular ordered / angular vetoed PS's ok

- In parton showers, the collinear/soft limit is never reached But who absorbs recoil when a splitting parton goes off mass-shell?
- No answer in DGLAP evolution equations ↔ collinear limit Ambiguity introduces large uncertainties, especially at large t
- Natural solution provided by 2 → 3 splittings Spectator kinematics enters splitting probability
- Basic concept of dipole showers

final-final

final-initial

initial-final

initial-initial

• Publicly available generators

	Evolution variable	Splitting variable	Coherence
Ariadne	dipole- k_{\perp}^2	pole- k_{\perp}^2 Rapidity	
Herwig	$E^2 \theta^2$	Energy fraction	AO
Herwig++	$(t-m^2)/z(1-z)$	LC mom fraction	AO/Dipole
Pythia <6.4	t	Energy fraction	Enforced
Pythia \geq 6.4	k_{\perp}^2	LC mom fraction	Enforced
Sherpa <1.2	t	Energy fraction	Enforced
Sherpa \geq 1.2	k_{\perp}^2	LC mom fraction	Dipole
Vincia	variable	variable	Antenna

- Example: Drell-Yan lepton pair production at Tevatron
- If ME computed at leading order, then parton shower is only source of transverse momentum
- Any emissions softer than μ_F in terms of ordering parameter
- Significantly harder emissions experimentally, e.g. Drell-Yan

"Traditional" approach:

 $\delta_{\text{PS}} = |\text{Pythia} - \text{Herwig}|$

More rigorous assessment:

Systematic variations of ambiguities:

- Splitting kernels (finite pieces)
- Recoil scheme (onshell 1 → 2 splittings with 4-mom conservation!)
- Evolution variable (with correct collinear behaviour)
- Shower starting scale (often connected to μ_f)
- Shower cutoff scale transition to hadronisation (often part of tuning)
- *α_S* and PDFs (might be connected with tuning)

The structure of MC events

- Hard interaction
- Parton shower
- Multiple parton interactions
- Hadronisation
- Hadron decays
- Higher-order QED corrections

• Soft inclusive collision

 $\sigma_{\rm tot} = \sigma_{\rm elastic} + \sigma_{\rm single\ diffractive} + \sigma_{\rm double\ diffractive} + \sigma_{\rm non-diffractive}$

- First experimental evidence for double-parton scattering: γ + 3 jets in CDF paper (1997)
- DPS component fitted to 53%
- Extraction of DPS cross section

$$\sigma_{\rm DPS} = \frac{\sigma_{\gamma j} \sigma_{jj}}{\sigma_{\rm eff}}$$

with

 $\sigma_{\rm eff} = 14 \pm 4 \; \rm mb$

• Example: ATLAS measurement of W + 2 jets (2013)

• Extraction of DPS cross section $\sigma_{\text{DPS}} = \frac{\sigma_W \sigma_{jj}}{\sigma_{\text{eff}}}$ with $\sigma_{\text{eff}} = 15 \pm 3 \text{ mb}$

[Sjöstrand,Zijl] PRD36(1987)2019

- Partonic cross sections diverge roughly like dp_T^2/p_T^4
- Total cross section at LHC exceeded for $p_T \approx 2\text{-}5~\text{GeV}$
- Interpretation as possibility for multiple hard scatters with

$$\langle n
angle = rac{\sigma_{
m hard}}{\sigma_{
m non-diffractive}}$$

• Main free parameter is $p_{T,\min}$ Determines size of σ_{hard}

Hardness of the collision determines overlap Collisions with large overlap in turn have more secondary interactions

[Sjöstrand,Skands] hep-ph/0408302

- When attaching IS shower to secondary scattering can ask at each point whether emission or new interaction is more likely
- New evolution equation

$$\begin{aligned} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_T} &= \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_T} + \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_T}\right) \\ &\times \exp\left\{-\int\limits_{p_T} \mathrm{d}p_T' \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_T'} + \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_T'}\right)\right\} \end{aligned}$$

Typical UE analysis:

- Select hard direction of event, e.g. leading track
- Define towards/transverse/away regions
- Measure underlying activity in transverse region (uncorrelated)

- New models embed scatters into existing color topology
- Three different options for string drawing
 - At random
 - Rapidity ordered
 - String length optimized

[Sjöstrand,Skands] hep-ph/0402078

- Secondary scatterings need to be color-connected to something
- Simplest model would decouple them from proton remnants
- Next-to-simplest model would put all scatters on one color string

[Butterworth,Forshaw,Seymour] hep-ph/9601371 [Borozan,Seymour] hep-ph/0207283

• Assume parton distribution within beam hadron is

 $\frac{\mathrm{d}n_a(x,\mathbf{b})}{\mathrm{d}^2\mathbf{b}\mathrm{d}x} = f_a(x)\,G(\mathbf{b})$

• Use electromagnetic form factor

$$G(\mathbf{b}) = \int \frac{\mathrm{d}^2 \mathbf{k}}{(2\pi)^2} \frac{\exp(\mathbf{k} \cdot \mathbf{b})}{(1 + \mathbf{k}^2/\mu^2)^2}$$

- EM measurements indicate $\mu_P = 0.71$ GeV μ is however left free in model \rightarrow tuning
- Continue model below $p_{T,\min}$ with same b-space parametrization but cross section as Gaussian in $p_T \rightarrow$ inclusive non-diffractive events

The structure of MC events

- Hard interaction
- Parton shower
- Multiple parton interactions
- Hadronisation
- Hadron decays
- Higher-order QED corrections

The inter-quark potential

- Measure QCD potential from quarkonia masses
- Or compute using lattice QCD
- Approximately linear potential ↔ QCD flux tube

[Andersson, Gustafson, Ingelman, Sjöstrand] PR97(1983)31

- Start with example $e^+e^- \rightarrow q\bar{q}$
- QCD flux tube with constant energy per unit rapidity
- New $q\bar{q}$ -pairs created by tunneling (κ string tension)

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t} = \exp\left\{-\frac{\pi^2 m_q^2}{\kappa}\right\}$$

- Expanding string breaks into hadrons, then yo-yo modes
- Baryons modeled as quark-diquark pairs

The Lund string model

- String model very well motivated, but many parameters
- But also gives genuine prediction of "string effect"
- Gluons are kinks on string String accelerated in direction of gluon
- Infrared safe matching to parton showers Gluons with $k_T \lesssim 1/\kappa$ irrelevant

[Webber] NPB238(1984)492

- Underlying idea: Preconfinement
- Follow color structure of parton showers: color singlets end up close in phase space
- Mass of color singlets peaked at low scales ($\approx t_c$)

Primary Light Clusters

 Mass spectrum of primordial clusters independent of cm energy

Naïve model

- Split gluons into qq̄-pairs

 → flavour distribution important,
 momentum distribution not too much
- Color-adjacent pairs form primordial clusters
- Clusters decay into hadrons according to phase space → baryon & heavy quark production suppressed

Improved model

- Heavy clusters decay into lighter ones
- Three options: $C \rightarrow CC$, $C \rightarrow CH \& C \rightarrow HH$
- Leading particle effects

b g g c **String vs Cluster**

[T.Sjöstrand, Durham'09]

\mathbb{B}^{0} π^{-} \mathbb{K}^{+} η \mathbb{K}^{+} η \mathbb{R}^{-} \mathbb{R}^{+})	
program	PYTHIA	HERWIG
model	string	cluster
energy-momentum picture	powerful	simple
	predictive	unpredictive
parameters	few	many
flavour composition	messy	simple
	unpredictive	in-between
parameters	many	few

"There ain't no such thing as a parameter-free good description"

The structure of MC events

- Hard interaction
- Parton shower
- Multiple parton interactions
- Hadronisation
- Hadron decays
- Higher-order QED corrections

- String and clusters decay to some stable hadrons but main outcome are unstable resonances
- These decay further according to the PDG decay tables
- Many hadron decays according to phase space but also a large variety of form factors known
- Not all branching ratios known precisely plus many BR's in PDG tables do not add up to one
- Significant effect on hadronization yields, hadronization corrections to event shapes, etc.

- Previous generations of generators relied on external decay packages Tauola (τ-decays) & EvtGen (*B*-decays)
- New generation programs Herwig++ & Sherpa contain at least as complete a description
- Spin correlations and B-mixing built in
- No interfacing issues
- Previous generations of generators relied on external package Photos to simulate QED radiation
- New generation programs Herwig++ & Sherpa have simulation of QED radiation built in

- Motivation
- 2 Introduction to QCD
- 3 Introduction to event generators
- 4 Hard interaction
- 5 Parton shower
- 6 Multiple parton interactions
- 7 Hadronization
- 8 Hadron decays
- 9 Generator programs

[Buckley et al.] arXiv:1101.2599

Herwig

- Originated in coherent shower studies \rightarrow angular ordered PS
- Front-runner in development of MC@NLO and POWHEG
- Simple in-house ME generator & spin-correlated decay chains
- Original framework for cluster fragmentation

Pythia

- Originated in hadronization studies \rightarrow Lund string
- Leading in development of multiple interaction models
- Pragmatic attitude to ME generation \rightarrow external tools
- Extensive PS development and earliest ME⊕PS matching

Sherpa

- Started with PS generator APACIC++ & ME generator AMEGIC++
- Current MPI model and hadronization pragmatic add-ons
- Leading in development of automated ME⊕PS merging
- Automated framework for NLO calculations and MC@NLO

Partial generators/calculators

MadGraph5_aMC@NLO

[Allwall et al.] arXiv:1405.0301

- Tree-level and virtual matrix elements (NLO)
- NLO subtraction and matching

PowhegBox

[Alioli et al.] arXiv:1002.2581

- Matrix elements at NLO (excluding virtuals)
- Hardest emission in Powheg formalism

OpenLoops

[Cascioli et al.] arXiv:1111.5206

• Virtual matrix elements

Alpgen

[Mangano et al.] arXiv:hep-ph/0206293

• Multi-jet matrix elements and merging at LO

EvtGen

[Lange et al.] Nucl.Instrum.Meth. A462 (2001) 152-155

Dedicated heavy-flavour hadron decays

Tauola

[Jadach et al.] Comput.Phys.Commun. 64 (1990) 275-299

Dedicated tau decays

Photos

[Barberio et al.] Comput.Phys.Commun. 66 (1991) 115-128

- QED radiation from final state leptons
- ... and many others for specialised purposes

Rivet [Buckley et al.] arXiv:0103.0694

- LHC-successor to HZTool Collection of exp. data & matching analysis routines
- Spirit: "Right MC describes everything at the same time"

Professor [Buckley et al.] arXiv:0907.2973

- Tuning in multi-dimensional parameter space of MC
- Generate event samples at random parameter points Analyze them with Rivet Parametrize observables Minimize χ² and cross-check

Tune comparisons

Deviation metrics per gen/tune and observable group:

Gen	Tune	UE	Dijets	Multijets	Jet shapes	W and Z	Fragmentation	B frag
AlpGen	HERWIG6	-	1.83	5.36	2.48	0.91	-	-
	PYTHIA6-AMBT1		1.55	2.80	0.61	0.53		
	PYTHIA6-D6T		1.38	2.67	2.31	1.67		
	PYTHIA6-P2010		1.09	2.65	2.03	1.48		
	PYTHIA6-P2011		1.12	2.60	0.48	0.24		
	PYTHIA6-Z2		1.48	2.63	0.55	0.48		
	PYTHIA6-profQ2		1.16	2.65	1.43	1.29		
HERWIG	AUET2-CTEQ6L1	0.43	0.55	0.77	0.35	0.58	22.80	2.38
	AUET2-LOxx	0.25	0.71	0.60	0.39	0.88	22.13	2.29
Herwig++	2.5.1-UE-EE-3-CTEQ6L1	0.27	0.87	0.78	0.51	0.98	10.58	1.32
	2.5.1-UE-EE-3-MRSTLOxx	0.23	1.05	0.78	0.50	0.65	10.58	1.32
PYTHIA6	AMBT1	0.39	1.20	0.54	0.77	0.27	0.93	1.65
	AUET2B-CTEQ6L1	0.16	0.92	0.44	0.59	0.74	0.67	1.29
	AUET2B-LOxx	0.13	1.33	0.55	0.58	1.15	0.67	1.30
	D6T	0.58	0.79	0.50	0.56	1.25	0.36	2.63
	DW	0.81	0.78	0.61	0.56	1.33	0.36	2.63
	P2010	0.30	0.93	0.82	1.07	0.30	0.44	1.75
	P2011	0.12	0.89	0.67	1.02	0.53	0.43	2.13
	ProfQ2	0.51	0.67	0.81	0.51	0.64	0.30	1.65
	Z2	0.18	0.94	0.73	0.80	0.30	0.95	2.78
Pythia8	4C	0.30	0.97	0.93	0.50	0.90	0.38	1.12
Sherpa	1.3.1	0.68	0.47	0.34	0.71	0.35	0.75	2.48

[LH'11 SM WG] arXiv:1203.6803 [hep-ph]

Thank you for your attention and active participation!

- L. Dixon, F. Petriello (Editors) Journeys Through the Precision Frontier Proceedings of TASI 2014, World Scientific, 2015
- R. K. Ellis, W. J. Stirling, B. R. Webber <u>OCD and Collider Physics</u> Cambridge University Press, 2003
- R. D. Field Applications of Perturbative QCD Addison-Wesley, 1995
- A. Buckley et al. General-Purpose Event Generators for LHC Physics Phys. Rept. 504 (2011) 145
- T. Sjöstrand, S. Mrenna, P. Z. Skands PYTHIA 6.4 Physics and Manual JHEP 05 (2006) 026