

Status of DATCON

Christian Wessel

November 22th, 2016

DATCON: Data Acquisition Tracking and Concentrator Online Node

- Tracking based on SVD hits only
- Performed on FPGA
- In total 14 FPGA boards:
 - 2×6 AMC get data from SVD p-side and n-side separately
 - 2 boards for actual tracking, extrapolation and ROI calculation
- Fast algorithm based on Hough Transformation (+ Hesse and Conformal Transformation)

VXD DAQ Structure

- 48 optical links from BEE
- Online tracking and ROI creation at 30 kHz trigger rate
- Sufficiently precise ROI to achieve data reduction by a factor of 10
- Using FPGAs for track reconstruction

Hardware

- Modular system based on uTCA standard
- Concentrator used for BEE data preprocessing
 - Virtex 5 vlx50
 - 2 DDR2 slots
 - Ethernet and RS232 port
 - 4 SFP cages, GTP transceivers

- Tracking Unit
 - Virtex 6 vlx240
 - 1 DDR3 slot
 - Ethernet port
 - InfiniBand connector
 - GTX transceivers

Bruno Deschamps, DPG 2016

DATCON Structure

- Data Acquisition Tracking Concentrator Online Node
- 48 optical links from the SVD Fromt End Electronics (BEE)
- Expected data rate: 6 Gbps
- 12 AMC for data acquisition and preprocessing
- 2 DHE for Tracking and ROI calculation

Bruno Deschamps, DPG 2016

- In x-y-projection: intersection of a circle (= track) with a straight (= detector) parallel to y axis
- In z-r-projection: intersection of a straight (= track) with a straight (= detector) parallel to z-axis

- Simulation with 400k ↑ (4S) events and optimisation for these events (previously only electrons from (0,0,0)))
- ROI size fixed to 120 × 80 pixel (u × v), corresponding to (6 × 6 mm²)
- Particle is reconstructed if $|\Delta \varphi_{MCtrue-reco}| < 5^{\circ} \& |\Delta \theta_{MCtrue-reco}| < 5^{\circ}$ (Unfortunately no use of RecoTracks yet, work in progress)

Angular Residuals

Most reconstructed tracks have a deviation of less than 1° compared to the MCParticle

Angular Residuals

Efficiency of φ Reconstruction

High and uniform reconstruction efficiency of $\boldsymbol{\varphi}$ over the whole azimuthal angle

Efficiency of Reconstruction of ϕ

Efficiency of θ Reconstruction

High and uniform reconstruction efficiency of θ over the complete SVD acceptance region

Efficiency of Reconstruction of $\boldsymbol{\theta}$

Old algorithm: decreased efficiency in certain regions

Theta Reconstruction Efficiency vs Phi and Theta in 2D

Uniform reconstruction efficiency of θ in the whole detector

°/0 0.9 140 0.8 120 0.7 100 0.6 0.5 80 0.4 60 0.3 0.2 40 0.1 20 n -150-100-50 100 0 50 150 φ/°

Theta Reconstruction Efficiency vs Phi and Theta in 2D

Reconstruction Efficiency vs p_T

Efficiency vs p_T Efficiency ∈ and a stand of the second stand 0.8 0.6 Efficiency vs p_T 0.4 Efficiency vs p_{τ} (of θ Reconstruction) Efficiency vs p_{τ} (of ϕ Reconstruction) Normalized p_ spectrum x 40 0.2 0[.] ³ p_T / GeV 0.5 1 1.5 2 2.5

Reconstruction Efficiency per Event

In 70% of the events all tracks are reconstructed, mean is 96%

MPH Residuals

Distance between MPH and MCParticle true hit

Residuals in u and v

ROI Efficiency per Event

High ROI efficiency, mean at 88%, median at 100%. "Strange" events with no hit inside ROI need further investigation

Data Reduction Factor per Event

Mean DRF of 11.4, median at 10

- (Fast) Hough Transformation is suitable for fast track reconstruction in Belle II
- Track reconstruction efficiency of 96% (tracks from close to the interaction point)
- ROI efficiency of 88%, median at 100%
- Data Reduction Factor (DRF) of 10 is achieved
- Possible improvements:
 - Usage of second coordinate of θ Hough Space
 - Analytical calculation of intersections in Hough Space
 - More precise track reconstruction \Rightarrow smaller ROI
 - Less fake tracks \Rightarrow better DRF
 - ROI size varying with $p_{\rm T} \Rightarrow$ better DRF

PDG codes of the charged-stable particles

universität**bonn**

Number of charged-stable particles

Unitarity Triangle

Unitarity Triangle

ROI size parameter sweep

ROI size parameter sweep

