Top Precision and Searches for New Physics – Part II

Christian Schwanenberger DESY

SFB 676 Lectures Particles, Strings, and the Early Universe 9 December, 2016

Top Quark Physics Topics

HELMHOLTZ

ASSOCIATION

Top Quark Physics Topics

The Top Quark in the SM

→ the top quark could play the decisive role in finding physics beyond the SM!

- top quark is needed as the isospin partner of the bottom quark
- Indeed, in 1995, it was discovered with a mass of the order of a gold nucleus (consisting of 79 protons and 118 neutrons). This is a very strange property for an elementary particle that is assumed to be point-like with no substructure.
- The top quark has a large Yukawa coupling to the Higgs boson of ~1, so it might play an important and exotic role in electroweak symmetry breaking
- largest quantum correction to Higgs mass involves a top quark loop, it is natural to suppose that BSM mechanisms involve top quarks

Top Quark Physics Topics

Top pair production at 13 TeV

HELMHOLTZ

Top Precision and Searches

- Christian Schwanenberger -

Stop Quark Pair Production

Differential, unfolded: mtt & tt pt

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

SFB 676 Lectures

DESY

Top Quark Physics Topics

Search for single top production

\rightarrow all production modes observed!

Single channel cross sections

→ in agreement with SM prediction!

Direct measurement of |V_{tb}|

ATLAS+CMS Preliminary	LHC <i>top</i> WG	June 2016
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$ from single top quar	rk production	
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (2010 PRD81 (2010) 054028	0) 054018,	+▼
$\Delta\sigma_{\mathrm{theo}}$: scale \oplus PDF		total theo
$m_{top} = 172.5 \text{ GeV}$		$ f_{LV}V_{tb} \pm (meas) \pm (theo)$
t-channel:		
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	⊢ ∔∎∔⊸I	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV ATLAS-CONF-2014-007 (20.3 fb ⁻¹)	├ 1	$0.97 \pm 0.09 \pm 0.02$
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	⊢ ∔∎+-1	1.020 ± 0.046 ± 0.017
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	⊢ <mark>I∎E I</mark>	0.979 ± 0.045 ± 0.016
CMS combined 7+8 TeV JHEP 06 (2014) 090	····· ± 4	0.998 ± 0.038 ± 0.016
CMS 13 TeV CMS-PAS-TOP-16-003 (2.3 fb ⁻¹)	⊢ ∎∔–1	$1.02 \pm 0.07 \pm 0.02$
ATLAS 13 TeV ATLAS-CONF-2015-079 (3.2 fb ⁻¹)	⊢	$1.03 \pm 0.11 \pm 0.02$
Wt:		
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb⁻¹)	↓ ↓	$1.03 \begin{array}{c} + 0.15 \\ - 0.18 \end{array} \pm 0.03$
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	↓ ↓ ↓ ↓ ↓	$1.01 ^{+ 0.16 }_{- 0.13 } {}^{+ 0.03 }_{- 0.04 }$
ATLAS 8 TeV ^{1.2} JHEP 01 (2016) 064 (20.3 fb ⁻¹)		$1.01 \pm 0.10 \pm 0.03$
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	F	$1.03 \pm 0.12 \pm 0.04$
LHC combined 8 TeV ^{1,2} ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	<mark>⊢ · · · · · · · ·</mark>	$1.02 \pm 0.08 \pm 0.04$
s-channel: ATLAS 8 TeV ² ⊢−−− PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93 \substack{+0.18 \\ -0.20} \pm 0.04$
		¹ including top-quark mass uncertainty
		² including beam energy uncertainty

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

→ no hint for anomalous contribution

W +

Search for ttZ and ttW

HELMHOLTZ

ASSOCIATION

DESY

Observation of ttV production

ttZ vs. ttW cross sections:

anomalous V or A ttZ couplings:

→ in agreement with the SM prediction → no hint for anomalous contribution (tty also in agreement with SM prediction)

HELMHOLTZ

- Christian Schwanenberger -

Top Quark Physics Topics

R

<u>H→bb</u>

<u>H→WW, ZZ</u>

multi-leptons

<u>H→bb</u>

<u>H→WW, ZZ</u>

multi-leptons

<u>H→bb</u>

<u>H→WW, ZZ</u>

multi-leptons

- Christian Schwanenberger -

Results in ttH

7 and 8 TeV

13 TeV

 σ/σ_{SM}

4.5σ (1.7σ exp)

 σ/σ_{SM}

($^{+0.5}_{-0.5}$, $^{+0.9}_{-0.7}$

+0.4 +0.6

-0.4 ' -0.5

+0.5 +0.7

-0.5 , -0.6

10

8

 2.8σ (1.8 σ exp)

\rightarrow observation in Run–II \rightarrow measurement of top-Yukawa coupling

- Christian Schwanenberger -

20

DESY

High Lumi LHC

arXiv:1307.7292

21

R

Top Quark Physics Topics

P

Top Quark Analyses

other production modes tt+jets, ttbb, ttZ, ttW, ttH and their couplings

- Christian Schwanenberger -

24

DESY

The Top Quark Mass

- free parameter in the Standard Model
- check the self-consistency of the Standard Model in combination with W mass and Higgs mass

Extraction Techniques: Templates

- use variables strongly correlated with m_{top}
- compare data to MC with different m_{top} hypotheses

DESY

Extraction Techniques: Templates

use variables strongly correlated with m_{top}
 compare data to MC with different m_{top} hypotheses

Extraction Techniques: Templates

use variables strongly correlated with m_{top}
 compare data to MC with different m_{top} hypotheses

JES calibration

<u>jet energy scale:</u> translate jet into parton energy

HELMHOLTZ

ASSOCIATION

Result in I+jets Channel

$$m_{\rm t}^{\rm hyb} = 172.35 \pm 0.16$$
 (stat+JSF) ± 0.48 (syst) GeV

most precise single measurement

DESY

Top mass at the LHC

History m_{top} vs. Mw

R

R

R

R

R

History m_{top} vs. M_W

R

R

→ Standard Model is self-consistent

improved W mass measurement is critical

- Christian Schwanenberger -

DESY

Mtop VS. MH

check the "fate of the Universe"

h

t

 \overline{t}

h

HELMHOLTZ

ASSOCIATION

- Christian Schwanenberger -

R

What mass do we measure?

$$\mathcal{L} = \dots - \overline{\psi} M \psi \left(1 + \frac{H}{\nu} \right) \dots$$
• LO QCD: free parameter
$$\mathbf{m}_{top}$$

• NLO QCD: dependent on the renormalisation scale M

the concept of quark mass is convention-dependent!

Different Top Mass Definitions

 \rightarrow difference between $\overline{\text{MS}}$ and pole mass is ≈ 10 GeV...

Different Top Mass Definitions

 \rightarrow difference between $\overline{\text{MS}}$ and pole mass is ≈ 10 GeV...

measurement reconstructing decay products: depends on MC mass details how does MC mass relate to pole mass or running mass scheme?

• matrix element in LO QCD

• matrix element in LO QCD

parton showers simulate higher orders,

DESY

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

DESY

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

DESY

• matrix element in LO QCD

HELMHOLTZ

Do NLO MCs Contain Mass information?

 Powheg, MC@NLO have contributions like this, but then the onshell top quark decay is simulated by a Breit-Wigner function

DESY

Do NLO MCs Contain Mass information?

- only if they have contributions like this, since top quark propagator needs to be renormalized
- contributions can be of order $\sim \Gamma_t = 1.35$ GeV (at world average top mass) \rightarrow it matters!
- has become available recently (only for dilepton final states...)

Important to Know...

→ Standard Model is self-consistent

Important to Know...

→ Standard Model is self-consistent??

What mass do we need?

Top mass interpretation

e.g. MSR mass

DESY

Top mass interpretation

Open questions:

- does calibration also work for pp? How related to pole mass? Renormalon?
- when is off-shell pp \rightarrow W⁺W⁻bb+X MC available with parton showers (also for hadronic W decays) that contains proper top pole mass?
- what about non-perturbative effects on top mass interpretation?

→ still many discussions in future

e.g. MSR mass

 $m_{\star}^{
m MC}$

62

Butenschoen, Dehnadi, Hoang,

Mateu, Preissner, Stewart, PoS LL2016 (2016) 066

 $m_t^{\rm MSR}(1\,{\rm GeV})[{\rm GeV}]$

Calibration : $(\tau_2^{\mathbf{e^+e^-}})$

Pythia 8.205, tune 7

NNLL, $\Gamma_t = 1.4 \,\mathrm{GeV}$

175

Top Quark Pole Mass

Top mass at ILC

→ well-defined top mass with ~O(100 MeV) uncertainty

HELMHOLTZ

ASSOCIATION

Top Pair Spin Correlation

• measure tt spin correlation: consistent with SM prediction for a spin 1/2 particle?

New physics impact on spin correlations

- important test of SM and sensitive search for physics beyond
- analyse the whole chain of top pair production and top decay

Spin correlation strength

- dominated by $q\bar{q}$ annihilation
- tt pairs close to the threshold
- beam axis as spin quantisation axis **NLO QCD:** A = 0.78
- dominated by gg fusion
- tt pairs far off the threshold
- helicity basis as spin quantisation axis NLO QCD: A = 0.32 (7 TeV)

Bernreuther, Brandenburg, Si, Uwer, Nucl. Phys. B690, 81 (2004)

optimised "off-diagonal" basis

maximal basis

complementary between Tevatron and LHC

- Christian Schwanenberger -

Spin Correlation at the LHC

→ first observation of spin correlation with 5.1σ → correlation agrees with SM spin 1/2 hypothesis

- Christian Schwanenberger -

Spin Correlation at the LHC

tt spin correlation at 8 TeV

Search for anomalous couplings

Search for anomalous couplings

Top Precision and Searches ASSOCIATION

- Christian Schwanenberger -

SFB 676 Lectures
Stop Quark Pair Production

HELMHOLTZ Top Precision and Searches

- Christian Schwanenberger -

Direct searches for light stop

we check every little corner...

B

Direct stop searches

we check every little corner...

Direct stop searches

"Stealth" Stop Quarks

B

Spin correlations for "Stealth" Stop

DESY

Spin correlations for "Stealth" Stop

Direct stop searches

using a "standard candle" for complementary exclusion

HELMHOLTZ

ASSOCIATION

Stop searches in Run-II

extended limits at 13 TeV

tt production density matrix

 $|M|^2 \propto A + \mathbf{B}^+ \cdot \mathbf{s}_1 + \mathbf{B}^- \cdot \mathbf{s}_2 + C_{ij} s_{1i} s_{2j}$

 $g(p_1) + g(p_2) \to t(k_1, s_1) + \bar{t}(k_2, s_2)$

Bernreuther, Heisler, Si, JHEP 1512, 026 (2015)

polarisation and spin information is contained in decay products

tt production density matrix

distributions independent of top spin (e.g. p^{t} distribution etc.)

DESY

- test of QCD predictions
- search for new physics

Top pair production at 13 TeV

HELMHOLTZ

Top Precision and Searches

- Christian Schwanenberger -

tt production density matrix

tt production density matrix

would lead to different polarisation

Longitudinal and transverse polarisation

Longitudinal and transverse polarisation

→ in agreement with SM

HELMHOLTZ ASSOCIATION TOP Precision and Searches

- Christian Schwanenberger -

(

89

DESY

Polarisation and W boson helicity

Polarisation and W boson helicity

tt production density matrix

 $|M|^2 \propto A + \mathbf{B}^+ \cdot \mathbf{s}_1 + \mathbf{B}^- \cdot \mathbf{s}_2 + C_{ij} s_{1i} s_{2j}$

spin correlation

P-even, C-even, but also CP-odd and P-odd ≠0 only in BSM

tt production density matrix

HELMHOLTZ

ASSOCIATION

- Christian Schwanenberger -

Search for CP-violation

Top Quark Physics Topics

P

darth matter

→ particularly interesting for Yukawa-like couplings between DM mediator and SM particles, e.g. for scalar or pseudoscalar mediators

- Christian Schwanenberger -

ASSOCIATION

ASSOCIATION

ASSOCIATION

- Christian Schwanenberger -

Top Precision and Searches

ASSOCIATION

- Christian Schwanenberger -

SFB 676 Lectures

Pushing the TeV scale

→ lots of opportunities for discovery in Run–II

Top Precision and Searches

- Christian Schwanenberger -

SFB 676 Lectures

DESY

Summary

rare processes

ATLAS best fit

ATLAS 68% CL

ATLAS 95% CL

NLO prediction

ttZ theory uncertainty

ttW theory uncertainty

- the top quark is a very rich field of research
- very interesting candidate for new physics!
- measure properties with highest possible precision and perform direct searches

Status: Feb 2015

ttZ cross section [pb]

1.5

0.5

0

0.5

ATLAS

2.5 - vs = 13 TeV, 3.2 fb

L., = 4.7 fb

0L [1208.1447

1L [1208.2590]

2L [1209.4186

0 fb

600

700

m_{t̃} [GeV]

500

high precision cross sections and properties

L_{int} = 20 fb⁻¹ s=8 TeV

2L [1403.4853]. 2L [1412.4742]

1L [1407.0583], 2L [1403.4853]

0L [1407.0608], 1L [1407.0583

0L [1406.1122]

1L [1407.0583]

0L [1407.0608]

400

 $\tilde{t}_1\tilde{t}_1$ production, $\tilde{t}_1 \rightarrow b f f' \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$

- Observed limits ---- Expected limits

300

ATLAS Preliminary

 \longrightarrow $\tilde{t}_{1} \rightarrow W b \tilde{\chi}_{1}$

 $\tilde{t}_1 \rightarrow b f f \tilde{\chi}_1^0$

All limits at 95% CL

200

= t. $\rightarrow c \tilde{\gamma}$

high precision searches

 \rightarrow observe more SM processes in Run–II, many high precision property/cross section measurements to come, discover new physics (in)directly...

2.5

З

3.5 4 ttW cross section [pb]

2

1.5

1

 $m_{\widetilde{\chi}_1^0}$ [GeV]

500-

400

300

200

100

Top Precision and Searches

- Christian Schwanenberger -

SFB 676 Lectures

Summary

Backup

Charge Asymmetry

FB vs Charge Asymmetry

Eur.Phys.J. C72, 2039 (2012)

-> Tevatron observed a slight excess (half of data set)

Forward-backward tt asymmetry

→ would lead to asymmetry

Asymmetry and polarisation

tt FB asymmetry

Summary: tt FB asymmetry

LHC: tt charge asymmetry

→ in agreement with SM

Search for W' production

- Christian Schwanenberger -

ASSOCIATION

Top Quark Pole Mass

HELMHOLTZ

ASSOCIATION

many alternative measurements

tt+1jet: differential cross section

is it really the pole mass?

113

DØ Phpines ReputearebesWint

W Boson Helicity Fractions

DESY