MC SCHoOOL 2017

ZOLTAN NAGY
DESY-HH

Born Level Cross Section

It is an integral of the

Spin averaged matrix element square
Phase space measure

B p— Zl ~ ’I’I: a : 7
oB[0/] / {p, [} fa/A("v“F)Vfb/B(”b’“Fananbs

L UM ({p, 1)) Os({phm)

PDF ti]
functions Jet measurement function

{p7 f}m = {napAaa;npraba ;plafla 3 7pm>fm} .

Let’s start with phase space integral

1=1

B (ddpz-) \ 1 1
[v £ oo 1h) = 14 | G 25, 07) (3 [[3 [an

x (2m)%6 (pa + Pb — ZZ%) g{p, fim) -

1=1

Monte Carlo Integral

An integral over a unit hypercube of any function can lbe calculated as an average of the function over a
uniformly distributed random sample:

/O dpl---/o dpmg({ﬂ}m)ZNlignoo%Zg({Pi}m)

We want to do phase space integral and that is more complicated than this, so we have to translate the
the integral over momenta to a unit hypercube, so there is an transformation as

R({p}n) = {P}m

and it has an inverse

= pi({p}m)

12/01@1---/0 dan(s — pil{p}m))

Plug this 1 into the phase space integral and we have

Monte Carlo Integral

/d{p P 90> Fhm) = ﬁ{z/ T o, (2 }z/ dnaZ/ dn,

<ero(petm =30) [dove [dow TLot01— pitioh) o(ip. 1)

=1

Rearranging this expression, we have

YT BEDS / dpy - / don g({f Y B({p}))

{f}m

XH{/ XD = 2101 (p; }/ dna/ dn,

X (2m)%6 (napA + NbPB — sz) H d(pi —pi{p}tm)) -

1=1 =1

Now we can perform the integrals over the momenta in the last two lines and that gives the Jacobian
of the transformation.

Monte Carlo Integrals

The Jacobian is this nice integral

J({ptm) = H{ / b 5 2m0 1 (p; } / dns, / dm,

x (2m)%6 (napA + PR — Z pz> H 5(pi — pi{ptm)) .

Thus our integral is

/ (D, Y 9D) = / dpy - / don J((p}) 3 9 (S R({p}))

Now, it is simple and defined over a unit hypercube and we can do the usual Monte Carlo estimate for
this integral. One can define the new integrand as

g({ptn) = J({ptn) Y 9({f}m: R{p}n))

Rambo

temp late<typename _Outputlterator>

double rambo(random_engine_type& rne, double s,
_OutputIterator first, _OutputIterator last)

{

/* generate random momenta x/
lorentzvector psum;
unsigned int n = 0QU;

_OutputIterator iter = first;

while(iter != last) {
psum += (xiter = rambo_random_momentum(rne));
n++; 1iter++;

}

/% parameters of the conform transformation %/
double x = std::sqrt(s)/psum.mag();
threevector bVec = —-psum.boostVector();

/ k do the conform transformation */
iter = first;
while(iter '= last) {

iter —> boost(bVec);

iter —> operatorx=(x);

iter++;

}

return rambo_weight(n, s);

Rambo

lorentzvector rambo_random_momentum(random_engine_type& rne)

{

std::uniform_real_distribution<double> rng(0.0,1.0);

double E = -std::log(rng(rne)xrng(rne));
double pz = Ex(2.0%xrng(rne) - 1.0);
double pt = std::sqrt(ExE - pzxpz);
double phi = 2.0xM_PIxrng(rne);

return {E, ptxstd::cos(phi), ptxstd::sin(phi), pz};
¥

Importance Sampling

Let’s stick a 1 again into our integral in the following way

w({pin)

/d{p,f}m g({p, f}m) 2/01 dp - / Apn o)§({p} ")
= [o [dputipn) 22
Now we do another integral transformation as
{p}n = Q{w}n) and this transformation has a Jacobian ~ Jgo({w}n)

Multi-channel Importance Sampling

What happens when we have a very complicated integrand (as usual in QCD) with lots of peaks in
the physical phase space where we want to integrate. We can design a nice w(...) weight function
for each peaks but we cannot have a single weight function over the whole phase space.

w({p}n) sz wil{p}) [dtohnwtioh) = [o) wiio)n) sz—l

Good approx around
only one singularity

Now we do the same thing but Np times. Around every singular limits we have a transformation
as

(phn = Qs ({w)n) with Jacobian IS ({whw)
/d{p, fim g({p; f1m) Z/()ldpl /Oldpn Z&gi;é({p}n)
S Lo i 82
3] o [1 YR

Multi-channel Importance Sampling

Now we generate i with the probability density p;. To do that we introduce a new integral variable
and

i = i(§)

d{p, f1m gD, flm) = dg dwl dwn, JS@))({M}W)@(@@({w}n/))
w(Qi(e)(W}n')

Where do we use these?

Phase Space Factorization

The phase space integral is a beautiful olbject with lots of symmetry and factorization property

1

/d{p,f}mHg B, [lme) =D Y ngk/d{p, f}m/dCz'j,k g(Rij({p, [}m: Cijk))

1,J k#i,J
pairs

Z Z Pijk = and pijk >0

