Top Precision and Searches for New Physics

Christian Schwanenberger DESY

SFB 676 Lectures Particles, Strings, and the Early Universe 25 November, 2016

Objective of Elementary Particle

"So that I may perceive whatever holds the world together in its inmost folds."

from the smallest dimensions in microcosm to the largest dimensions in the Universe

HELMHOLTZ

- Christian Schwanenberger -

Objective of Elementary Particle

"Dass ich erkenne, was die Welt im Innersten zusammenhält."

Goethe, Faust

from the smallest dimensions in microcosm to the largest dimensions in the Universe

HELMHOLTZ

- Christian Schwanenberger -

Big Bang in the Lab?

and Searches - Christiar

- Christian Schwanenberger -

The Tevatron pp Collider at Fermilab

The LHC pp Collider at CERN

	√s [TeV]	years	Ldt (rec.)
рр	7	2010-11	5.1 fb-1
рр	8	2012	21.3 fb-1
Pb+Pb	2.76	2010-11	160 µb-1
Pb+p	5	2013	30 nb-1

- Christian Schwanenberger -

June 3rd, 2015: First Collisions @ 13 TeV

HELMHOLTZ **Top Precision and Searches** ASSOCIATION

- Christian Schwanenberger -

SFB 676 Lectures

 needed as isospin partner of bottom quark

discovered in 1995 by CDF and DØ: $m_{top} \sim gold nucleus$

 large coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?

short lifetime: τ ~ 5 · 10⁻²⁵s ≪ Λ⁻¹_{QCD}:
 decays before fragmenting
 → observe "naked" quark

Is the top quark the particle as predicted by the SM?

Η

Search for New Phenomena

Dark matter inferred from star motion and gravitational lensing

Supersymmetry:

Name	Spin	Superpartner	Spin
Electron	1/2	Selectron	0
Muon	1/2	Smuon	0
Tau	1/2	Stau	0
Neutrino	1/2	Sneutrino	0
Quark	1/2	Squark	0

Name	Spin	Superpartner	Spin
Graviton	2	Gravitino	3/2
Photon	1	Photino	1/2
Gluon	1	Gluino	1/2
W ^{+,-}	1	Wino ^{+,-}	1/2
Z ⁰	1	Zino	1/2
Higgs	0	Higgsino	1/2

remedies shortcomings of SM: e.g. dark matter candidate

Top Precision and Searches

Physics Groups: DØ Collaboration

10

B

HELMHOLTZ

ASSOCIATION

HELMHOLTZ

ASSOCIATION

HELMHOLTZ

ASSOCIATION

HELMHOLTZ

ASSOCIATION

PRL 74, 2632 (1995)

PRL 74, 2626 (1995)

discovery

1995, CDF and DØ experiments, Fermilab

March 2nd, 1995:

First announcement of Top Discovery in public seminar at Fermilab

1995, CDF and DØ experiments, Fermilab

1995, CDF and DØ experiments, Fermilab

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

1995, CDF and DØ experiments, Fermilab

Tevatron	+LHC m _{top} c	ombination - March 201	4, L _{int} = 3.5 fb ⁻¹ - 8.7 fb	r ¹
CDF Runii, I+iets	ATLAS	+ CDF + CMS + D0 Pre	eliminary	
$L_{\rm int} = 8.7 {\rm fb}^{-1}$			1/2.85 ± 1.12 (0.52	$\pm 0.49 \pm 0.86$)
CDF RunII, di-lepton			170.28 ± 3.69 (1.95	± 3.13)
CDF RunII, all jets			172.47 ± 2.01(1.43	$\pm 0.95 \pm 1.04$)
CDF RunII, E _T ^{miss} +jets			173 03 + 1 85 (1 26	$\pm 1.05 \pm 0.96$
L _H =8.7 fb ⁻¹ D0 Runit I+iets			170.00 ± 1.00 (1.20	1.00 ± 0.00)
$L_{\rm m} = 3.6 {\rm fb}^{-1}$			$174.94 \pm 1.50 (0.83)$	$\pm 0.47 \pm 1.16$)
L _a = 5.3 fb ⁻¹			174.00 ± 2.79 (2.36	± 0.55 ± 1.38)
ATLAS 2011, I+jets	-		172.31±1.55 (0.23	± 0.72 ± 1.35)
ATLAS 2011, di-lepton			173.09 ± 1.63 (0.64	± 1.50)
CMS 2011, I+jets			17349 + 106027	+ 0.33 + 0.07)
L _m = 4.9 fb ⁻¹ CMS 2011, di-lepton			170.40 ± 1.00 (0.27	10.0010.01)
$L_{\rm H} = 4.9 {\rm fb}^{-1}$			$1/2.50 \pm 1.52(0.43)$	± 1.46)
CMS 2011, all jets			173.49 ± 1.41 (0.69	± 1.23)
World comb. 2014 x ² rob =4.3/10			173.34 ± 0.76 (0.27	± 0.24 ± 0.67)
음 은 Tevatron March 2013 (Run I+II)		173.20 ± 0.87 (0.51	± 0.36 ± 0.61)
LHC September 2013			173.29 ± 0.95 (0.23 total (stat.	± 0.26 ± 0.88) iJES syst.)
165	170	175	180	18
100		110	100	m _{ton} [GeV]
		0 4 40/		top t and a
	I =	± U.44%		

precision

HELMHOLTZ ASSOCIATION

1995, CDF and DØ experiments, Fermilab

precision

DESY

20

SFB 676 Lectures

Cross Sections: 13 TeV/8 TeV

HELMHOLTZ TOP

Top Precision and Searches

- Christian Schwanenberger -

21 🛞

Top Quark Pair Production

Top Quark Pair Signatures

ATLAS Detector

Dilepton Event

Dilepton Signature

Dilepton Signatures

B

Dilepton Signatures

ASSOCIATION

Dilepton Signatures with b-tagging

Top Pair Production Cross Section

all channels measured except for τ_{had} τ_{had}

good agreement with each other

Top Precision and Searches

HELMHOLTZ

ASSOCIATION

- Christian Schwanenberger -

Top pair production cross section

→ (all) channels measured to look for the unexpected → no new physics

Top pair production at hadron colliders

→ experiments challenge theory again

Supersymmetry

remedies shortcomings of SM: e.g. dark matter candidate

Supersymmetry

remedies shortcomings of SM: e.g. dark matter candidate

B

Stop Quark Pair Production

HELMHOLTZ ASSOCIATION TOP Precision and Searches

- Christian Schwanenberger -
Top pair production at hadron colliders

A experiments challenge theory again

eager to put

37

CCNS Provings converges to the second

Top pair production at hadron colliders

boldly go where no man has gone before

38

→ experiments challenge theory again

Top pair production at 13 TeV

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

Top pair production at 13 TeV

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

By

Dilepton Events at 13 TeV

Dilepton Events at 13 TeV

Top Precision and Searches ASSOCIATION

- Christian Schwanenberger -

SFB 676 Lectures

Top pair production at 13 TeV

HELMHOLTZ

Top Precision and Searches

Differential Cross Sections

important tests of higher order QCD calculations: requires "unfolding" to particle level

LO QCD+parton shower generators Pythia, Herwig, ...

• LO multileg generators matched with parton shower

Alpgen+Pythia, Alpgen+Herwig, ...

HELMHOLTZ

DESY

- LO QCD+parton shower generators Pythia, Herwig, ...
- LO multileg generators matched with parton shower Alpgen+Pythia, Alpgen+Herwig, ...
- NLO+parton shower generators
 Powheg+Pythia, MC@NLO+Herwig, ...

- LO QCD+parton shower generators Pythia, Herwig, ...
- LO multileg generators matched with parton shower Alpgen+Pythia, Alpgen+Herwig, ...
- NLO+parton shower generators
 Powheg+Pythia, MC@NLO+Herwig, ...
- NLO+LO multileg generators matched with parton showers

LO QCD+parton shower generators Pythia, Herwig, ...

• LO multileg generators matched tr production in full NNLO: with parton shower

Alpgen+Pythia, Alpgen+Herwig, ...

- NLO+parton shower generators
 Powheg+Pythia, MC@NLO+Herwig, ...
- NLO+LO multileg generators matched with parton showers
- NNLO QCD calculations

HELMHOLTZ

ASSOCIATION

Differential, unfolded: top p_T

Differential, unfolded: top pt

- Christian Schwanenberger -

Top Precision and Searches

ASSOCIATION

Differential, unfolded: top pt

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

SFB 676 Lectures

Differential, unfolded: $m_{t\bar{t}} \& t\bar{t} p_T$

Differential, unfolded: mtt & tt pt

ASSOCIATION

- Christian Schwanenberger -

Top Quark Physics Topics

Single Top Quark Production

direct measurement of |V_{th}|

⇒ important to measure all channels separately to search for new physics BUT: do not separate Wt in higher orders – an unphysical question!

Single Top Quark Selection

ASSOCIATION

Single Top Quark Yields: pretag

ASSOCIATION

Single Top Quark Yields: b-tagged

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

Single Top Quark Yields: b-

ASSOCIATION

DESY

Recontructed Top Mass

HELMHOLTZ ASSOCIATION TOP Precision and Searches

- Christian Schwanenberger -

Multivariate Analyses

background signal

 IDEA: recover events that fail criteria in cut-based analyses

 IDEA: recover events that fail criteria in cut-based analyses

HELMHOLTZ Top Precision and Searches

- Christian Schwanenberger -

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

* IDEA: recover events that fail criteria in cut-based analyses

boosting:

- train tree: T_µ
- derive weight: α_μ
- retrain tree: T_{k+1} to minimize error
- average: $T = \Sigma \alpha_i T_i$

HELMHOLTZ

ASSOCIATION

ASSOCIATION

- Christian Schwanenberger -

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

SFB 676 Lectures

DESY 68

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

SFB 676 Lectures

DESY 69

HELMHOLTZ

ASSOCIATION

Output Discriminant for s+t

Output Discriminant for s+t channel

Top Precision and Searches

HELMHOLTZ

ASSOCIATION

- Christian Schwanenberger -

P
Output Discriminant t-channel

Output Discriminant t-channel

F HELMHOLTZ

ASSOCIATION

×

Single top t-channel cross section

agreement with SM predictions!

s- and Wt-channel Production

observation: 6.1 s.d.

HELMHOLTZ

ASSOCIATION

SFB 676 Lectures

DESY

Single channel cross sections

→ all production modes observed!

Direct measurement of |Vtb|

ATLAS+CMS Preliminary	LHC <i>top</i> WG	June 2016
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{tback}}}$ from single top quar	k production	
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (2010 PRD81 (2010) 054028) 054018,	+▼
$\Delta \sigma_{\text{theo}}$: scale \oplus PDF		total theo
$m_{top} = 172.5 \text{ GeV}$		$ f_{LV}V_{tb} \pm (meas) \pm (theo)$
-channel:		
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb⁻¹)	┝─┼═┼─┤	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV ATLAS-CONF-2014-007 (20.3 fb ⁻¹)	┝+■+	$0.97 \pm 0.09 \pm 0.02$
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	⊢ ••⊢-1	$1.020 \pm 0.046 \pm 0.017$
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	F- I	0.979 ± 0.045 ± 0.016
CMS combined 7+8 TeV JHEP 06 (2014) 090	······ <u>+</u> ·	4 1% 0.998 ± 0.038 ± 0.016
CMS 13 TeV CMS-PAS-TOP-16-003 (2.3 fb ⁻¹)	┝──∳●┼──┨	$1.02 \pm 0.07 \pm 0.02$
ATLAS 13 TeV ATLAS-CONF-2015-079 (3.2 fb ⁻¹)	┝───┼═┼───┨	$1.03 \pm 0.11 \pm 0.02$
Wt:		
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)	++	$1.03 \substack{+0.15 \\ -0.18} \pm 0.03$
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	├	$1.01 ^{+ 0.16 }_{- 0.13 } {}^{+ 0.03 }_{- 0.04 }$
ATLAS 8 TeV ^{1,2} JHEP 01 (2016) 064 (20.3 fb ⁻¹)		$1.01 \pm 0.10 \pm 0.03$
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	F	$1.03 \pm 0.12 \pm 0.04$
LHC combined 8 TeV ^{1,2} ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	<mark>⊢ ┼ ┯ ┼ ╶</mark> ┨	1.02 ± 0.08 ± 0.04
S-channel: ATLAS 8 TeV ² PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93 \stackrel{+ 0.18}{_{- 0.20}} \pm 0.04$
		¹ including top-quark mass uncertainty ² including beam energy uncertainty

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

→ no hint for anomalous contribution

W +

- Christian Schwanenberger -

Single Top s- vs. t-channel

q'

Ω

arXiv:1503.05027 [hep-ex]

Single Top s- vs. t-channel

Single Top s- vs. t-channel

- Christian Schwanenberger -

Single Top s- vs. t-channel: Run-II

⇒ important to study production channels separately

ttZ and ttW Production

→ it is very interesting to measure rare processes never explored before since new physics could show up!

- Christian Schwanenberger -

Search for ttZ and ttW

DESY

HELMHOLTZ

ASSOCIATION

Observation of ttV production

ttZ vs. ttW cross sections:

anomalous V or A ttZ couplings:

→ in agreement with the SM prediction → no hint for anomalous contribution (tty also in agreement with SM prediction)

HELMHOLTZ

- Christian Schwanenberger -

85