

VXD TrackFinder Development at KIT

Status report - DESY face to face tracking meeting Jonas Wagner | 22nd November 2016

Outline/Gliederung

- Single Track
 - Same Sample Training and Evaluation
 - Independent Sample
- Multiple Tracks
 - Same Sample Training and Evaluation
- MC Matching
- 4 Conclusion

Samples

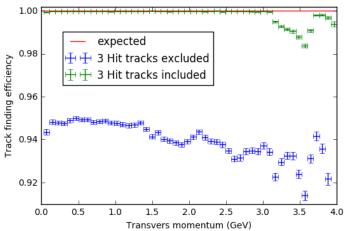
2 samples:

Common parameters		
Pdglds		±13
nTracks		1
momentum	GeV	0.1 - 4
heta	0	0 - 360
arphi	0	17 - 150

Sample A

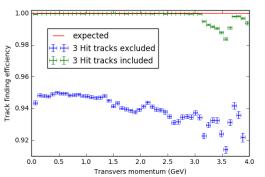
- 2 mio events
- seed 1234

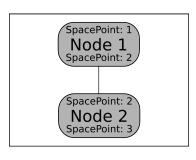
Sample B


- 1000 events
- seed 12345

Sample A

SectorMap trained on sample A


Evaluation on sample A



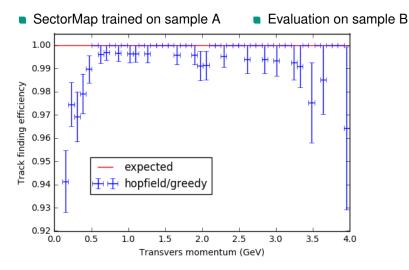
Finding efficiency: 99.91 %

3-Hit Problem

PathCollectorRecursive.h

```
/** parameter for setting minimal path length: (path length
   == number of nodes ...*/
unsigned int minPathLength = 3;
```

Single Track


Multiple Tracks

MC Matching

Conclusion

Sample B

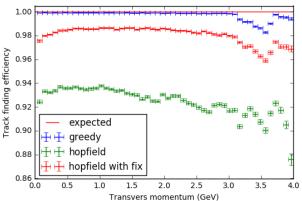
■ Finding efficiency: 98.95%

Sample C

Common	parameters
--------	------------

Pdglds		±13
nTracks		<u>10</u>
momentum	GeV	0.1 - 4
heta	0	0 - 360
φ	0	17 - 150

Sample C


- 200 000 events
- seed 1234

Sample C

SectorMap trained on sample C

Evaluation on sample C

- Finding efficiency: 99.84 %
- Finding efficiency: 98.30 %

- Fake rate: 46.88 %
- Fake rate: 0.71 %

Single Track

MC Matching

Clusters can't be assigned to multiple tracks

MC RecoTracks Nr SVD Clusters

0 10 12 13 14 15 16 17 18

1 11 12 19 20 15 21 17 22

PR RecoTracks Matching
Nr SVD Clusters

10 12 13 14 15 16 17 18 11 12 19 20 15 21 17 22

MC Matching

Clusters can't be assigned to multiple tracks

MC RecoTracks
Nr SVD Clusters

0 10 12 13 14 15 16 17 18

1 11 12 19 20 15 21 17 22

PR RecoTracks

Nr SVD Clusters

0 10 12 13 14 15 16 17 18

11 12 19 20 15 21 17 22

Matching

100 % Purity

MC Matching

Clusters can't be assigned to multiple tracks

MC RecoTracks	PR RecoTracks	Matching
Nr SVD Clusters	Nr SVD Clusters	
0 10 12 13 14 15 16 17 18	0 10 12 13 14 15 16 17 18	100 % Purity
1 11 12 19 20 15 21 17 22	1 11 12 19 20 15 21 17 22	62.5% Purity

- Needs to be considered if we want to allow overlap of tracks.
- Contributes to the difference between finding efficiencies of hopfield and greedy algorithms

Conclusion

Main tasks

- understand/fix filtersetup
- improve trackset selection
 - find solution for 3 hit tracks
 - understand the difference between finding efficiencies of hopfield and greedy algorithms