

CMS Level-1 Track Trigger Overview & KIT contributions

Oliver Sander, Marc Weber, Christian Amstutz, Luis Ardila, Matthias Balzer, Timo Dritschler, Tanja Harbaum, Armin Herth, Hannes Mohr, Benjamin Oldenburg, Thomas Schuh, Denis Tcherniakhovski

Institut für Prozessdatenverarbeitung und Elektronik

www.kit.edu

LHC / HL-LHC Plan LHC **HL-LHC** Run 1 Run 2 Run 3 EYETS 13.5-14 TeV LS1 LS2 14 TeV LS3 14 TeV 13 TeV energy injector upgrade cryo Point 4 DS collimation 5 to 7 x splice consolidation nominal cryolimit **HL-LHC** 8 TeV button collimators 7 TeV interaction luminosity installation R2E project P2-P7(11 T dip.) regions Civil Eng. P1-P5 2017 2022 2024 2025 2013 2014 2015 2018 2019 2020 2021 2023 2026 2037 radiation damage experiment 2 x nominal luminosity experiment upgrade experiment upgrade phase 2 75% nominal luminosity beam pipes phase 1 nominal luminosity integrated luminosity 30 fb⁻¹ 150 fb⁻¹ 300 fb⁻¹ 3000 fb⁻¹

- High Luminosity operation starts in 2026
- 5-7 times higher luminosity
- 40 MHz collision rate
- Up to 200 simultaneous pp-collisions in one single event

LHC Event Display

Higgs Candidate 2012

Possible High Luminosity LHC Event Display

Recorded Event: "high pile-up fill", 2016 <Pile-Up> only 100

4 12.04.17 Oliver Sander - CMS Level-1 Track Trigger Overview & KIT activities

Current CMS Trigger System

CMS uses two level trigger system

Level 1:

- Customized programmable electronics
- Full 40 MHz event rate
- Buffer for raw data limits trigger time to 3.2 us
- Only calorimeter and muon data

High Level Trigger:

- Runs on commercial computer farm
- Track reconstruction solely on demand and in selected regions of interest

Upgraded CMS Trigger System

Simple Evaluation

NEW: Outer tracker data is used in L1 Trigger

- ~100 Tb/s incoming data rata
- Data reduction by a factor of 50000

New outer tracker for phase II

- Complete replacement of outer tracker
- 13 296 modules, 192m², 42M strips, 170M macro-pixels (before 10 M)
- 6 layers in the barrel and 3x5 end caps

- Two types of double layer sensor modules:
 - Strip-strip (2S): 5 cm x 90 um
 - Pixel-strip (PS): 1.6 mm / 2.5 cm x 100 um
- Designed for reconstruction > 2-3 GeV

First Level of Data Reduction in the Detector

- Two layered architecture allows to estimate pT
- Cut at 2-3 GeV allows for data reduction by one order of magnitude
- Output data rate
 - ~ 20 k Stubs @ 40 MHz \rightarrow 50 Tb/s

CMS Track Trigger Approaches

chnology

	Associative Memory (AM) Approach	Time-Multiplexing Track Trigger (TMTT) Approach	Track Construction of Technol Karlsruhe Institute of Technol
Track Finding	Associative Memory	Hough-Transform	Tracklet
Track Fitting	PCA based linearized fit	Kalman Filter	Linearized xi ² fit
Sectors	48	8	18
Time Multiplex	20x	36x	6x
Hardware	FPGA+ASIC	FPGA	FPGA

Involved Groups

Comparison of all approaches was in December 2016

Time-Multiplexing Track Trigger Approach

Time-Multiplexing Track Trigger Approach

SOURCE

Hough Transformation to find Track Candidates

- search for primary tracks in the $r-\phi$ plane
- infinite amount of different circles (ϕ_0 , R) possible between origin and single measured stub position (r, ϕ)

but track parameters are correlated

$$\phi_{58} \approx \phi + \frac{q}{p_{\rm T}} \times r_{58}$$

(ϕ_{58} and r_{58} are slightly transformed variables)

stub positions corresponds to straight lines in the track parameter plane

Hough Transformation to find Track Candidates

- (1) for each stub calculate ϕ_{58} for each $q/p_{
 m T}$
- 2 fill the stub into corresponding cells of a 32×32 track parameter array
 - ignore $q/p_{\rm T}$ values which are inconsistent with the $p_{\rm T}$ estimate of the stub
- 3 define cells with stubs from at least 5 different layers as track candidates

Architecture for Hough Transformation

- array is implemented as a pipeline, it processes one stub per clock cycle (240 MHz)
- first step is the filling of the array
- second step is the readout of track candidates

- Book Keeper unpacks stub data from 2 input links, which then propagate to each of the 32 q/pT bins in turn
- track candidates found by the bins propagate back to the Book Keeper, which transmits them over two links

Implementation Results of HT

- High tracking efficiency
- Very good agreement between SW simulation and HW implementation
- FIFO Latency of the HT is constant at 1.025 μs
- Data reduction by one order of magnitude

Kalman Filter and Duplicate removal

Kalman Filter

- KF fits track parameters and removes incorrect stubs
- CMS already uses KF in offline reconstruction and in HLT
- In L1 Trigger only possible through massive data reduction and candidate building in the Hough transformation step

Duplicate Removal

- DR removes candidates where KF parameters do not fit to HT parameters
- Simple compared to conventional algorithms (comparison of track pairs)
- Simplicity achieved trough deep understanding of how HT tracks are formed

Proposed System for AM-based Track Finding

Institut für Prozessdatenverarbeitung und Elektronik

Overview Processing in AM Approach

AM: Pattern Recognition Mezzanine = TMTT: Track Finding Processor

Associative memory template matching

- We know how interesting tracks with pT > 2 GeV/c look like...
- Store corresponding patterns in AM.
- Compare patterns with data hits or stubs in "one" clock cycle
- Hits associated with a pattern are input to track fitting algorithms

The AM Chip

Vers.	Design	Tech.	Area	Patterns	Package
1	Full custom	700 nm		128	QFP
2	FPGA	350 nm		128	QFP
3	Std cells	180 nm	100 mm ²	5 k	QFP
4	Std cells + Full custom	65 nm	14 mm ²	8 k	QFP
mini-5	Std cells + Full custom	65 nm	4 mm ²	0,5 k	QFP
5	+ IP blocks		12 mm ²	3 k	BGA
6	Std cells + Full custom + IP blocks	65 nm	168 mm ²	128 k	BGA
7	Std cells + Full custom	28 nm	10 mm ²	16 k	BGA, SiP

KIT Contributions to PRM Development

- Manufacturing and test of PRM05
- Design contributions to PRM06
- Comissioning of PRM06
- Development of firmware components
 - Memory interfaces
 - Configuration infrastructure
- Power and Temperature measurements

PRM05

• 6 PRMs (3@16AM05 + 3@4AM05) available and tested

- FPGA: Kintex7
- 16 AM05: total of 32 kpatterns
- GTX maximum speed: 8 Gpbs
- Single LDRAM

PRM06

- 3 PRMs available and tested
- Ready to produce additional PCBs
- FPGA: Kintex Ultrascale
- 12 AM06: total of 1.5 Mpatterns
- GTH maximum speed: 12.5 Gpbs
- Double RLD3RAM 1 Meg x 36 x 16 Banks, 1066 MHz DDR operation
- Flash memory

Case Study 1: System Simulation of the CMS L1 Track Trigger

- Evaluation of different system architectures
- Evaluation of system parameters, e.g. latencies, bandwidths
- Usage of input data from physics simulations

Case Study 2: Hough Transformation on GPUs

- Why not use GPUs for this number crunching task?
- Minimum latency approach
 - Parallel computation for each p_t-bin
 - Computational redundancy, but minimal latency
 - Load balancing challenging
 - Synchronization between pt-bins challenging
 - Runtimes and transfer times very stable
 - Next steps:

23

- Include fitting
- Maximize throughput

DMA MEASUREMENT SETUP

Institut für Prozessdatenverarbeitung und Elektronik

Case Study 3: Implementing AM in FPGA logic

Layer 0

- ~300 miscellaneous values (sensors)
- >20000 matches per input possible

Layer 5

- >4200 miscellaneous values
- max. 1230 matches per input

Minimization by logic optimization techniques

Case Study 3: Implementing AM in FPGA logic

Summary

- Building a L1 Track Trigger is a highly challenging task
 - Low Latency: < 4 us for complete track reconstruction</p>
 - High data rates: ~ 50 Tb/s
- Three different approaches are exploited
 - TMTT: Hough Transformation and Kalman Filter]
 - AM: ASIC and xi² fit
 - Tracklet: Tracklet based and xi² fit
- All three approaches are able to fulfill the tight timing and performance requirements (Dec/16 review)
- There are some decisions to be made i.e. what becomes baseline
- Next steps
 - Harmonize hardware and interfaces among the approaches
 - Three teams shall converge to one single team

Karlsruhe Institute of Technology

Thank you for your attention.

Dr.-Ing. Oliver Sander Institut für Prozessdatenverarbeitung und Elektronik sander@kit.edu

