Tracking in the Belle II Drift Chamber.

Hamburg - Face-to-face tracking meeting

Oliver Frost

Deutsches Elektronen-Synchrotron (DESY) 2016-11-23

- > Track finding in the CDC recap
- > Segment aliasing
- > News from the second stage cellular automaton
- > Comparision of performance

Track finding overview

Oliver Frost | DESY | 2016-11-23 | Page 1/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Current standard reconstruction

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 2/36

Newly completed cellular automaton path

Oliver Frost | DESY | 2016-11-23 | Page 3/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

First stage cellular automaton

- > Clusterisation creation and background rejection
- > Hit triple creation
- > Hit triple linking
- Intermediate reestimation of flight times
- > Segment fitting

Overhauled second stage cellular automaton

- > Segment alias resolution
- > Segment linking in cluster
- > Axial-stereo segment pair creation across super layers
- > Axial-stereo segment pair relation creation for cellular automaton
- > Track linking

Oliver

Oliver Frost | DESY | 2016-11-23 | Page 4/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Drift circles have two symmetries

> Reversal symmetry: forward ↔ backward

Local least square fits can never distinguish forward from backward

> Aliasing symmetry: right ↔ left

Local least square fits may not distinguish right from left in underconstrained situations

Aliasing observable in mid range momentum sample

- > generator alias: low_gun
- > 10000 events
- > 10-muon events
- Constant magnetic field for simplicity
- Mediocre pt between 400 MeV and 800 MeV

Oliver Frost | DESY | 2016-11-23 | Page 5/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Sample event after the first stage

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 7/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 8/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Residual distribution over abs_curvature_truth of absolute curvature

Track finding in the CDC - recap

Segment aliasing

t anasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 9/36

Oliver Frost | DESY | 2016-11-23 | Page 10/36

Track finding in the CDC - recap

Segment aliasing

....**.**.........

News from the second stage cellular automaton

Residual distribution over abs_curvature_truth of absolute curvature

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 11/36

- > Some serious underestimation of the segment curvature in some curvature range
- > The exact location seems to depend on the super layer
- > Generally lower super layer \leftrightarrow higher curvature
- > Effect must be geometrical sweet spot for certain transverse momenta

Oliver Frost | DESY | 2016-11-23 | Page 12/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Reversal symmetry of hits

Backward wire hit

Track finding in the CDC - recap

Segment aliasing

Oliver Frost | DESY | 2016-11-23 | Page 13/36

News from the second stage cellular automaton

Aliasing symmetry of hits

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Symmetry of hit triplets

Straight hit triplets (para configuration) have both symmetries

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 15/36

Reversal symmetry of hit triplets

DESY

Straight hit triplets (para configuration) have both symmetries

> Resolved as far as preliminary flight time estimates are significantly different.

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Straight hit triplets (para configuration) have both symmetries

> Aliasing impossible to resolve for one triplet

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

st | DESY | 2016-11-23 | Page 17/36

Alias symmetry of segments

- > Some hit triplets may not distiguish aliases
- > The cellular automaton may build the wrong segment alias

Figure 3: Schematic aliasing situation - not actual CDC geometry

> Cellular automaton usually selects the straighter alias

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 18/36

Examples of alias segments

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Examples of alias segments

- Leaves room for the alias version to be correct

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 20/36

Alias misidentification

- > Cellular automaton prefers straighter alias leading to lower estimated curvatures
- > Each super layer as a momentum sweet spot where aliasing is likely
- > Typically such that segments only have one right/left switch
- > Three or more right/left switches a long the segments fix the alias definitly.

Resolution approaches

- > Keep both viable aliases for the next stage
 - > Similar to reversal symmetry
 - > Harms time performance in combinatorics in next cellular automaton
- > Using better χ^2 fit
 - > Relatively cheap
 - > Used for now
 - > In addition: Check for wrong first / last alias hits in segment

Oliver Frost | DESY | 2016-11-23 | Page 21/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 22/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Residual distribution over abs_curvature_truth of absolute curvature

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 23/36

Overview

Overhauled second stage cellular automaton

- > Segment alias resolution
- > Segment linking in cluster
- > Axial-stereo segment pair creation across super layers
- > Axial-stereo segment pair relation creation for cellular automaton
- > Track linking

New approach

- > Earlier attempts to make hand crafted selection did not cut it.
- New attempt leverages efficient / background rejection classifier, i.e. FastBDT
- > Use a weight to differenciate more likely connections.
- > Concentrate on the combinatorics in the first loop only
- > Make consecutive cuts to reject work as soon as possible

Oliver Frost | DESY | 2016-11-23 | Page 24/36

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

- > Joins broken segments with two classifiers
 - Feasibility classifier with simple variable
 - Final weight classifier using common fit
- > 99% pur., ~50 % eff.
- Impact on final figures of merits is low

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 25/36

- > Three consecutive cuts:
 - Hard coded cut for non-sensical combinations
 - Feasibility classifier with simple variable
 - Final weights incoorporating the combining helix fit
- > Accounts for ~ 30% of the runtime of this setup
- > Quality critical for this approach
- > ~55 % pur., 99 % eff. (on first loop)

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 26/36

- Segment pair creation stage is pure enough to skip preselection cut
- One classifier sufficient comparing track parameters and making a common fit
- > Allow only best candiate from each segment pair
- ~65 % pur., 99 % eff. (on first loop)

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 27/36

- > Joins broken tracks with two classifiers
 - Feasibility classifier with simple variable
 - Final weight classifier using common fit
- > 99% pur., ~50 % eff.
- > Halves the clone rate
- Improvement can be made here

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 28/36

- > Fully modularised using the findlet micro modules concept discussed earlier
 - > Use as one module TrackFinderCDCAutomaton containing all relevant findlets
 - > Mix and match from individual findlets
 - Contains a total of 8 FastBDT classifers
- > Multivariate classifiers use the mva package instead of the TMVA classifiers directly
 - > Performance advantage with upgrade of the FastBDT version ~1.5% in both paths
 - Exact training procedure must still be made more explicit
- > Deleted features
 - > Removed the CDCWireHitTopology (static object for event data)
 - > TMVA interface
 - > Lots of cleanup in findlets, filter, variable recording, fitting procedures etc.

News from the second stage cellular automaton

add_track_finding_cdc	TrackFinderCDCAutomaton		
finding eff. 0.8931 hit eff. 0.8868 clone rate 0.0358 fake rate 0.2505	finding eff. 0.9107 hit eff. 0.8386 clone rate 0.1615 fake rate 0.3017		
time 89.01 \pm 78.33 ns	time 59.81 \pm 47.38 ns		

Standard tracking coverage for CDC-only track finding

 generator
 generic

 UsePXDHits
 False

 UseSVDHits
 False

 UseCDCHits
 True

 WhichParticles
 ['primary'] ← choice partially responsible for high fake rate

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 30/36 ellular automaton Comparision of performance

add_track_finding_cdc	TrackFinderCDCAutomaton		
finding eff 0.8082	finding eff. 0.8547		
hit eff. 0.8283	hit eff. 0.7997		
clone rate 0.0725	clone rate 0.2242		
fake rate 0.0815	fake rate 0.0794		
time 89.01 \pm 78.33 ns	time 59.81 \pm 47.38 ns		

Modified tracking coverage for CDC-only track finding

generator generic UsePXDHits False UseSVDHits False UseCDCHits True WhichParticles ['CDC'] ← match all particles seen in the CDC

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 31/36 ellular automaton Comparision of performance

Newly completed cellular automaton path

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 32/36

Current standard reconstruction

Track finding in the CDC - recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 33/36 ellular automaton Comparision of performance

Combiner stage

Track	finding	in	the	CDC	-	recap

Segment aliasing

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 34/36

- > Todo: Combiner stage making best candidate selection
- > Group effort: think again what the reference should be.
- > Only first loop?
- > Include secondaries or not?

News from the second stage cellular automaton

Oliver Frost | DESY | 2016-11-23 | Page 35/36 ellular automaton Comparison of performance

DESY

Convenience scripts

- > b2run_generator Generator level event generation
- b2run_simulation Belle2 detector simulation, full, only tracking detector, cosmic ray test etc.
- b2run_tracking Run (tracking) reconstruction (complete, CDC-only, VXD-only) on pre-simulated events or simulate on-the-fly
- b2run_cdc_display Two dimensional plotting of CDC tracking results with a lot of color codings

Ideal for newcomers to get something running and something to look at.

Oliver Frost | DESY | 2016-11-23 | Page 36/36