Any Light Particle Search II (ALPS II)

Overview and Status report

Aaron Spector PRC Open Session March 21, 2017

Overview

- Introduction to Axions and Axion Like Particles (ALPs)
 - Hints of these particles in astrophysical observations
- Light Shining through a wall style experiments
- ALPS II
 - Overview
 - Spatial overlap
 - Dual resonance
 - Optics progress
 - Detection schemes
 - Magnets
 - Future challenges and plans

Axions and Axion like particles (ALPs)

- Axion and ALPs would explain various astrophysical phenomena
 - Stellar cooling excesses
 - TeV transparency
 - Cold dark matter candidate

Coupling between ALPs and photons

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4} g_{a\gamma} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma} \, a \, \vec{E} \cdot \vec{B}$$

 Presence of B-field necessary for photons to couple to ALPs

Axion coupling $G_{a\gamma\gamma}\left[GeV^{-1}
ight]$

Light Shining Through a Wall

Light Shining through a Wall approach to search for ALPs

- Photons in B-field couple to ALPS and traverse optical barrier
- ALPS in B-field convert back to photons and are detected
- Optical cavities resonantly enhance probability of $\gamma \rightarrow a \rightarrow \gamma$

ALPS II

ALPS II will take place in two stages (both use 1064 nm NPRO laser)

ALPS IIa:

- 10 m cavities, no magnet string
- Sensitive to Hidden Photons
- ALPS IIc:
 - 100 m cavities
 - 5.3 T HERA dipole magnets (10 per cavity for 468 Tm)

ALPS II optics concept

- - 150 kW circulating power of 1064 nm light
- Regeneration cavity boosts probability of a $\rightarrow \gamma$
 - Power buildup factor of 40,000
- Must maintain dual resonance of the cavities
- Must maintain spatial overlap of the cavities
 - ALP field preserves spatial Eigenmode of the photon generating it

ALPS II optics concept

- - 150 kW circulating power of 1064 nm light
- Regeneration cavity boosts probability of a $\rightarrow \gamma$
 - Power buildup factor of 40,000
- Must maintain dual resonance of the cavities
- Must maintain spatial overlap of the cavities
- Two independent detection methods with TES and heterodyne scheme

ALPS II optics concept

- - 150 kW circulating power
- Regeneration cavity boosts probability of a → ¥
 - Power buildup factor of 40,000
- Must maintain dual resonance of the cavities
- Must maintain spatial overlap of the cavities
- Two independent detection methods with TES and heterodyne scheme
- Number of photons regenerated at detector port:

$$N_{\gamma \to \phi \to \gamma} = \frac{1}{16} \eta^2 \beta_{\rm PC} \beta_{\rm RC} \frac{P_{\rm laser}}{E_{\gamma}} \left(g_{\alpha \gamma} BL\right)^4 \tau$$

Spatial Overlap

- RC must maintain 95% spatial overlap with the PC Eigenmode
 - Central breadboard (CBB) used to maintain alignment
 - Active alignment of end mirrors
 - CBB demonstrated alignment stability in long term measurement
 - RMS alignment drift < 1 μ rad

Dual Resonance

- ▶ 95% of light from PC must couple to RC
 - Line-width of RC for 1064 nm: 12.5 Hz (ALPS IIc)
 - RC RMS frequency noise must be < 1.4 Hz (ALPS IIc)
 - RC RMS length noise must be < 0.5 pm (ALPS IIc)
- Length stabilization system for the RC
 - RC length actuated, tracks changes in length of the PC

ALPS II Optical Layout

Optical Layout Table 1

Production Cavity

- Must maintain power build of 150 kW in fundamental mode
 - 30 W input power (amplified NPRO at 1064 nm)
 - Design power build up factor of 5000
 - Frequency stabilization and automatic alignment systems
- Tested optics subsystems on 20 m confocal cavity

Characterization of optical systems for the ALPS II experiment

AARON D. SPECTOR, ^{1,*} JAN H. PÕLD, ² ROBIN BÄHRE, ^{3,4} AXEL LINDNER, ² AND BENNO WILLKE ^{3,4}

 ¹ Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
 ² Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany

³Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstraße 38 D-30167 Hannover, Germany

⁴Institute for Gravitational Physics of the Leibniz Universität Hannover, Callinstraße 38, D-30167

Hannover Germany

*aaron.spector@desv.de

Production Cavity

Measured power build up factor of 4000 at 0.5 W input power

Losses of 77 ppm

High Power operation with 30 W input power

- 50 kW stable operation
- Thermal effects → reduce circulating power

Regeneration Cavity

- Designed power build up factor of 40,000
 - Measured power build up factor of 14,000
 - 55 ppm losses
 - Similar to the PC losses
- Currently designing control electronics for RC length stabilization system
 - Seismic noise studies
 - 5 kHz bandwith
 - Fast actuator

Optics Status Summary

	Requirement	Status
PC circulating power	150 kW	50 kW
RC power buildup factor	40,000	14,000
CBB mirror alignement	< 5 µrad	< 1 µrad
Spatial overlap	> 95%	work ongoing
RC length stabilization	< 0.5 pm	work ongoing

Detection Schemes

- TES detector still in development
- Heterodyne detector being developed at the University of Florida
- Interference beat note between measurement signal and local oscillator
 - Phase relation between measurement signal and LO fixed
 - Coherently sum by demodulating at difference frequency

Demonstrated long term data run with no spurious signals from ADC

Magnets

Using HERA dipole magnets

- 5.3 T superconducting magnets
- 600 m radius of curvature
 - Unbend cold mass
 - 2 have been unbent
 - Successfully operated
- 48 mm free aperture

Summary and Timeline

- Optics work progressing
 - Production cavity circulating power
 - Measurement of regeneration cavity power build up factor
 - CBB demonstrates alignment stability
- Detectors in development

Timeline

- Clearing HERA tunnel begins in May
- ALPS IIc optics commissioning beginning 2019
- ALPS IIc data runs in 2020

Long baseline optical resonators

Long baseline optical resonators

Thanks for listening!

> Any questions

Stellar energy loss excess

- WDs, RGs, and HB systematically cool more efficiently than expected
 - Axion or ALP coupling to photons and electrons best explains excesses

TeV Transparency

Energetic photons undergo pair production

- Expected to attenuate high energy photons from extra-galactic sources
- Intergalactic space appears transparent for these photons
- Coupling to axions of ALPs could explain this

Spatial Overlap

- Must maintain 95% spatial overlap with the PC
 - Central breadboard used to maintain alignment
 - RMS alignment requirement: 5 urad (ALPS IIc)
 - Active alignment of end mirrors
- Measured alignment drift of PC RC mirrors on central breadboard
 - RMS < 1 urad</p>
- Aligned RC with PC transmitted beam as alignment reference
 - Frequency stabilized PC
 - Observed flashes of fundamental mode in transmission of the RC

Length Stabilization

RC RMS length noise must be < 0.5 pm (ALPS IIc)</p>

- Filter by RC transfer function
- Must obtain bandwidth of at least 5 kHz in control loop

Projected Length Noise Spectrum

Aaron Spector | PRC Open Session | March 21-22, 2017 | Page 27

Detection Schemes

Transition Edge Sensor (TES)

- Microcalorimeter measuring temperature change induced by particle/photon on absorber
 - 25 x 25 µm tungsten chip
- SQUID readout

Heterodyne Detection

Interference beat note between measurement signal and local oscillator

- Phase relation between measurement signal and LO fixed
- Coherently sum by demodulating $S = |E_{SO}e^{i(\omega_1 t + \phi)} + E_{LO}e^{i\omega_2 t}|^2$
 - SNR = square root of N_S

$$= E_{LO}^2 + 2E_{LO}E_{SO}\cos(\Omega t + \phi)$$

Demonstrated 2 week data run with no spurious signals from ADC

