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RD53 Collaboration 

RD53 is a collaboration among ATLAS-CMS communities for the  development of            
LARGE scale Pixel chips for Atlas/CMS phase 2 upgrades 
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• 19 Institutions from Europe and US 

• Bari, Bergamo-Pavia, Bonn, CERN, CPPM, Fermilab, LBNL, LPNHE Paris, 
Milano, NIKHEF, New Mexico, Padova, Perugia, Pisa, Prague IP/FNSPE-CTU, 
RAL, Seville, Torino, UC Santa Cruz.  

• 65 nm CMOS is the chosen technology 

• RD53 Goals: 

• Detailed understanding of radiation effects in 65nm   guidelines for 
radiation hardness 

• Development of tools and methodology to efficiently design large complex 
mixed signal chips 

• Design of a shared rad-hard IPs library  

• Design and characterization of  full sized pixel array chip  
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– RD53A specifications approved at the end of 2015 by ATLAS, CMS and RD53 
collaborations: http://cds.cern.ch/record/2113263 

–  Fabricated on an engineering run shared with CMS MPA chip for cost sharing 

RD53A 

Submission:  31 May 2017 
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– RD53A size:  20x11.8 mm2    400 col. x 192 rows of 50x50 µm2 pixels 

http://cds.cern.ch/record/2113263�
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RD53A  specifications 
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Technology 65nm CMOS 
Pixel size 50x50 um2  
Pixels 192x400 = 76800   (50% of production chip) 
Detector capacitance < 100fF (200fF for edge pixels) 
Detector leakage < 10nA (20nA for edge pixels) 
Detection threshold <600e- 
In -time threshold <1200e- 
Noise hits < 10-6 
Hit rate < 3GHz/cm2  (75 kHz avg. pixel hit rate) 
Trigger rate Max 1MHz 
Digital buffer 12.5 us 
Hit loss at max hit rate (in-pixel pile-up) ≤ 1% 
Charge resolution ≥ 4 bits ToT (Time over Threshold) 
Readout data rate 1-4 links @ 1.28Gbits/s = max 5.12 Gbits/s 
Radiation tolerance 500Mrad   at -15oC 
SEU affecting whole chip < 0.05 /hr/chip at 1.5GHz/cm2 particle flux 
Power consumption at max hit/trigger rate < 1W/cm2 including SLDO losses 

Pixel analog/digital current  4uA/4uA 

Temperature range  -40oC ÷ 40oC 
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RD53A is not intended to be a production chip 
 

• will contain design variations for testing purposes 
 

• some additional features included  ONLY after  RD53A v1.x  is  fully verified  and 
in case of time/manpower availability 
 

RD53A additional features 
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• High resolution (> 4 bit) mode /Non linear TOT encoding / 80 MHz counting 

• On-chip data compression  

• Data merging from several pixel chips into one link 

• …. 



Radiation tolerance 
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 RD53A should be capable to operate at least up to 500 Mrad  
 
 Extensive irradiation campaign in past 3 years to qualify the technology  
  
 Significant radiation damage above 100 Mrad: 

o Analog:  transconductance, Vt shift 
o Digital:  speed degradation 

 
 200 Mrad and 500 Mrad simulation models were developed to “predict” the 
circuit behaviour during design phase 

Analog design guidelines Digital library selection 
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128 columns 
(16x8) 

136 columns 
(17x8) 

136 columns 
(17x8) 

  0-127                                128-263                          264-399 

Analog Front-Ends 

3 different AFEs designs 

FE_SYNC 
Single stage with SAR-
like ToT counter using 

synchronous comparator 

FE_LIN 
 Single stage with 

current comparator 
and ToT counter 

FE_DIFF 
Continuous reset 

integrator first stage 
+ DC-coupled pre-
comparator stage 

 
• Common calibration injection circuit scheme implemented 

 Based on 3 levels: CAL_HI, CAL_ME and GNDA 
 The levels (pulse amplitude) are set by 12-bit DACs  LSB ~ 50 e- 
 Allows to inject in the same pixel two consecutive pulses with different amplitudes 
 Allows to inject pulses with different amplitudes  in two adjacent pixels 
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Small scale demonstrators 

• FE_SYNC  and  FE_LIN included in the CHIPIX65 
demonstrator (64x64) submitted at end of June 2016 and 
currently under test 

• FE_DIFF is included in the FE65-P2 demonstrator 
(64x64),  currently under test 



FE_SYNC  architecture 
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FE_SYNC – Test results /1 

• Through the S-curves technique 
noise and threshold dispersion have 
been evaluated for 1024 pixels with 
different global threshold values 

• The measurements have been 
repeated after a TID = 600 Mrad 
has been reached with X-ray 
irradiation at -20°C with the chip in 
working conditions 

• The irradiated chip is still fully 
operational 

• For thresholds below 1 ke-, which is 
the region of interest, the increase 
of the dispersion with radiation is 
below 10% 

• The ENC shows around 10% 
increase after irradiation 

12 
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FE_SYNC– Test results /2 

• The fast Time-over-Threshold 
counting has been tested 

• A very good linearity for the 5-bit 
fast ToT has been measured  

• 320 MHz frequency reached 
before irradiation with 20% 
decrease after 600 Mrad 

• The ToT distribution across the 
1024 pixels is around 10% due 
to the mismatch effects and the 
result is compliant with CAD 
simulations 
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ToT counts / VTH_DAC counts 



FE_LIN  architecture 
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• Single amplification stage for minimum power dissipation 

• Krummenacher feedback to comply with the expected 
large increase in the detector leakage current 

• High speed, low power current comparator 

• 4 bit local DAC for threshold tuning 

• In-pixel calibration circuit 

• Selectable gain (1 bit) 

• Overall current consumption: 
~4 uA 



FE_LIN : test results (mini@asic) 
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CSA response @500 Mrad 

Time walk [ns] 
CD=0 CD=50 

fF 
CD=100 

fF 
ch3 12.3 16.3 21.6 

ch4 13.6 18.1 22.6 

Time walk [ns] 
CD=0 CD=50 

fF 
CD=10
0 fF 

ch3 13 16.4 19.5 

ch4 14.2 19.2 23.6 

• Chip 10 (200 Mrad X-ray) 

• Chip 11 (500 Mrad X-ray) 

ch3=channel with 
PMOS feedback cap 
ch4=channel with 
MIM feedback cap 



FE_LIN : test results (Chipix65) 
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Preliminary 

• Measurements on the CHIPIX demonstrator: all pixels tested and fully 
working 

•  450e rms untrimmed threshold dispersion, ENC  85e rms noise before 
irradiation, in agreement with simulations. 125e rms residual threshold 
dispersion, still to be optimized 

• Measurements on-going in Bergamo, mainly focused on the Threshold tuning 



FE_DIFF  architecture 
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• Continuous reset integrator first stage with DC-coupled pre-comparator stage 

• Two-stage open loop, fully differential input comparator 

• Leakage current compensation (not shown) a la FEI4 

•  Threshold adjusting with global 8bit DAC and two per pixel 4bit DACs 



FE_DIFF: post irradiation noise (FE65_P2) 

18 
10th Terascale Det. Workshop                                            Desy, 12 April 2017                                              F. Loddo - INFN-Bari 

• The AFE prototype in FE65_P2 shows limited degradation of its noise performance 

0 Mrad 

350 Mrad 

150 Mrad 



AFEs main features 
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Synch 
AFE 

Lin 
AFE 

Diff 
AFE* 

spec 

Charge sensitivity [mV/ke] 43 25 103 - 
ENC rms [e] 67 83 53 <<126 
Threshold dispersion  
σ(Qth) rms [e]  

93 32 20 <<126 

√(ENC2 + σ(Qth)2) [e] 115 89 54 ≤126 
In-time overdrive [e-] ≤50 ≤100 0 ≤ 600 
Current consumption [µA/pixel]  3.31 4.3 3.5 ≤ 4 
Time over threshold [ns] 121 99 118 < 133 

• Post-layout simulations (*except for the Diff AFE schematic level sim), CD=50fF, T=27°C, 
Qth=600e-. 

• In-time overdrive relative to a Qin=30ke- 

• Time walk  Qin=1200 e- (relative to a Qin=30ke-) 

• ToT  Qin=6ke- 

• 1 5.1uA including the latch 



50µm X 50µm Pixel floorplan 

1) 50% Analog Front End (AFE) 
     50% Digital cells  

AFE 

Digital logic 

35 15 

2) The pixel matrix is built up of  8 x 8  pixel cores   16 analog islands (quads) embedded in 
a flat digital synthesized sea 

3) A pixel core can be simulated at transistor level with analog simulator 
 
4) All cores (for each FE flavour) are identical  Hierarchical verifications  

2x2 quad 
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Analog Chip Bottom (ACB) 
• Macroblock containing all analog IPs (all prototyped, tested and irradiated) 

20 mm 

1.
5 

m
m

 Macrocol bias 

ADC CAL DACs DACs DACs DACs DACs CDR/PLL POR 

Building blocks Function 

12-bit Monitoring ADC Monitoring 

10-bit current DAC Bias 

12-bit voltage DAC Calibration 

Bandgap reference Bias 

POR Reset 

CDR (PLL)  Clock and data recovery 

Temp. and rad. Sensors Monitoring 

Analog buffer Calibration/Monitoring 

Ring oscillators Monitoring 

• ACB assembly:  done   Mixed-signals simulations ongoing 
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Pixel array logic organization 

Array organization  
 basic layout unit: 8x8 digital Pixel Core  synthesized as one digital circuit 

 
 
 
 
 

 

192(400)x400 pixels 

8x8 
pix 

8x8 
pix 

8x8 
pix 

8x8 
pix 

1x4 
pixel 

region 

4x4 
pixel 

region 

OR 

• One Pixel Core contains multiple Pixel Regions (PR) and some additional arbitration and clock logic 

• Pixel Regions  share most of logic and trigger latency buffering 

Distributed Buffering Architecture        
(FE65_P2 based (2x2)): 
• distributed TOT storage 
• changed to 1x4 because more 
convenient for buffer occupancy 

Centralized Buffering Architecture 
(Chipix  based (4x4)): 
• centralized TOT storage 
• ~ same power 
• ~ 10% less area 
•  Integrated with FE_SYNC (Fast ToT) 
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Pixel array logic organization 

8x8 Pixel Core 

8x8 Pixel Core 

8x8 Pixel Core 

8x8 Pixel Core 

Digital Chip Bottom 

8x8 Pixel Core 

8x8 Pixel Core 

• Each Pixel Core receives 
all input signal from the 
previous core (closer to the 
Digital Chip Bottom) 
 

• Regenerates the signals 
for the next core. 
 

•The timing critical clock 
and calibration injection 
signals are internally 
delayed to have a uniform 
timing (within 1-2 ns) 
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400x192 pixels 

data 
buffer 

IP 

JTAG 

global conf. 

8x8pix 

C
R 
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Hit Finder 

Aurora 
 

8x8pix 

8x8pix 8x8pix 

SER Cmd Moni
tor 
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RD53A logical floorplan 
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Digital Chip Bottom 

Single serial input stream 

Port A: 1-2-4 CML outputs @ 1.28 Gbps 
OR 

 (Port B: 1 output  @ 5.12 Gbps) 
Encoding: Aurora 64/66 



RTL Integrated 
Distrib. Buffer. Arch (DBA) +++ +++ 
Central. Buffer. Arch (CBA) +++ +++ 

FE_SYNC +++ +++ 

FE_LIN +++ +++ 

FE_DIFF +++ ++ 

Pixel Configuration +++ +++ 

Command Decoder +++ +++ 

Data concentrator  +++ +++ 

Aurora 64b/66b: Single +++ +++ 

Aurora 64b/66b: Multi +++ +++ 

JTAG +++ +++ 

DFT - - 

Data Compression - - 

RTL Integrated 

Global Configuration +++ +++ 

Monitoring/Readback ++ + 

SEU +++ + 

ACB ++  
(characterization) 

IO + 
(characterization) 

Top LVS/DRC + 

Top STA + 

Top verification 

Digital (pixel matrix + chip bottom) 
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Serial powering 
• RD53A  is designed to operate with Serial Powering   constant current to power 
chips/modules in series 
• Based on ShuntLDO   
• Dimensioned for production chip 

Three operation modes: 
1.  ShuntLDO: constant input current Iin  local regulated VDD 
2.  LDO (Shunt is OFF) : external un-regulated voltage  local regulated VDD  
3.  External regulated VDD  (Shunt-LDO bypassed) 
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2A  ShuntLDO 

A prototype of 2A version is under testing 

I-V characteristics 



Shunt-LDO floorplan 
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Analog Digital Analog Digital Analog Digital Analog Digital 

Digital 
Control 

Analog 
Control 

• ShuntLDOs are located in the IO Frame  power lines come only from the bottom 
• Power transistors are splitted into 4 blocks for better distribution of power 
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IO Bottom Padframe 

20 mm 

  This is a macroblock containing: 
 
 IO Pads + ESD protection blocks 
 ShLDO voltage regulators 
 Drivers/Receivers 

• 198 PADs with 100 µm pitch 
• Passivation opening: 58 µm x 86 µm  reliable wire bonding 
• Compatible with TSV (backside etch process) 
• SLVS Drivers/Receivers  
• Port A: 1.28 Gbps  Serializer + CML driver   
• Port B: 5 Gbps  serializer + driver: not yet ready,  not confirmed 

• Top PADFRAME (for test and monitoring, not in production chip):  almost finalized 
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RD53A TOP LEVEL INTEGRATION 

Top level integration flow works smoothly 
 
Full chip physical verifications (DRC, LVS) are 
relatively fast (3.5 hrs) thanks to hierarchical 
structure 
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RD53A Verification 
UVM testbench allowing for reusability and automated verification functions 

Main interface verification 
components (UVC): 
– Hit (sensor pixel hit data) 
– Command (custom input 

protocol for control and trigger) 
– Aurora (monitor pixel chip 

output) 
– JTAG (reuse from verification 

IP) 

Automated verification 
components: 
– Pixel array reference model 

(predict output hits according 
to trigger) 

– Pixel array checker (compare 
predicted output vs real 
output) 

– Lost hits classifiers 
– Configuration register model 

(reference for operations to 
global configuration and pixel 
configuration) 
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RD53A Verification 
Verification approach: 
1. Constrained-random tests  functional coverage collection 

– Based on generation of constrained-random inputs (e.g. hits and triggers at operating conditions, from 
physics Monte Carlo simulations) 

– Automated pixel array verification through reference model and checker 
– Automated global configuration and pixel configuration registers verification through register model 

2. Directed tests  specific test cases aimed to verify specific functions and unlikely 
perturbations (e.g. extreme hit/trigger conditions) 

– Custom command sequences 

3. Generation of stimuli for analog simulations 
– Dump VCDs 

Implementation status: 
1. Interface UVCs: finalizing development and reusing IPs 

2. Configuration register model: being added 

3. Directed tests: writing custom command sequence for verifying specific functions (e.g. digital 
injection, command protocol errors) 

Verification plan containing planned coverage 
elements and testcases 
Updated with test regressions for measuring 
verification progress 
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Summary 

• RD53A demonstrator chip design is ongoing 

• Excellent sharing of resources/ideas among ATLAS and CMS  

• Design based on production chip but include different AFEs and pixel logic 

architectures for detailed comparison 

• Many test features and backup solutions adopted for chip debugging 

• Design strategy to withstand the expected radiation environment (500Mrad at -15oC)  

• Final design is almost ready,  extensive verifications are on-going 

• Verification plan for chip debugging 

 

Chip submission on 31 May 2017 
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Backup 



Radiation effects in CMOS 

• Baseline technology : 65nm CMOS for the 
RD53 project 

• The TID-induced charge in the thin oxide 
decreases with the thickness of the oxide 

• In highly scaled processes 
– The thin gate oxide is very tolerant to the 

TID 
– Thick oxide used for isolation : Thick 

Shallow Trench Isolation Oxide  (STI) 
– Thick oxide exists everywhere around 

the device 
• Radiation Induced  Leakage Current (RILC) 
• Radiation Induced Narrow Channel Effect 

(RINCE) 
• Radiation Induced Short Channel Effect 

(RISCE) 
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TID effects on the 65nm devices 
• The increase of the leakage current is very limited 

– Factor 100 for the worst case 
• The enclosed layout is not needed 
• PMOS devices more sensitive than NMOS 
• TID effect on large and long devices (NMOS and 

PMOS) is limited 
 
 

• Analog Design : Avoid the use of narrow or short 
transistors 

– Analog designs following these rules showed a 
good radiation tolerance up to 1 Grad 

– Irradiation damage depends on the bias. This 
affect the matching and can be an issue 

• Digital design :  
– Requires high integration density 
– Digital cells are designed with minimum size  

devices and so are subject to RINCE and RISCE 
effects 
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PMOS : W/L= 1µ/1µ 

W/L= 1µ/1µ 

37 

Temp=20°C  
Pmos devices :ON state current 

versus TID  

Annealing 
@100°C 

pmos devices 
 Vds=1.2V 



Temperature and annealing effect 

• Less damage for the PMOS and NMOS when Irradiation is done at low 
temperature 

• High temperature annealing (100 °C for 7 days) degrades strongly the DC 
parameters and show a high Vth shift 

• A long term annealing at room temperature was done for ~1 year on 
irradiation devices at the PS-CERN -> more degradation  

• Qualification and annealing for different temperature were done at CERN  
• The Vth shift of the PMOS device is a thermally activated process 
• Extrapolation for lower temperatures 
• For the RD53 Front end chip, this temperature effect can be avoided by 

keeping the system :  
– In cold environment : -20°C for 5 years  
– Unbiased at room temp for few months 
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DRAD Chip : Test chip for digital design 
• DRAD chip is designed at CERN :  
• To study the effect of radiation on digital 

standard cells for the 65nm technology 
• To test the efficiency and the validity of the 

digital simulations with the irradiation corner 
model  

• Simulation results goes in the same direction 
than irradiation tests but the model 
overestimates the TID damage level  

– Models were done for worst case of biasing 
• NOR gates should be avoided since show a 

strong degradation 
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Test Structure 
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