

Yet another CDC cosmics track finder

Claus Kleinwort - DESY

F2F tracking meeting, 23.11.16

Overview

- * Motivation
- * First look at data
- Track and drift model
- * Segment finding
- * Segment linking
- * Track combination
- *Look at MC data

Motivation

- * Get experience with first 'real' CDC data
 * Cosmics 2016: B=0, single or double leg
- * Test alignment and calibration with SBL, MPII
- * Lightweight setup for development and testing
 - Use Python for coding, no basf2 overhead
 - Data: raw hit information in text file (from Oliver)
 - Geometry: from hits, corrections from text file
 - XT-relation: derived from data, param. in text file
 - Still work in progress

First look at data

- * Simply scanned events, prominent features
 - Some (super) layers with low single hit efficiency
 - Some noise hits: TDC but no ADC information

Track and drift model

- * Track is helix (B=const) or straight line (B=0)
 - Parameters at point of closest approach:
 κ, φ₀, d₀, tanλ, z₀
- * Hit position from drift time, wire position $'\mathbf{p}_w'$
 - Drift distance 'd' as function of drift time 't' is linear plus higher order corrections
 - Drift direction 'e_d' is perpendicular to wire direction and track direction
 - Hit position for drift side 's' (±1):
 p_{hit} = p_w(z) + s · d(t) · e_d

Segment finding

* Basics

- Independently for each super layer
- Assuming 3 parameters + redundancy (ndf>0) → need at least 4 hits, prepare for 2 missing layers
- Gaps are difficult for triplets \rightarrow use road search
- Assume little curvature \rightarrow use straight line
 - + Need only two seeding hits
- Start with assumption Z=0

Road search (I)

* Prepare hits

- Take only hits with ADC information
- Order hits by drift distance significance (d/σ_d)

* Define seeds

- Select hit pairs from list (in decreasing order) with 'reasonable' distance
 - + e.g. $2 \le max(|layer1-layer2|,|cell1-cell2|) \le 10$
- Accounting for the drift side ambiguities they define four straight lines as search roads

Road search (II)

* Collect hits

- \bullet For all unused hits check distance Δ for both drift sides to each of the four roads
- Assign hit to all roads where distance for at least one drift side is below cut (e.g. 1 mm)

* Select candidate

- From all roads with at least 4 hits select the one with most hits (and smallest $\Sigma \Delta^2$)
- Create segment from hits of that road, mark hits as used and restart road search

Road search (III)

Track segments (I)

* Straight line (in XY at Z=0)

- Parameters: \u00c60, do, to
 - Fit to correction to account for flight and propagation time and trigger time for cosmics
- Hits selected with both drift sides
 - + Set side to '0'
 - + Wire as hit position
 - + Inflated error σ_d^2 += d^2

Track segments (II)

Segment linking

* Basics

- Use Fast Hough Transformation
 - + Tolerant with respect to missing segments
 - + Require some axial and stereo segments
- Transform 2D segments to 5D (4D for B=0) tracks
 - * $\mathbf{p}_{seg} \rightarrow \mathbf{p}_{track}$: $\varphi_0, d_0 \rightarrow (\kappa,) \varphi_0, d_0, tan\lambda, z_0$
 - With arc length 's_{arc}', average Z-component 'ζ' of drift directions of segment (and small curvature)

$$\frac{\partial \mathbf{p}_{seg}}{\partial \mathbf{p}_{track}} = \begin{pmatrix} s_{arc} & 1 & 0 & \zeta & 0 \\ \frac{1}{2}s_{arc}^2 & 0 & 1 & 0 & -\zeta \end{pmatrix}$$

Parameter space

- * FHT needs predefined parameter space
 - Especially for azimuth φ_0
- * Use dynamic azimuth sectors of size $\Delta \varphi = 1$
 - \bullet From unused segments build sorted list of ϕ_0
 - + Add segments with $\varphi_0 < \Delta \varphi \pi$ a second time at $\varphi_0 + 2\pi$ to bridge gap at $\pm \pi$
 - With sliding window find azimuth sector containing largest number of segments
 - Run FHT on azimuth sector
 - + Centered at $\langle \varphi_0 \rangle$, median(d₀) from contained segments

Track definition

* Requirements for FHT solution

- Minimum number of segments, e.g. 5
- Minimum number of segment types (AUV), e.g. 2

* Prefer long tracks

- Iterate number of segments cut
 - + Start with maximum number of super layers available in azimuth sector, reduce until minimum if no solution found

* Accept solution as track

- Segments marked as used, commonly fitted
- Restart FHT for sector, restart sector definition

Track found example

Track fitting

- * Simple linear least square fit
 - \blacktriangleright 5 (4 for B=0) track parameters and optionally to

$$\frac{\partial d}{\partial \mathbf{p}_{track}} = \left(\begin{array}{ccc} \frac{1}{2}s_{arc}^2 & s_{arc} & -1 & \zeta \cdot s_{arc} & \zeta\end{array}\right) \quad , \frac{\partial d}{\partial t_0} = s \quad (\text{side})$$

 Optionally use prediction to resolve drift side again for all hits or only for 'side 0' hits

* GBL

- Refit with GBL and global derivatives for alignment and calibration
- Write trajectory to MPII binary file

Track fitted example

Track plots

Track combination

- * For cosmics combine both legs into single track
 - Use all tracks with φ_0 >0 as incoming tracks
 - Look for matching outgoing track ($\varphi_0 < 0$)
 - Cut on x² from difference of track parameters and sum of covariance matrices
 - + Add 3 mrad as average multiple scattering error in trigger scintillator/lead sandwich at PCA for $\phi,\,\lambda$
 - For GBL trajectory add corresponding scatterer

Track combined example

Look at MC cosmics with B on

MC cosmics - hit fraction

Summary

- * Track finding and fitting developed for field off cosmics in python
 - Simple road search, FHT, GBL
 - Timing: 500-600 tracks / min.
- * Try too for field on cosmics (2017)
 - and other data (e.g. mu-pairs) ?
 - extend curvature acceptance ?