ATLAS AND CMS GROUP HIGHLIGHTS.

83rd DESY Physics Research Council meeting

James Robinson

on behalf of the DESY ATLAS and CMS groups

Hamburg, 21st-22nd March 2017

> ATLAS and CMS groups are active across a wide range of areas

- Computing & software
- Detector operation
- Detector upgrade
- Physics object calibration & performance
- Physics data analysis
- > Detector upgrade will be covered in Guenter's talk
- > This talk will cover a small subset of the other ongoing activities

LHC STATUS

LHC operation

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} = 13 \text{ TeV}$

- > LHC delivered \sim 40 fb^{.1} of pp collisions in 2016
- > Peak luminosity 13.8×10^{33} cm⁻² s⁻¹
- > ATLAS/CMS each recorded > 35 fb⁻¹
 - \rightarrow data quality efficiency over 90%

> Restart planned for June: aiming for \sim 45 fb 1 during 2017

LHC Computing at DESY

- > LHC performance in 2016 tested ATLAS/CMS computing resources
- > Increase of 20% on top of planned increase
 - DESY one of the sites able to meet this
- DESY now 3rd (4th) overall in WLCG provision to CMS (ATLAS)

- > DESY manages around 14 PB of HEP data
 - including 7PB CMS + 6PB ATLAS
 - developing dCache storage system
- > NAF provides \sim 7000 CPUs
 - new high performance scratch storage

DETECTOR OPERATIONS

CMS Phase 1 upgrade: new pixel vertex detector

Upgrade for higher luminosities and improved performance

- > New detector improves track and vertex resolution
- > Si-modules for 4th barrel layer built entirely in Germany:
 - 50% DESY & Hamburg; 50% Karlsruhe & Aachen

Integration at PSI: Barrel Pixel layer-4 half-shell equipped with 256 DESY+UniHH modules

J.E.M. Robinson | Detector operations | 21/03/17 | Page 4/23

CMS shutdown work: new pixel detector

- > New pixel detector is installed
 - Barrel pixel detector: 28/02-02/03
 - Forward pixel detector: 06/03-10/03
- Preparing for LHC data taking
 - April: detector commissioning, cosmics runs
 - May-June: commissioning with splashes, non-stable and stable beam

Successfully installed in CMS

J.E.M. Robinson | Detector operations | 21/03/17 | Page 5/23

CMS BCM1F: Online luminosity and beam background

- > Multipurpose diamond detector
 - fast online luminosity and beam-background measurement (for CMS & LHC)
 - first application of a large number of single-crystal diamond sensors
 - Run-I: 8 single-crystal sensors
 → robust, proven technology
 - Run-II: 24 two-pad single-crystal sensors \rightarrow ran at reduced voltage due to erratic currents
- For 2017/18: system rebuilt using 3 types of sensors (redundancy and robustness for expected luminosity)
 - 10 poly-crystal diamond sensors
 - 4 single-crystal sensors (remetallized)
 - 10 silicon sensors

Developed at DESY

CMS BCM1F 2017/8

Sensors

- processing and metallisation by RD42
- characterisation in Zeuthen

C-shapes

- produced at CERN
- electrical tests and mounting of components and sensors in Zeuthen

Successfully installed in CMS last week

ATLAS Fast TracKer (FTK)

Reconstruct tracks with $p_T > 1$ GeV for HLT at 100 kHz

- > Track-based decisions early in the HLT \rightarrow improved performance
- > Use "bank" of known hit patterns
- > Optimise pattern bank to improve efficiency

- FTK hardware being commissioned and installed
- > 50% of system in 2017
- > Full installation in 2018

ATLAS Semi-Conductor Tracker (SCT)

Aim: optimal performance in conditions beyond original design

- 99.9% data taking efficiency in 2016
- Ongoing development work for Run 2 & Run 3

Ongoing work in DESY group

- > Radiation dose increases non-uniformity across SCT → need per-channel calibration
- ➤ Non-collision backgrounds can produce fake jets → reject using timing difference in SCT end-caps

PHYSICS OBJECT PERFORMANCE

ATLAS: jets and missing energy

- > Z ightarrow ee (+jets) events do not have real MET
- > High MET tail nevertheless evident
 - important/difficult background for new physics searches with high MET
- > Incorrect e-jet overlap removal → spurious MET
 - important source of MET tail
 - improved overlap ightarrow reduced the tail
 - investigating other sources of tails

DESY jet performance contributions

- > GSC: jet properties $\leftrightarrow p_T$ response correlations: improve resolution
- > b-tagging: calibration of light-jets with negative-tag method

CMS: Performance studies for τ identification

- > DESY responsible for ${\bf e} \rightarrow \tau_{\rm h}$ and $\mu \rightarrow \tau_{\rm h}$ fake rates
- > Not well modelled by simulation
- > Lepton fake rate scale factors derived from $Z \to \ell \ell$ events
 - \rightarrow bring simulation into agreement with data

ANALYSIS: STANDARD MODEL AND TOP

ATLAS: Light-by-light scattering [5.02 TeV]

- LBLS candidate: two E_T = 4.9 GeV back-to-back photons with no additional activity
- Field strength of up to 10²⁵ V m⁻¹!

ATLAS: Light-by-light scattering [5.02 TeV]

First direct evidence for elastic photon scattering

- SM measurement in PbPb collisions
- > Dedicated trigger: calorimeter energy + MBTS veto
- > Exclusivity veto: events with tracks rejected

- > σ (measured): 70 \pm 20(stat.) \pm 17(syst.) nb
- > σ (theory): 49 \pm 10 nb

Observed (expected) significance: 4.4 (3.8) σ

J.E.M. Robinson | Analysis: Standard Model and top | 21/03/17 | Page 13/23

ATLAS: W-boson mass [7 TeV]

First LHC W-mass measurement

- Final state lepton (e/µ) + MET
- > Control backgrounds at 5% level
- Sensitive distributions: lepton p_T, transverse mass, MET

> χ^2 minimisation MC wrt data for range of m_W

$$m_W$$
 = 80.370 \pm 0.019 GeV

J.E.M. Robinson | Analysis: Standard Model and top | 21/03/17 | Page 14/23

ATLAS: W-boson mass [7 TeV]

- New measurement reaches precision of CDF ightarrow world leading measurement
- Good agreement with SM >

ATLAS

165

170

[] B B 80.45

80.4

80.35

80.3

80 25

AI EPH

CMS: Differential tt cross sections [8 TeV]

First PDF fit using 2D t \overline{t} cross sections (stronger constraints than 1D)

- > Stringent tests of pQCD, enhance sensitivity to BSM physics
- > Double-differential tt measurement (bin events in two variables)
- Constraints from 2D tt competitive to those from jet data

J.E.M. Robinson | Analysis: Standard Model and top | 21/03/17 | Page 16/23

ATLAS: Top spin and polarization [8 TeV]

Measure production spin density matrix

- > Express matrix in terms of spin and polarisation coefficients
- Decompose top quark polarisations along orthogonal axes

> Construct angular distributions sensitive to polarisation

 Extract polarisations (and correlations) from distributions

sub. IHEP

- > 10 of 15 observables measured for the first time
- > First evidence of transverse spin correlations 5.1σ from zero
- > Good overall agreement with NLO SM predictions

ANALYSIS: HIGGS

CMS: Search for ttH(\rightarrow bb) [13 TeV]

Vital step towards verifying the SM nature of the Higgs boson

- Only direct access to top-Higgs coupling
- > ttH(\rightarrow bb): small cross section (despite H \rightarrow bb BR)

- > Categorize via tī: l+jets, dilepton channels
- > Complex final state: classify in regions of jet multiplicity and number of b-jets
- > Use multivariate analysis techniques to further improve sensitivity
 - BDT, Matrix Element Method

Extract best-fit signal strength ($\mu = \sigma / \sigma_{SM}$)

- syst. > Simultaned
 - Simultaneous maximum likelihood fit across all categories
 - Results compatible with SM expectation within 1.5 std.
 - > Interpret as upper limit on cross section: $\sigma_{ttH} < 1.5\sigma_{SM}$ (1.7 exp.)

DESY

ANALYSIS: BEYOND THE STANDARD MODEL

- > Preliminary result based on 12.9 fb^{.1} of 2016 data
- > DESY is responsible for the $e\mu$ channel.
- > Exclusion in m_A -tan β parameter space
 - \rightarrow hMSSM scenario: assume boson at 125 GeV is lightest MSSM state

ATLAS: Stop Ol search [13 TeV]

- > Direct stop pair production: $\tilde{t} \rightarrow t$ + $\tilde{\chi}_1^0$
- > Compressed region: $\Delta m_{\tilde{t},\tilde{\chi}_{1}^{0}} \simeq m_{t}$

$$m R_{ISR}$$
 = $m E_T^{miss}/p_{T^{ISR}} \propto m_{ ilde{\chi}_1^0}/m_t$

- Strong ISR boost used to reject tt
- > Exclusion limits from R_{ISR} shape fit

J.E.M. Robinson | Analysis: beyond the Standard Model | 21/03/17 | Page 22/23

SUMMARY AND OUTLOOK

- > The LHC performed exceptionally during 2016
- > Record luminosity recorded by both ATLAS and CMS
- > DESY computing exceeded expectations by 20%
- The DESY ATLAS and CMS groups have made significant contributions to detector operation, software and data analysis
- Many ongoing analyses aiming for publication in time for spring & summer conferences

