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e numerical recursion for tree-level amplitudes
e color representation

e (BCFW recursion)

e one-loop amplitudes

e (collinear factorization)

e singularities of tree-level matrix elements

e subtraction for real radiation integrals




Col | inear fa ctorization To separate a perturbatively cz_:llculable from
the universal in hadron scattering.

PDFs are related to the structure
of the hadrons, universal to the
scattering process
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Phase space (includes | Matrix element (squared)‘ Observable, imposes
spin/color summation) contains model parameters,| phase space cuts
governs the kinematics governs the dynamics




Nedaa-Alexandra Asbah (ATLAS), Epiphany2017, Krakéw

ttH Production at the LHC

Events ‘triggered by Single |ept0n tl’iggers ttH(bb) Feynman diagram
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Single Lepton channel

e One leptonic W decay

e One electron or one muon
e At least 4 jets

e At least 2 b-tagged jets

T
T

Di-lepton channel

@ Very challenging analysis : * Two leptonic W decays
@ 4 b-jets in final state * Iwo opposite charge light
@ Large background from ftt+jets leptons (e,u)
@ Strategy : Divide into different CENSEEIRCRISE

regions e Atleast 2 b-tagged jets

@ This dataset used 3.2 fb-' from 2015 & 10.0 fb-' from 2016.
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Signal & Background Composition

= = Control Region = = Signal Region
ATLAS Simulation Prelminary )i , ight [Jif« 21c [ii+ 216
Wiaev  [Ononst

15=13TeV

@ The ttH signal process is modelled
using MadGraph5_aMC@NLO+Pythia8

@ Dominating background (tt+jets)
Wit+ > 1 b jets
tt+ 21 cjets Powheg+Pythiab
Ott+ light jets

@ Other backgrounds
Btt+V
“Non-tt il
Single Top, W/Z+jets, Diboson
Multi-jet (Fakes and non-prompt)




High multiplicity

e signal: O(1 x 10%) graphs

e background: O(3 x 10%) graphs




High multiplicity

e signal: O(1 x 10%) graphs

e background: O(3 x 10%) graphs

e 1-loop signal: O(2 x 10°) graphs

e 1-loop background: O(3 x 10°) graphs

e real(extra gluon) signal: O(1 x 10%) graphs

e real(extra gluon) background: O(5 x 10%) graphs
Leading Order:

OJ(;Oan = J d(DTl }Ma b—m‘ O%Lo :é

Next-to-Leading Order:
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High multiplicity

e signal: O(1 x 10°) graphs

e background: O(3 x 10%) graphs

e 1-loop signal: O(2 x 10°) graphs

e 1-loop background: O(3 x 10°) graphs

e real(extra gluon) signal: O(1 x 10%) graphs

e real(extra gluon) background: O(5 x 10%) graphs

e need milions of evaluations in practical Monte Carlo calculations
e need many partonic processes
e want to study many other processes besides ttH production

e need automation to deal with these multiplicities




Numerical evaluation of amplitudes

Phase space integration

(©) = jdcbn({p}n) Mo (p))P On(Pa)

has to be done by Monte Carlo.




Numerical evaluation of amplitudes

Phase space integration

has to be done by Monte Carlo.

Helicity and Color summation

does not involve complicated restrictions like “cuts”

(©) = [[40u(tpla) 3 3 G {phas Wy () O (60

A {ahn

and could be conceived to be performed algebraicly. For many-particle final states, however,
this leads to huge expressions for

3 IMalphe, Ay ()P

Al {ahn

The alternative is to treat helicity and color summation on the same footing as phase space
integration, and just evaluate

Ma{phny (A, {ak)

numerically as function of momentum- helicity- and color-configurations.



Numerical evaluation of amplitudes

e Expressions in terms of invariants for scattering amplitudes involving several particles
tend to become huge.

e Eventual goal is (just) their repeated numerical evaluation in a MC.

Avoid expressions completely!

e Essentially the only expressions involved should be the vertices and the propagators of
the field theory.

e Use an algorithm to evaluate scattering amplitudes, given the numerical values of
momenta, helicity and color degrees of freedom of the external particles as initial
input.




Zero-dimensional field theory

Consider ¢*-theory on a single space-time point

2

2= avew{zlo+s@]} . s@)=-T¢'-2¢*, mimt <o)

We trivially have the linear Dyson-Schwinger equation

@ h d i h ,d h’g d?
0=J_md¢TEexp{%U¢+S(¢J]}=(I—Tm2—+—g—)z[ﬂ

Z[]] generates zero-dimensional “Green functions”, connected “Green functions”
generated by
WI(]] =1nZ]]]

Non-linear Dyson-Schwinger equation
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Zero-dimensional field theory

aWl)) _ 5= G

Dyson-Schwinger equation for Green functions from

dJ n!

n=0

Chi i Cini G hgCup
ey (5n_1+9 Z ————— o
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We may cast the equation into a graphical form

_.=6n:1_+z +§ _ZW ) _<:g ) O:Fl

i+j=n
Solutions for tadpole 0
er h : non—pe - RE(—I(I)3] <0
Cl]) ' 0.8 —94 C.I pert X 1
T g

Non-perturbative solution corresponds %—\
to other integration contour in the com-

plex ¢-plane in the definition of Z[]].




Zero-dimensional field theory

Introduce more zero-dimensional points

S(@)=—Y 3 Aubibi— Y 207, Im(Ag <0
Kl

Dyson-Schwinger equation

. oW1J] Wl - oW\’
""k“?“#*%[f‘ i ahf)]

Expand generating function in terms of Green functions

i1 iz ik

Wy oy B
e Gigdgeie 3 v 2 v "3 1
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Graphical interpretation

1 o 1
@-)Y < 5@ k—1=ia], k< =gham , O=h

i+j=n



Tree-level recursion @5 — + Z
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Perturbative Dyson-Schwinger recursion

Theories with four-point vertices: .

-y & 5
Tl =i o) k—n ®
1 1 1
@) Sgte®

Theories with more types of currents:

Q=) g+

R
~@=2 i +~®

Currents may have several components.

distinguishable external lines corre-
spond to on-shell particles
— polarization vectors, spinors, 1

sum of momenta of on-shell lines is
equal to momentum of off-shell line

vertices directly from Feynman rules
in momentum space

off-shell line carries propagator from
Feynman rules, in any gauge

on-shell (n + 1)-leg amplitude

— from current with n on-shell legs
— by omitting the final propagator

— and contracting with pol.vec. or
spinor instead



e Berends, Giele 1987: planar multi-gluon amplitudes

e Caravaglios, Moretti 1995: formulation for arbitrary lagrangians
e Draggiotis, Kleiss, Papadopoulos 1998: multi-gluon amplitudes

e Caravaglios, Mangano, Moretti, Pittau 1998: multi-jet processes
e Kanaki, Papadopoulos 1999: HELAC (standard model)

e Moretti, Ohl, Reuter 2001: O'Mega

e Mangano, Moretti, Piccinini, Pittau, Polosa 2003: ALPGEN

e Gleisberg, Hoeche 2008: Comix

e Kleiss, van den Oord 2011: Camorra

e Actis, Denner, Hofer, Scharf, Uccirati 2012: Recola (one-loop)



QCD Feynman rules
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Treating eg. gluon off-shell currents as 8 x 4-dimensional vectors A" and performing all
contractions in each vertex is out of the question.



Sum over spins and colors

Calculation of a cross section requires phase space integration and summation over
spins and colors.

0= Jd(D Z Z M (D, spin, color)|* O(®)
spin color

e Phase space must we dealt with within a Monte Carlo approach (that’s why we
need to be able to evaluate scattering amplitudes numerically efficiently)

e Spin may be dealt with within a Monte Carlo approach:
1 1

Yol fe-wed e | wener =,
— 0 0

- random helicities: u. (p) = v20(£(1 —p))

- random polarizations: ui[p) = eimp
e Color may be dealt with also within a Monte Carlo approach

What color representation to use?



Color-flow representation

DA =) 5PAA =) 2THTTORAA™ = ) AP, Al =v2(Te)A
L]

a a,b a,b

Contract all external gluons with \/Z(T‘“)ji
and replace in all gluon propagators 5%° = 2Tr{T°T"}
Color structure of the vertices become

3-gluon: 232 f2¢(T9)

(T)(T)R = == (885285 — 8116267

Jll Jli - \/z 1273370 33701 72
4—glu0n: 4(fc1befcde o fadefbce][—l—a)}: (Tb);i [TC)}I_:: [Td)]:lj

1 L L
= (26}1 825281 12862525

2 12713704 Ja 7)1 )27 )3
o 6?1 6?2 6@3 5?4 o 5?1 6?2 6?3 6}4 o 6?1 6?2 6?3 6?4 o 6?1 6?2 6?3 6?4)

J2 734 71 )3 13701 )4 )2 J3 74 7)2 N Ja 13 N )2

. . 1 o | QT
quark-gluon: V2 (T*)](T°);2 = 7 (5;;‘5;12 - N_Sjl: ‘S;i)

1/N, contribution in quark-gluon vertex, but trivial gluon propagator: 6]1; 6]‘11




Color-dressed amplitudes

Given the external colors (i1,j1), (i2,72), ..., (in,jn) the internal colors are almost fixed.

(i,j1) = (1,2) (iy32) = (2,3)  — 81828 — 8187287 #0 & (i3,j3) = (1,3)

)2 7)3 13 7)1 )2
(hyi1) = (3,2) (i2,42) = (2,3) —  (i3,43) = (2,2) (i3,33) = (3,3)

Full colored amplitude can be evaluated quickly (no summations in vertices) provided the
skeleton can be quickly constructed event by event.
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Color-connected amplitudes

Scattering amplitude with n color pairs can be expressed as

i]iz...in . i] i-Z :LT‘L
Mj1j2"'jn o : 6jg(1)6jg(2J .. '6j6[“] AU(])Z,- ..,TL]
all perm.

where A,(1,2,...,n) does not depend on the external color, but may depend on N..
For small n, the explicit color sum is more efficient than color sampling

> IMPE =) Ny, Ay

color o,0’

where y(o, 0’) is the number of common cycles in ¢ and o'.

The DS skeleton for A, can be found from M, by imagining that N. = n, and
assigning the external color configuration

(1,a(1) (2,0(2)) --- (n,0(n))

and multiplying quark-gluon vertices by —iy/N. if they involve an internal gluon
with 1 =j.



Color summation: planar decomposition

There exist other decompositions of amplitudes with gluons and/or (anti-)quarks in which
the color content C is factorized from the spin/kinematics content A

M=) CloJA(o) , Y IMP=} > (Z cwcm*) A(o)A(7)"

0€Sn color 0€Sn T€Sn \color

The dual amplitudes A can be calculated by planar DS recursion.
The number n is the number of color pairs ngjon + %(nquark + Mantiquark ), €xcept

e when there are only gluons: N = Ngon — 2 : del Duca, Dixon, Maltoni 1999

C(O‘) — fan+z%(1)b1 fbﬂlgmbz . fb‘anao‘(nbenfT fbnflag(n]anﬂrl

e when there are only gluons plus a quark-pair: . = Tgjy0n :

C(o) = (T T%@) .. T T ),
For only gluons plus 2 quark-pairs, also 1. = Ngjyon + %(nquark + Nantiquark) :



Weyl spinors for light-like momenta

_ L(P)) Lol = (—P1+ipz>
v ( )= T a L po+ps

0
(0 ~ /Ipo £ p3l po+p3)
P = (R(p)> Rip) = Po+Ps3 (m +ip2
Dual spinors are defined b= (L)', 0) e = 0 1
without complex conjugation <p!::(0,(8TR(pDT) - (—4 0>
(pllq] = [pllq) =0 (pq) = (pllg) , [pql=Ipld]
(pllp) = Ipllpl =0 (qp) =—(pq) , [gpl=—Ipq]
)Pl + Ipl(pl =¥ = vup" (pa)lgpl =2p-q
plp) =plpl =0 , (pP=I[plp=0 (plKlql = [qlKip)
p* = 3 (phy*Ip] (pl¥iq] = (pr)[rq]

Schouten identity




BCFW recursion

Multi-gluon amplitudes have much simpler expressions than one would expect from the
Feynman graphs, in particular the MHV amplitudes:

{pipy)"*
(P1P2)(P2p3) -+ * (Pn-2Pn-1) (Pn-1Pn) (PnP1)

A{7,j7, (the rest)™) =

BCFW recursion allows for easy construction of such simple expressions

e it is a recursion of on-shell amplitudes, rather than off-shell Green functions
e it is most efficiently applied as a recursion of expressions

e it is easily proven using Cauchy's theorem

For a rational function f of a complex variable z which vanishes at infinity, we have

dz f(z) rRoeo Residue(f Q z = z;)
%R ( )

2 z - —Zi
1

This is applied to amplitudes by turning them into functions of a complex variable by
analytical continuation of the momenta to complex values.



BCFW recursion

Pi Pit

Ki(z) =pt + -+ pt + ze!

= —Pip1 — - —ph+zet
. (P1+“'+Pi)2
K(z?=0 & z=-—
=) 2py+---+pi)-e
n—I1
: .0 1 S h L
A(]*,Z,...,n—hn’)zz Z A(1+’z,...,1,—1<§;)K—ZA(K1;,1+1,...,n—1,n )
i=2 h=+,— 1t



BCFW recursion

T+x+omn

e Does not work for all combinations of shift vector and helicities of shifted gluons,
amplitude does not vanish as function of z at infinity for all of them,

e but working choices do exist for all helicity amplitudes.

e Starting point of the recursion are 3-point amplitudes, which do not necessarily vanish
when momenta are shifted

o 23)3 N 323

1,2 = <— 17,2%,3%) =
n—1

A(1%,2,.n=1m) =) ) A(i*,z,...,i,—f(h)éﬂ(f(h?,iﬂ,...,n—],ﬁ)
i=2 h=+,— i



BCFW recursion

T+x+omn

e Does not work for all combinations of shift vector and helicities of shifted gluons,
amplitude does not vanish as function of z at infinity for all of them,

e but working choices do exist for all helicity amplitudes.

e Starting point of the recursion are 3-point amplitudes, which do not necessarily vanish
when momenta are shifted

e numerical recursion competitive up to 9 external gluons
e efficiency can be improved by hard-wiring few-gluon expressions

e generalized to include quarks Luo, Wen 2005



One-loop amplitudes

Example: a selection of tree-level and one-loop graphs for gg — bb v, e*v,

9 b g W

vy




One-loop amplitudes

Loop integral can be expressed in terms of universal up-to-4-point scalar loop integrals.

w N(¢) B L. dwe
J S D0 DuD) . 2= C“”’”’“””J Dy, (()Dy, (), (O)Dy, (0

i] <iz <i3 <i.4

a~¢
+ Z c3(ir, 12,13 JD (0)D¢, (£)Dy, (£)

- .2_ 2 11<12<13
Dl =) m + Z ¢, (i, 1 J e + Zc (1 )J art
S N ONG — ) Dy

+ R + Olw—4)

k1 —kn ky — kg This graph just depicts the momentum flow:
€+ Ky e off-shell currents may be attached
0+ kn (4% to external lines
kn —kn—1 k3 —k, e vertices may actually be 4-point

vertices




One-loop amplitudes

Loop integral can be expressed in terms of universal up-to-4-point scalar loop integrals.

w N(¢) B L. dwe
J S D0 DuD) . 2= C“”’”’“””J Dy, (()Dy, (), (O)Dy, (0

i] <iz <i3 <i.4

a~¢
+ Z c3(ir, 12,13 JD (0)D¢, (£)Dy, (£)

D= (t+kf-m| o
: : : + Zc i, 1 J at + Zc(i)J de
&= 7 "IDLpy (T &~ DL

+ R + Olw—4)

e integral over rational function of { leads to (poly-)logarithms of rational functions
of squared momenta and masses. R are remnant rational (non-logarithmic) terms.

e integrals require dimensional regularization because of UV and IR divergencies

w N(2) B I, I,
Jd eDl(f)Dz(f)---Dn(ﬁ) T (w—4)2 + w—14 + I+ O0(w—4)

O(w —4) can be neglected at NLO



One-loop amplitudes

Loop integral can be expressed in terms of universal up-to-4-point scalar loop integrals.

w N(¢) B L. dwe
J S D0 DuD) . 2= C“”’”’“””J Dy, (()Dy, (), (O)Dy, (0

i] <iz <i3 <i.4

d“¢
+ D eslininis JD (0D, (0D (€)

11<ix<i3

d«? . d«?
- Xald [+ L |5

11<iy 1

+ R + Olw—4)

Di(l) = (¢ +ki)> —m?

e the master integrals are universal functions depending on numerical values of mo-
menta and masses, and several programs exist to evaluate them
LoopTools, QCDLoop, OnelLOop, Golem, Collier

e the determination of the coefficients had long been approached only alge-
braicly /analytically and was a major bottleneck for a long time



One-loop amplitudes PEXoEs

Loop integral can be expressed in terms of universal up-to-4-point scalar loop integrals.

w N(¢) B . dwe
J S @Dy D~ 2 Clininiy i) J Dy, (()Dy, (), (O)Dy, (0

11 <ix<iz<ig

a~¢
+ Z c3(ir, 12,13 JD (0)D¢, (£)Dy, (£)

- 2 2 1]<12<13
DO = (e = + Zc i1 J a7t + Zc(i)J at
&= 7 "IDLpy (T &~ DL

+ R+ O(w—4)

Almost the same relation for the integrand, before integration.

N(¢) _ Z caliny 12y 13y 1a) + Ca(8 10, 12, 13, 14)
D (€)D,(£) - - - Dy (£) D;, (£)Ds, (£) Dy, (£) Dy, (€)

i]<iz<i3<i4
n Z 11>12>13 + C3 (61, 12, 13)
)Dlz(e)DB(e)

1<y <13

2 11>12) + C2(4 1, 12) ci(i) +ci(Giy)
P M (I N R

11<iy i1




_ - . Ossola, Papadopoulos, Pittau 2006
One-loop amplitudes FYiuRels B Kt 00,
e the coefficients c;(.) are exactly the ones we need.
e the polynomials ¢;(,.) have only few coefficients, and integrate to zero.

e any chosen value of { leads to an equation — all coefficients can be determined.

e smart choices of { put denominators to zero, and give rise to so-called multiple cuts.
Using these, the matrix equation can be triangulated.

e requires efficient evaluation of N({).

N () Z caliny 12y 13y 1a) + Ca(f; 1, 12y 13, 14)
T Di] (Q)Dlz (Q)Dlg (Q)DM (()’)

11<iy <i3 <ig

c3(in, g, 13) + C3(6 i, 12, 13)
t 2 T D, 0DLODL (0

1<y <i3

2 (i, 12) + C2(4 14, 12) ci(i) +ci(Giy)
P M (I N R

11<iy 4



One-loop amplitudes PEXoEs

e the coefficients c;(.) are exactly the ones we need.
e the polynomials ¢;(,.) have only few coefficients, and integrate to zero.
e any chosen value of { leads to an equation — all coefficients can be determined.

e smart choices of { put denominators to zero, and give rise to so-called multiple cuts.
Using these, the matrix equation can be triangulated.

e requires efficient evaluation of N({).

e part of the rational terms R, related to the mismatch between 4-dimenional and
w-dimensional denominators, are provided within the method.

e the other part, related to the mismatch between 4-dimenional and w-dimensional nu-
merator has to be calculated separately and follows the structure of renormalization
counter terms. Garzelli, Malamos, Pittau 2010

e these “complications” can be avoided by including master integrals with 5 denomi-
nators in dimensions higher than 4. Giele, Kunszt, Melnikov 2008



One-loop amplitudes FENEEy
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One—loop am plitudes recursively

One-loop recursion:

0-7y 2+ T L@+1@+3Y

i+j=n i+j+k=n i+j=n

Actual loops generated by last two terms. Third term in more detail:

P p g bvarPie . P,
aqupizzﬁJ - V\F}pa “(—=q = P14+ P3) cpq+P2¥Piz

'\- - 4.

q+P2 pin pin

Momentum conservation:
Pr—Pr=P=py +p, +- +pi,

Integrand satisfies tree-level recursion:

q+P1 q+P1

®n=T < Y

i+j=n i+j+k=n



& e
-l e

1 [
(p1 +p2)? —m? } [[P1+P2+P4}2—m2 ]

DI

<P s becvp qV1 qu tr qu
—.—q Pi = Z Z ngz HjeD[(q +pj)2 — m]Z]

[D|<n+1 r=0




Tensor integrals

We can increase the basis of universal loop integrals to tensor integrals

dvi9v, * " Qv,
TV]VZ"'VT(®) - deq —_ T
Hje@ Di

Many efficient techniques exist to evaluate them recursively.

Passarino, Veltman 1979

del Aguila, Pittau 2004

AvH, Vollinga, Weinzierl 2005

Binoth, Guillet, Heinrich, Pilon, Schubert 2005
Denner, Dittmaier 2005

Diakonidis, Fleischer, Riemann, Tausk 2009
Collier: Denner, Dittmaier, Hofer 2016

Originally the coefficients G in an expansion of the one-loop amplitude

MU =3 3 G (D) Ty, (D)
r D

were determined analytically as expressions.



Planar one-loop multi-gluon amplitudes

One-loop benchmark Giele, Zanderighi 2008, Lazopoulos 2008

®—"O . —%é‘%

|D|—1

A qV1qV2...qu
—%—07\: GAK
[ Z Z Vivy "Vr Hje'D(q+p1,j)2

Dc{i—1,i,...,j} r=0

Separate the q-dependence from the 3-point vertex

Vit 1y p2) = Vo, iy pz) +X55:4°

SQ?Vz-v-vr(fD’k’j) - SQTw---vr(fD’k) Vi Algﬂ Jj Z WVPGAEH AT
l=k+1

A
+ 9'\’,:/'\/2"'“&71 (D’k) X'v va]2+] g




Planar one-loop multi-gluon amplitudes

1.

2.

calculate all necessary tensor integrals Ty,+,...v, (D)
calculate all tree-level off-shell currents Ai”].

calculate the coefficients §¥1V2V7 (D)

calculate all currents )C. —O

calculate one-loop currents via

calculate missing R terms via



Planar one-loop multi-gluon amplitudes

1. calculate all necessary tensor integrals Ty,+,.., (D)
2. calculate all tree-level off-shell currents Ai“].

3. calculate the coefficients G¥1V27Vr (D)

4. calculate all currents )Q —O

5. calculate one-loop currents via
—0=43+%+—§.+—%0+—%.+—C.+{+~a

Generalization to general one-loop amplitudes

e Recola Actis, Denner, Hofer, Scharf, Uccirati 2012

e (Graph-by-graph) OpenLoops Cascioli, Maierhofer, Pozzorini 2012



Collinear factorization

Naive parton model for hadron scattering

do (Paa Pb — {P } J H dX] X]) dG(Pa»Pb - {Px})

j=a,b,1,.

e the parton densities f, and fragmen-
tation function f; describe physics of

2
long time scales Pa /.:: X1P;
— not calculable within perturba-
tion theory —':=: X2 P2
— universal to the hard scattering
process Ps \’:: X3P3
— to be extracted from experi-
ments

e the partonic scattering cross section G describes physics of short time scales, and
should be calculable within perturbative QCD

— Asymptotic freedom: small coupling for high energy



Perturbative QCD

For the squared scattering amplitude |M|?

blue lines represent identified partons
mirrored graphs represent M and M*
first square represents leading order

higher orders by adding one coupling,
that is two 3-point vertices connected by
gluon integrated over its phase space

gluons crossing the cut are real

— are on-shell
— participate in momentum conserva-
tion

gluons not crossing the cut are virtual,
are off-shell

p
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p
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p
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Trouble with divergences

Integrating over the phase space of the extra, unobserved gluons, one encounters mass or
IR divergences stemming form non-integratible singularities:

do

] o dk . . .. . o
soft singularities: J K| collinear singularities: L T cost

o Ikl
appear because all components of integra-  appear because integration momentum k

tion momentum k may become arbitrarily = may become arbitrarily collinear with mass-
small less parton momentum p;

e all soft singularities cancel with each other, as predicted by the Kinoshita-Lee-
Nauenberg theorem

e collinear singularities do not all cancel
R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer, G.G. Ross, 1979:

Non-cancelling collinear divergences can be indentified with the external partons, and can
be factorized, to all orders in QCD.



Factorization by EGMPR

Partonic cross section can be written as

do(pa, Po — {pi}) = J [T dyiT(ysn) d6(qa, gv — {qiiw)

j=a,b,1,...

Ja/b =Ya/oPa/b > Pi=VYidi

e corrected partonic cross section do Pa
is free of IR singularities
e singularities are factored into the T}
Po

e requires the introduction of an arbi-
trary factorization scale p

e formula has the same form as the original factorization formula

e absorb the [ formally into the fj:

(x5 10) =jdydzfj(y)r(z; W5(x —yz)



"Renormalized” formula for hard scattering cross section

do (Pa) Pb — {Pl} J’ H dy) y]) dé—(pa)pb — {pl}) H)

j=a,b,1,...
Pa/b = XapPap , Pi=xipi
do does not depend on L, while the fj and ¢ do
1 may be put equal to renormalization scale
because their dependence on 1t is known, QCD evolution can be applied to the 1;]-

do may be sensitive logarithms of ratios of various scales in the process, which are
remnants from the cancellations

these may need to be resummed to all orders in the coupling in certain kinematical
regions (eg via parton shower)

higher fixed order terms may be needed to reduce scale dependence

jet-algorithm, or even just phase space cuts, play role of fragmentation functions



Ingredients for NLO calculations

LO calculation

e The observable OL© represents some interesting distribution, and includes phase space
cuts avoiding any pair of partons to become collinear, and any parton to become soft.

o M is the Born (tree-level) matrix element.



Ingredients for NLO calculations

LO calculation

NLO calculation: add

n+

] SE SN <2 1

o M. is the one-loop amplitude

(O)NO = J A, 28 (MOML) 0% + J A M P ONED

° J\/[ﬂ1 is the real-radiation (tree-level) matrix element with one more parton;
e ONM9 includes a jet algorithm that allows one pair of partons to become collinear, and

one parton to become soft;



Ingredients for NLO calculations

LO calculation

NLO calculation: add
(O)NHO = debn 2R(MIM)) 05° + Jd®n+1 VL 2 ONED

— J do, {za&(m&?)mg)) + J dd; 8,y + en] OLO
+ [ a0 | 030~ 5,0 |

e get finite phase space integrals with the help of subtraction
e demands factorization both of phase space and singularities

e remnant collinear divergences related to initial-state partons require separate subtrac-
tion term




Literature for NLO subtraction methods
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A General algorithm for calculating jet cross-sections in NLO QCD,
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hep-ph/9607318

G. Somogyi, Z. Trocsanyi,

A New subtraction scheme for computing QCD jet cross sections at next-to-leading order
accuracy,
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R. Frederix, S. Frixione, F. Maltoni, T. Stelzer, Automation of next-to-leading order com-
putations in QCD: The FKS subtraction,
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Singularities of multi-gluon MEs

1 1
M |* = 2g"NA(N Z st + +
$12523534841 $13832524841 $125245843831

i<j

1

_ 9,6 o
|M5’ =29 N (Z S”) Z $128238345845S51 Sij = 2Pi-pj

i< permutations

4- and 5- gluon tree-level matrix elements summed over color and helicity have reasonable
simple expressions, but are very instructive regarding the singularity structure of multi-
parton matrix elements in general.

e obviously singular when any s;; — 0

e actual singularities are, however, in Ej = p? and 0j; instead of sy = E{Ej(1 —cos0y).

E;
E—0 = |M| C><E],z = d'pis(pd)|M|* = dp]’M‘ d
)
1 4 <2 2 M
91) 4)0 # }M‘ 1—Coseij :> dpJé(p))‘M| X 1—C0891j



Singularities of multi-gluon MEs

IM|* = 2g"N3(N

|M5] =2¢°N3(N

1

§12824843831

1

$13832824841

)

Sij = 2Pi-P;

(5 (e
()5

> s

i<j

2_si

i

1

$12523534545S51

4- and 5- gluon {
simple expressiorf
parton matrix eld

e obviously singdl

ave reasonable
rture of multi-

permutations
Eventually, we are worrying about the integral

NLO
n+1

J dd, [ MO P ONEO 8, OO ]

Both ONP and OL© avoid any regions of phase space

e actual singular] with more than one E — O or more than one 6 — 0. [ —cos0y).
21 2 d P dE
B0 = Mixgm = d*pid(p}) M| = == yM\
j
2 1 4 2 2 dcoseij
0y — 0 M —_— d'p;o(ps)|M —_—
i = | ‘ 1 — cos0y N Pidlp )‘ | 1= cos0y;



Soft behavior of multi-gluon MEs

| 1

Pl = 29NN ZS + +

i<j $12823834841  S13532824S41  $12824843831

1

Ms|” = 2g°N3( < R
| 5’ g <Z 1)) Z $12523534545S51 Sij — 2p1p]

1<) permutations

1 S 1

= X

$12523534845551 $45S551 $12823834841

0 1 1
2g°N3( s ( + )
J (Z ) [S45851 $128235834 541 $13532824841

1<
S32 1 1
+ ( + + -
$35552 \ S24841513832 $21514843832

[

P

4
2 ps—0 Sij 2
[ - QZZ 3_15;5]' N[ My (i, )]



Soft behavior of multi-gluon MEs

1 1
M |* = 2g"NA(N Z st + +
5 $12523534841 $13832524841 $12524543831
|M5’2 ) /é \ — 1
For arbitrary multi-parton processes: 2pi-p;
2
Vs[> P )
2 Pni1—0 . Si
Mo|” 57 —pg? Yy ——— (M, [Ty - TjM,,)
i 51n+1sn+1] _)+
$32

|M52 p5—0 ZZ S] N|M4 )]‘



Collinear behavior of multi-gluon MEs

1 1
M|* = 2g"N3(N § s + +
< $12523534841 $13832524841 $12524543831
6 1
|M5] =2g N E Sn g — Sy = 2P1'Pj
. 512523534545551
i<j permutations

Collinear limit: ps — zp;, pa — (1 —2z)p)

5
Z s — st s13 a3+ (1= 2)*(s1y + 83 + 534) + 2" (574 + 55 + 534)

i<
Momentum conservation: p; + P2 + Ps —i—pfl =0 = S34 =S12, S4 = S13, S14 = S23
4 4 4\ (.4 4 4
ZSU — (T4+ (0 =2)" +2") (s7, + 75 + s33)
19

T+ =20 +2" 1
2(1—2) S45

" — g™ N o b’



Collinear behavior of multi-gluon MEs

1 1
M|* = 2g"N3(N § s + +
< $12523534841 $13832524841 $12524543831
6 1
|M5] =2g N E Sn g — Sy = 2P1'Pj
. 512523534545551
i<j permutations

Collinear limit: ps — zp;, pa — (1 —2z)p,

4 4 4 4 4(.4 4 4 4(.4 4 4
2 sy — s tsy3+ s+ (1—2) (874 + s34 + 534) 4+ 2" (814 + 524 + 534)
i
Momentum conservation: p; +p2 +Pp3 +ps =0 = S34 = S12, Sz = S13, S14 = S23

5
Zs‘i‘j — (1+ (1 —2)" +2") (7, + 515+ 533)

i<j

M2 — g?2N (]f LY —z) [

z S45



Collinear behavior of multi-parton MEs

k2 K2
H— opH kM — il W M — (1 —2z)p* — k¥ — il
A T ey L T STy
2 kt—0 2¢ 2 2
}MnJr]’ — W9 ;<Mn’P1j(Z)kT)E)|Mn>
ij
z 1—2z
for example < Pyq(z,¢) >= 2N (1 — . + z(1 —z)>



Subtraction and phase space

(O)NFO = Jd(Dn {zm(mﬁ?m(”) + J A 841 + en] 00

n

+ | o, { ML ONLO 5,40k }

= <ﬁ d'pi &, (pf — mf)) 5* (i pi— P)
i1 i1

There are objects living in n-particle phase space underneath the (n + 1)-particle phase

space integral. We need phase space mappings TnHm : @,y — @, for the various
singularities, labelled w

J dq)n—H { |M£?J)r] |2 OE—IHO Z ®n+19<n+]9: © Tn%nﬂ OI © © Tn%nﬂ :|



Subtraction and phase space

(O)NFO = Jd(Dn {zm(mﬁ?m(”) + J A 841 + en] 00

n

+ | o, { ML ONLO 5,40k }

= <ﬁ d'pi &, (pf — mf)) 5* (i pi— P)
i1 i1

There are objects living in n-particle phase space underneath the (n + 1)-particle phase

space integral. We need phase space mappings TnHm : @,y — @, for the various
singularities, labelled w

J dq)n—H { |M£?J)r] |2 OE—IF? Z ®n+19<n+]9: © Tn%nﬂ OI © TanJrl :|

LO
0,7 lives in @, and needs Tl (—TH»]




Subtraction and phase space

(O)NFO = Jd(Dn {zm(mﬁ?)w)) + J A 841 + en] 00

+ | o, { ML ONLO 5,40k }

= <ﬁ d'pi &, (pf — mf)) 5* (i pi— P)
i1 i1

There are objects living in n-particle phase space underneath the (n + 1)-particle phase

space integral. We need phase space mappings TnHm : @,y — @, for the various
singularities, labelled w

(0) |2 qNLO (W) g-(w) LO
J d®n g { |Mn+1| On—H - Z ®nﬁ1j<nci15tr(t © Tn%nﬂ Oy Tn%nﬂ :|
w

Si(w),k(w)
Si(w),j(w) Sj(w),k(w)

eg. something like lives in @4

eg. something like (My|Ti(w) - Ti(w)IMn) lives in @, and needs Tl

HTI#»]



Subtraction and phase space

(O)NFO = Jd(Dn {zm(mﬁ?m(”) + J A 841 + en] 00

n

+ | o, { ML ONLO 5,40k }

= <ﬁ d'pi &, (pf — mf)) 5* (i pi— P)
i1 i1

There are objects living in n-particle phase space underneath the (n + 1)-particle phase

space integral. We need phase space mappings TnHm : @,y — @, for the various
singularities, labelled w

(0) 12 NLO LO
qu)n—H { |Mn+1| On—H Z ®n+1 nH © Tn%nﬂ Oy o Tn%nﬂ :|

possibility to restrict phase space to singularities w



Subtraction and phase space

(O)NFO = Jd(Dn {zsn(mﬁ?)avtg)) + J A 841 + en] 00

+ | o, [ ML ONLO 5,40k }

= (ﬁ d'pi &, (pf — mf)) 5* (i pi— P)
i1 i1

There are objects living in n-particle phase space underneath the (n + 1)-particle phase

space integral. We need phase space mappings TnHm : @,y — @, for the various
singularities, labelled w

J dq)n—H { |M£104)rl |2 OTI\LI—IHO Z ®n+19<n+19: © Tn%nﬂ OI © © Tn%nﬂ :|

We also need the inverse Tn_er1 ®, x ®; — @, in order to exactly match the
integrated subtraction terms.

In practice we also need them to efficiently generate phase space for the real-subtracted
integral.



FKS subtraction

Suppose the phase space restrictions satisfy

any other energy than E; goes to zero .
y gy i 8 and Z@(m _

@M] — 0 if
any other angle than 0;; goes to zero

(0) 12 NLO G, i,j) LO (i)
Jd(Dn'H |: |Mn+1| On—H Z @nH n+1 "o TanH O © lcnm :|
i#

(0) 12 @NLO (1) (i, LO Lj)
o Z J d(Dn+ @nH |: |Mn+1| On—H - :K:TIJHS:’T(:]) © anH O © TanH }
i#

Each integral sees at most one singularity E; — 0 and at most one singularity 6;; — O.

Now we only need the inverse phase space mapping Tn’_’m+1 O, x Oy — Dy

nFnH anH
2 qNLO i) Lj) LO
qu) X d@ ®n+1 n%n+1 { (|Mn+1| On+1 ) OTanH :Knﬂ n%nﬂgh~ O :|



FKS subtraction

Suppose the phase space restrictions satisfy

any other energy than E; goes to zero i
y gy i & and Z@(m _
any other angle than 0;; goes to zero

@n+]—>0 if {

Example for n + 1 = 3:

1

E,01,
1 1 1 1 1 1

+ + + + +
E1012  E033 E,012  E,0 E:013  Ez0

el —

satisfies the requirements, and also
03— 5 Ej—0
e+l W 1 and Z@w Ry

n+1

are used.

In practice, more sophisticated choices than
Y4



Complete stand-alone programs for multi-leg NLO calculations:

e MADGRAPHH_AMCQNLO
e HELACNLO
e WHIZARD

Programs for one-loop amplitudes, to be combined with eg. SHERPA
e NJET
e GOSAM

BrLAackHAT

OpPENLOOPS



