The VXDTF
SectorMap

Eugenio Paoloni, Thomas Luck
INFN Pisa

@Given a set of 721 space points
(average Y4s event with background)
in how many way you can partition it
in 11 non overlapping subsets
(average multiplicity of a Y4s event)
+ one background remainder ?

StirlingS2 [721, 12] =
2566500990789780066670886167729754968508758808930660555257160182925589
1078203806691688871979294486271865927457253645650290108835437739737933
1397597931741424698428436073688718226102760722709547140898035523971203

122114890537201700856 29435927 283575984 31274586192945795966181230815934
2407815496079481666508059246174117648539642592459903808475128731374538
0635003292133223323698755748871712031303818431988121727536460644983909
9919049709525047388682951207109570061870504000429222335574173622829518
0751128688644895198502900269637997913860722656646872574585677997094520
7291268251499135270932899959428010284943889368722198097544826206432893
1527638613215103724809434602519010024389917149144347376768938092238243
9545479725193984726011271563610490296437306000659391007765022600071828

almost

2.57°107%’

And just a single one of these partitions is the
correct one..

@ Do not consider unlikely combinations

@ Tracks with much more than 1
Space Point per layer

@ Tracks jumping around
erratically

@ Just consider reasonable
combinations

@ We define a map from the surface of each sensor to the

unit square [0,1] ® [0,1] (normalized local coordinates).

@ For each sensor we define a partition of its surface by
the cartesian product of two finite partitions
of [0,1] (one for u, one for v) T

&N

Sector 11
Sector 15

—
—
—

Sector 10

@ The Sector is an element
OF .I-his surFaCe Parll-i.l-ion Sec:tor‘13/’///:\)\/\///’/;.oector17

Sector 16

@ The sectors are uniquely
identified by their ol TR
FullSecID defined in e
tracking/dataobjects. e
It is defined by: S

layer, ladder, sensor, counter

How we do define the
sectors?

® The object VXDTFFilters in
tracking/trackFindingVXD/environment
take care of this task providing the method:

1Nt

VXDTFFilters: :addSectorsOnSensor(
std: :vector<{double>& hormal 1zedUsups,
std: :vector<double>& hormal 1zedVsups,

std: :vector< std::vector<FullSecID)> >& sectorIds)

N.B.: All the sectorlds have to refer to the same sensor.

The normalizedUsups and Vsups (sup stands for Supremum)
can be in random order

For Example:

VXDTFFilters: :addSectorsOnSensor(

{ 9.5 }, {0.5,0.75} ,

{

{FullSecID(l,s,se,@), FullSecID(l,s,se,1), FullSecID(l,s,se,2) }
{FullSecID(l,s,se,3), FullSecID(l,s,se,4), FullSecID(l,s,se,5) }
})

Sensor: se 0.5 0.75
on layer | g
sector s

b

Who takes care of the
creation of the sectors?

@ The SectorMapBootstrapModule in
module/vxdtfRedesign

@ At present all the sectors are partitioned in the very
same way

@ We need to investigate how close to the optimum is
this (trade off memory foot print / speed)

1.2) Filters, Friends,
neighbours, next
neighbours

Filters for SpacePoints
combination

® We define "Friends” two sectors for wich there is a
sizable probability for real tracks to leave two
consecutive (in time) SpacePoint on them: the first one
on the inner sector, the second on the outer one.

® We define a filter for each pair of friend sectors to
select good SpacePoints combinations (aka Segments).

2 Space point Filters
type

template<class point t>
class VXDTFFilters {

public:

typedef decl type(

(

(B. <= Distance3DSquared<Belle2::SpacePoint>() <= 0.) &%&
(0. <= Distance2DXYSquared<Belle2::SpacePoint>() <= 0.)&%
(0. <= DistancelDZ<Belle2::SpacePoint>() <= 0.)&&
(B. <= SlopeRZ<Belle2::SpacePoint>() <= 0.)&&
(B. <= Distance3DNormed<Belle2: :SpacePoint>() <= 0.)
) .observe(0ObserverCheckMCPurity())
) twoHitFilter t;

How to modity this type:
define your smart variable

#include <tracking/trackFindingVXD/sectorMap/filterFramework/
SelectionVariable.h>

SELECTION_VARIABLE(MySmartVariable, SpacePoint,

double value(SpacePoint& pl,
SpacePoint& p2)
{ Some Fancy expression of pl and p2; ?;

)3

@ Preferably in
trackFindingVXD/sectorMap/twoHitVariables

Then use It...

#include <trackFindingVXD/sectorMap/twoHitVariables/MySmartVariable.h>

template<class point_t>
class VXDTFFilters {

public:

typedef decl type(
(MySmartVariable<Belle2::SpacePoint>() > 8 || (
(B. <= Distance3DSquared<{Belle2::SpacePoint>() <= 0.) &&
(8. <= Distance2DXYSquared<Belle2::SpacePoint>() <= 0.)&%
(B. <= DistancelDZ<Belle2::SpacePoint>() <= 0.)&%
(B. <= SlopeRZ<Belle2::SpacePoint>() <= 0.)&&
(8. <= Distance3DNormed<Belle2: :SpacePoint>() <= 0.))
) .observe(ObserverCheckMCPurity())
) twoHitFilter t;

Well... you have to train
the new filter off course

@ At present the implementation of the
training is not yet very terse

® One module collect the data from
simulated events:
VXDTFTrainingDataCollector

@ One module merges the data and trains
the filters:
RawSecMapMergerModule

