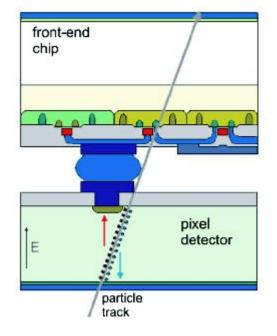


Pixel detectors for HL-LHC upgrades

Pixel Technologies: Hybrid Pixel

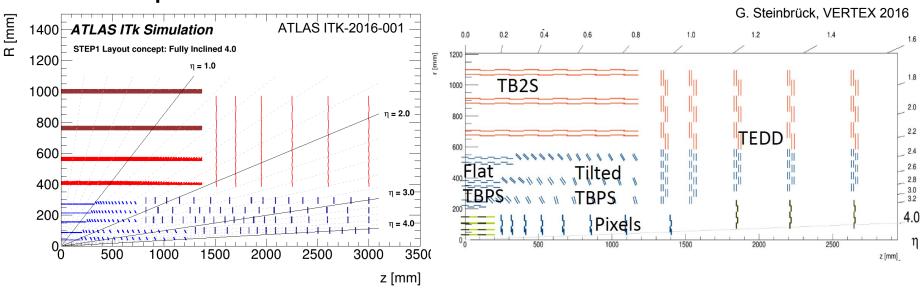

10th Terascale Detector Workshop

12.04.2017

Susanne Kühn, CERN

Overview

- Pixel modules for the tracker upgrades
 - Challenges
 - Concept of hybrid modules
- Results for sensor options
 - Planar p-type sensors
 - 3D sensors
- Challenges for hybrid modules
 - HV protection for n-in-p sensors
 - Interconnection: bump-bonding
- Summary



Upgrade of the ATLAS and CMS tracker

For ATLAS various layouts under evaluation for pixel detector

CMS tilted layout

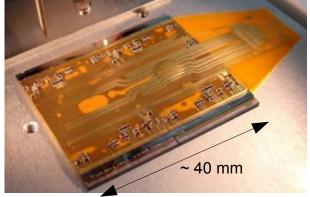
Challenges for pixel modules

 \rightarrow Fast, radiation-hard sensors, readout chips, support materials

See talk by Loddo Flavio on RD53 Pixel Asic

- \rightarrow Silicon detector modules to be assembled and placed on larger structures
- \rightarrow In ATLAS: 5 barrel layers, many rings in end-cap (~ 13 m²), various module geometries, production volume of up to 13000 pixel modules
- \rightarrow In CMS: 4 barrel layers, 7 disks (~ 4.9 m²), minimal number of module types, 1960 2x1 and 2392 2x2 ROCs/module with typical size of a ROC 2x2 cm²

Hybrid pixel module concept


• For ATLAS

- Sensor and front-end electronics connected to module with high density bump bonding
 → bare module
- Flex glued on top of bare module (on sensor side)
- Flex and bare module connected via wirebonds (data, LV, HV)
- Quad (4-chip) modules and single, double modules for inner most layers
- Prototyping of different assembly methods in several institutes ongoing
 - Based on FE-i4 and various sensor options
 - Assembly of bare module and readout flex advanced
 - Irradiation study of glues and composite materials started

Stave surface

Wire-bond

Flex

Sensor

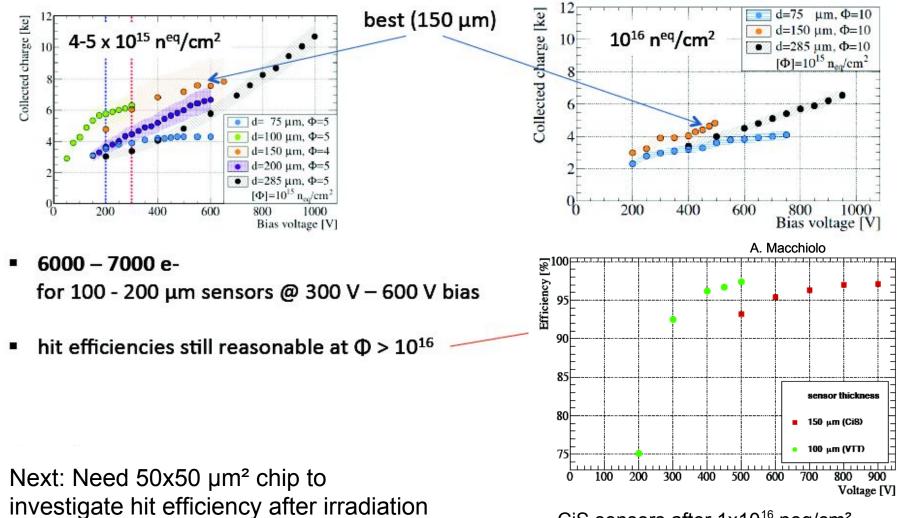
FEIx

Quad pixel module prototype, 4 FEi4 chips

Bump-bond

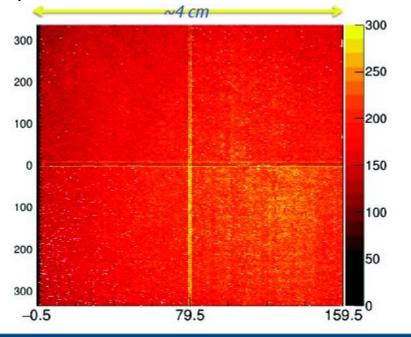
Sensor options

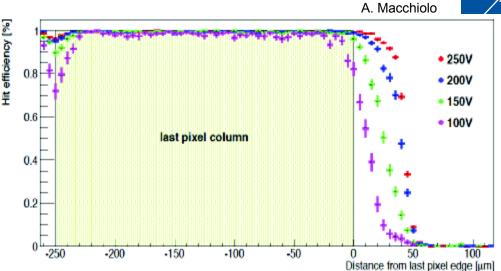
- Various sensor types foreseen:
 - ATLAS: 3D inner layer, planar baseline for other layers, CMOS technologies under evaluation
 - CMS: planar baseline, 3D or planar sensors for 1st layer under evaluation
- Thickness: thin sensors
 - ATLAS: depending on radius 100 $\mu m,$ 150 $\mu m,$ 200 μm
 - CMS: thin sensors under study
- Thin/active edges
- Small pixel sizes
 - 50x50 μm^2 or 25x100 μm^2
- → Many performance studies in laboratory and test beam before and after irradiation


See talk by Heinz Pernegger on CMOS

Planar sensors in ATLAS: thickness

•Thin n-in-p sensors after neutron irradiation to high fluences


Terzo, Andricek, Macchiolo, Nisius et al, JINST 9 (2014) C05023



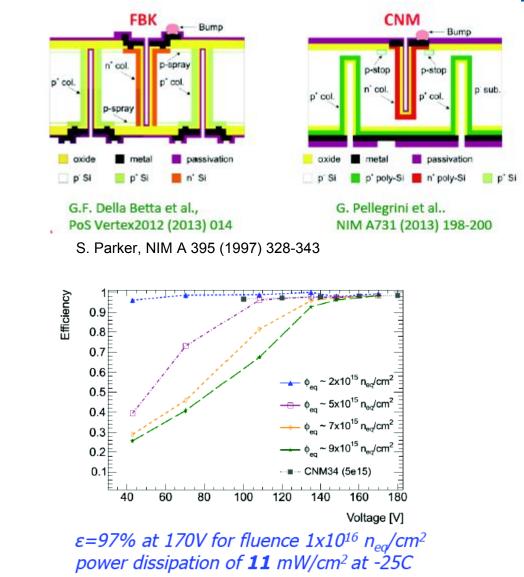
CiS sensors after 1x10¹⁶ neq/cm²

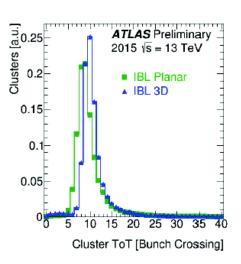
Planar sensors in ATLAS: slim edge

- Slim edge sensor, 150 μm thin, irradiated to 1x10¹⁵ neq/cm²
- \rightarrow high efficiency at edges
- Quad module HPK sensor 100 μm with RD53-P2 front-end in test
- RD53A compatible sensors already produced

 From the experience with recent productions, a good yield is achievable with sensors of 100 µm thickness and above

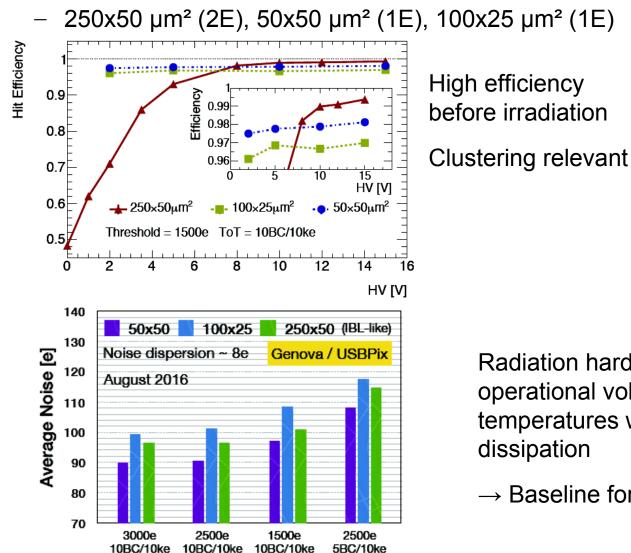
• Baseline thin p-type sensors (6" production) with 100 μm and 150-200 μm thickness


 Power dissipation (in range 500 -700 V) about 25-45 mW/cm²



3D sensors in ATLAS

• 3D sensor technology has been proven to be reliable with the IBL detector and more recently in AFP and PPS



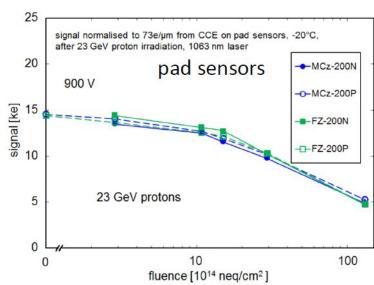
12.04.2017

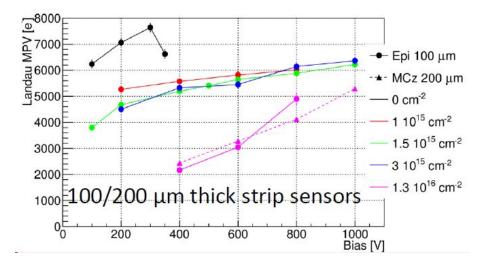
3D sensors in ATLAS ctd'

• New thin 3D pixel sensors on 6" p-type wafers at FBK

H. Oide

Radiation hardness at low operational voltages and moderate temperatures with low power dissipation

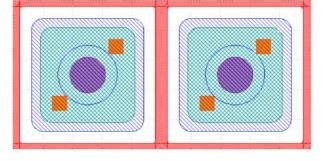

 \rightarrow Baseline for the innermost layers

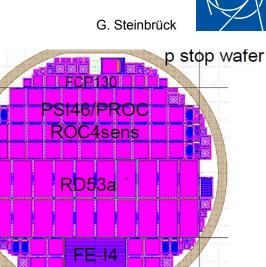

Planar sensor study in CMS

- Charge collection studied for irradiated 200 µm thick n-in-p pad diodes
 - 5k electrons after1x10¹⁶ neq/cm² (900 V bias)

Thin sensors:

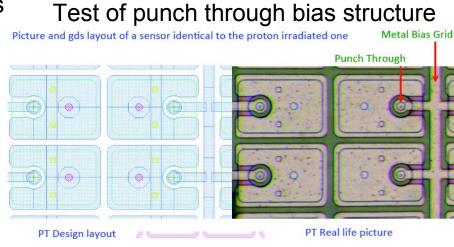
- Similar signal in 100 µm epi strip sensors as in 200 µm (MCz: 5 k electrons at ~800 V)
- However: Strong increase of current and noise with voltage, signs of soft breakdown/ charge multiplication
- Charge collection measurements repeated with pixel sensors: Weighting field
- \rightarrow HPK submission
- → INFN/FBK submission

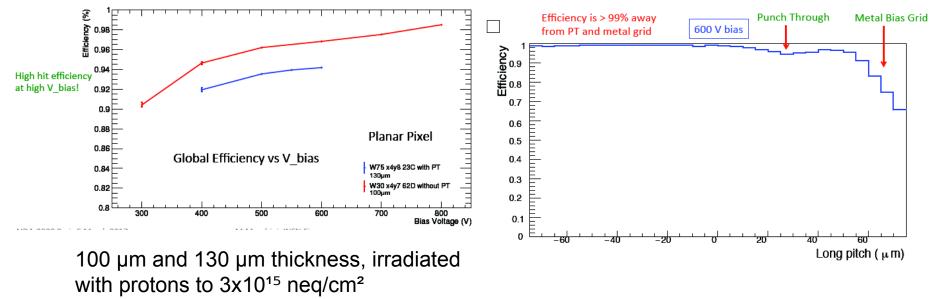




CMS HPK planar sensor study

- HPK submission on 6" n-in-p wafers
 - 35 wafers, 3 materials
 - 150 µm, no handle wafer
 - 150 μm + 50 μm Si-Si direct bond
 - Deep diffused 150 μm + 50 μm
 - P-stop and p-spray isolation (only dir. bond)
 - Pixel size 50x50 µm² and 25x100 µm²
 - Bias schemes: no bias, common punch-through, polysilicon bias
 - Metal overhang to mitigate E-field

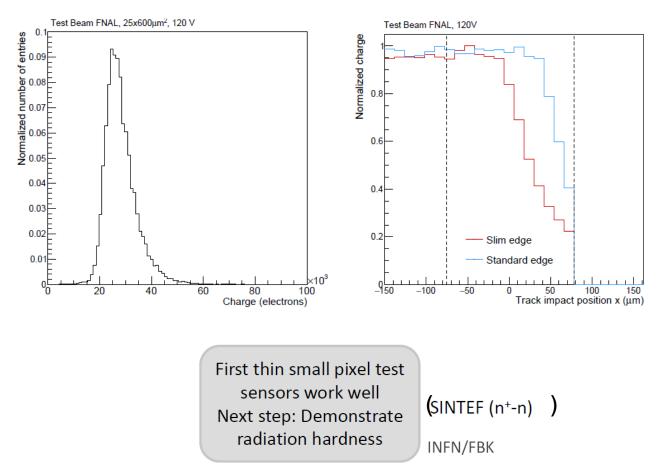




INFN-FBK planar sensors in CMS

- N-in-p pixels on 6" production line, various sensor types
 - P-stop, p-spray
 - With/without punch-through bias structure
 - Evaluate: thinning, BCB, bumpbonding

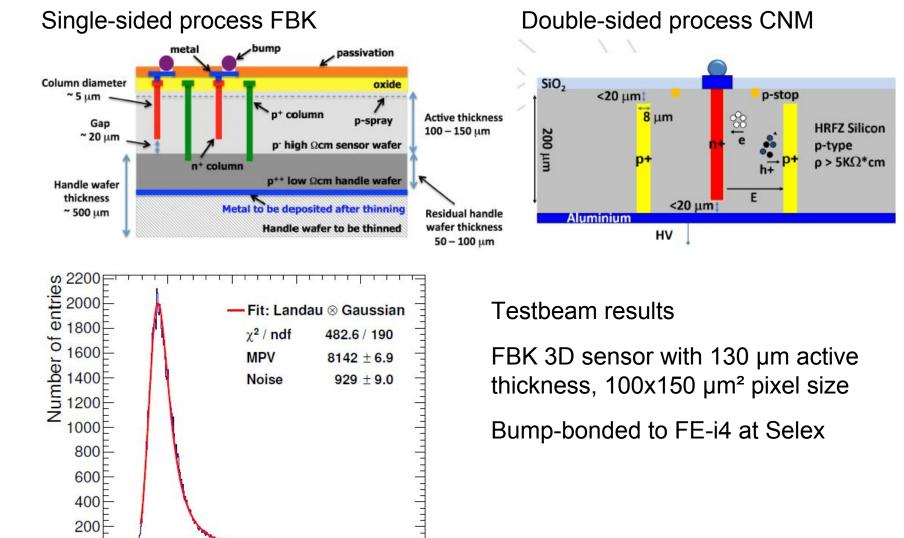
Projected efficiency on transverse section



More tests ongoing

CMS Sintef planar sensor study

- n-in-n sensors at Sintef, 300 µm thickness
 - Testbeam measurements:
 - 25x600 µm² pixel size


– 100x150 µm² pixel size

Pixel technologies: Hybrid Pixel - Susanne Kuehn

3D sensors in CMS

G. Steinbrück

12.04.2017

01

10000

20000

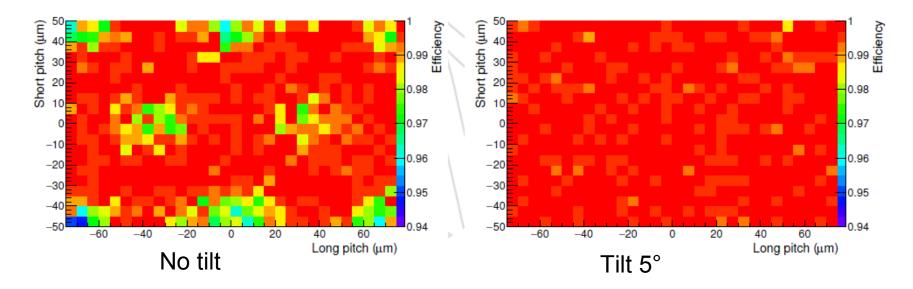
Pixel technologies: Hybrid Pixel - Susanne Kuehn

50000

40000

Charge (electrons)

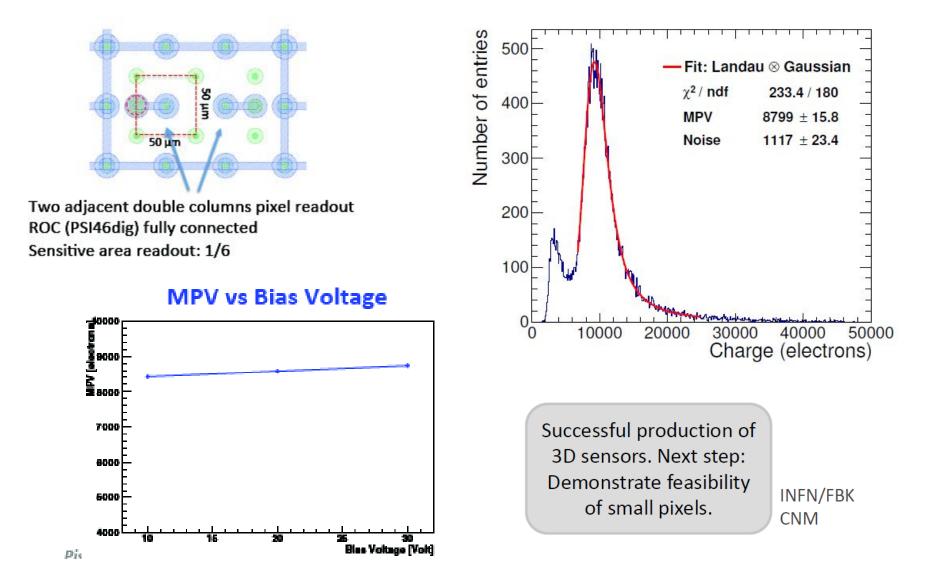
30000


3D sensors in CMS ctd'

G. Steinbrück A. Messineo

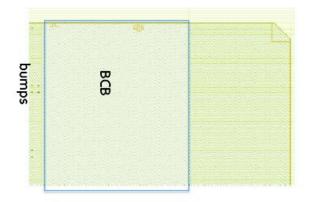
Testbeam results

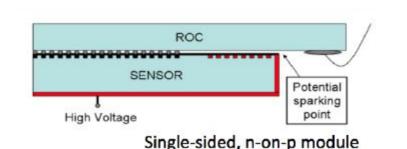
FBK 3D sensor with 130 µm active thickness, 100x150 µm² pixel size


Angle (degrees)	Efficiency 3E	Efficiency 2E
0	99.27%	99.45%
5	99.77%	99.85%
10	99.88%	99.87%
$\max \Delta$ Efficiency	0.62%	0.43%

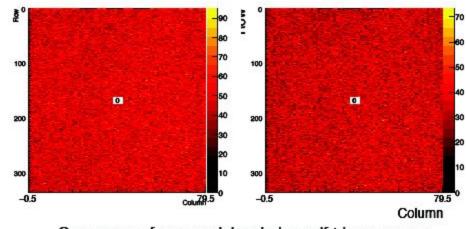
 Efficiency improved for non orthogonal tracks

3D sensor at CMS with fine pitch 50x50 µm


- 3D sensor with fine pitch 50x50 μm and 130 μm (HV=30 V)


Sensor – FE insulation

Insulation of sensor HV and FE ground


- ATLAS study of BCB polymere isolation layer on FE and parylene coating of module
- For some sensor production technology (backside cavities, active edge sensors) the deposition of BCB isolation layer on the sensors is problematic or impossible → Have the BCB isolation deposited on the chip side

FE-I4 wafers with BCB processed at IZM (LPNHE and MPP project)

Sensor coated with BCB proven HV up to ~900 V

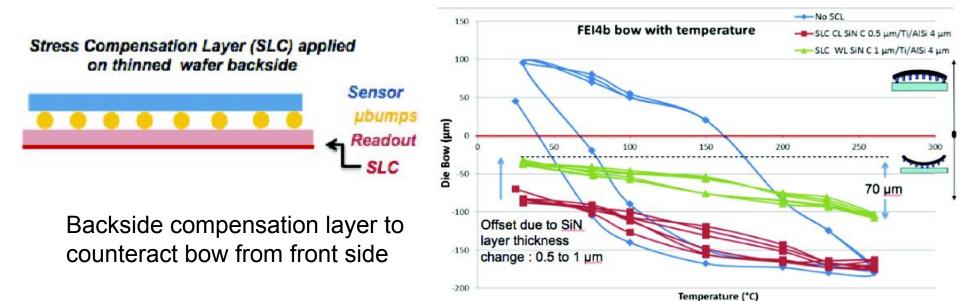
Occupancy of new modules during self-trigger source scan using a radioactive Cadmium source

- HV capabilities to be proven after irradiation
- Cost-reduction due to larger size of chip wafers

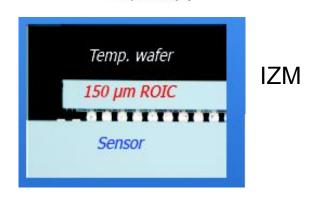
12.04.2017 Pixel technologies: Hybrid Pixel - Susanne Kuehn

A. Macchiolo

Challenges of interconnection


CERN

- Bump-bonding for connection between sensor and readout chip
 - Reduce cost and increase production speed despite fine pitch and thin silicon
 - Exploring solutions:
 - UBM at sensor foundry (CIS, HPK, MICRON, ADVACAM, ...)
 - Chip to Wafer bonding requires TSVs
- Wire-bonds for connection of bare module chip and flex
 - Oscillations in magnetic field
 - Protection desired (potting): possible field for common R&D
 - Limit on active sensor area to have access to readout chip bond area, limit on envelops


12.04.2017 Pixel technologies: Hybrid Pixel - Susanne Kuehn

Bump bonding

- 50 µm minimum pitch but high density on large chip surface (~ 4 cm²) and aim for large wafer sizes
- Thin sensors and chips to reduce material \rightarrow stability, bow of wafers

- Temporary wafer for production steps, after flip-chipping laser debonding (300 µm glass)
- Comparison of various vendors in preparation in ATLAS

Summary

- Hybrid pixel working very well and advanced for Phase-II trackers in ATLAS and CMS
 - Sensor and FE bump-bonded
 - Signal processing in pixel cell
 - Radiation hard to > 1x10¹⁵ neq/cm²
 - High rate capability and spatial resolution

BUT

- Relatively large material budget
- Complex and laborious module production
- Costs
- Challenge: low cost for outer radii and radiation hardness, thermal runaway, material budget for inner radii
- R&D programs to develop thin, fine pitch sensors+FE and address pixel design issues

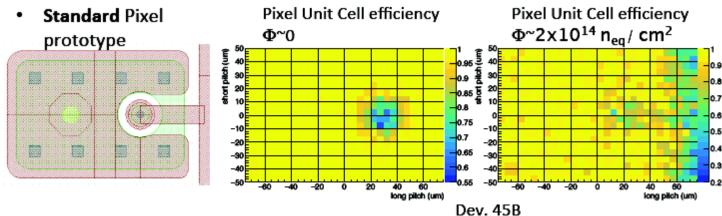
Thank you!

Thank you for material to Claudia Gemme, Anna Macchiolo, Alberto Messineo, Hideyuki Oide, Georg Steinbrück, Norbert Wermes

Sensors

Planar

- low cost for outer radii and radiation hardness, thermal runaway, material budget for inner radii
- Baseline n-in-p sensors
- 50x50 µm² pixel test structures demonstrated
- Interconnection technologies investigated for thin planar pixel sensors of thickness 50-200 µm
- Good hit efficiencies up to the physical perimeter of the devices obtained with (100-150) µm thin active edge sensors
- Different vendors investigated: CiS, Advacam, MPG-HLL, FBK, HPK,


- Design of small cells and thinner substrate
- Production rate and yield
 - Columns of 5-8 um diameter alternately n- and p-type doped
 - Single sided process, thin 50-200
 µm thick thanks to support wafers
 - Slim edges of 15-150 µm, even active edges sensitive up to the physical edge
 - Steady progress on 50 x 50 μm² & 25 x 100 μm² pixel design
- Sintef, FBK and CNM making devices: moving at RD53A-prototypes

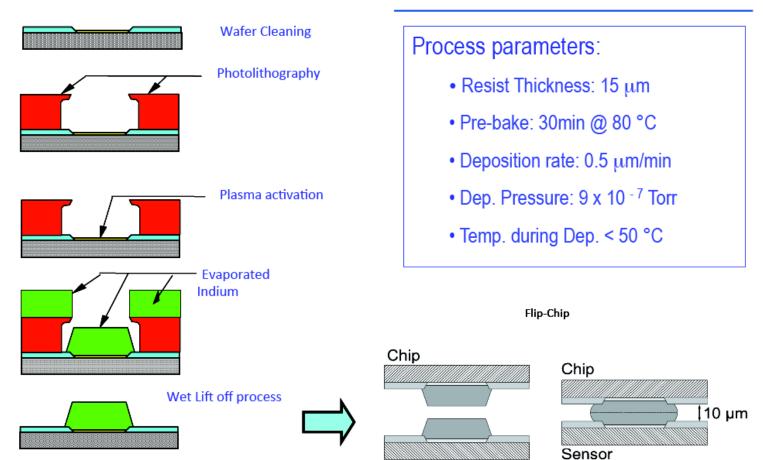
Effect from bias pads

• Tracks detection efficiency is affected by the pixel bias structure (CMS)

Geometry of the bias structure or moderated p-spray mitigate the inefficiency before irradiation, observed however after irradiation

 \rightarrow Simulation study to optimize geometry/process of bias structure, critical for small pitch pixels

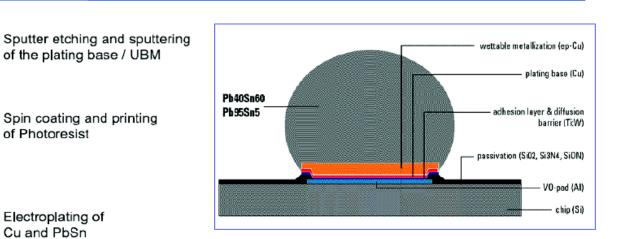
SPARE

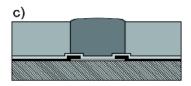


Challenges of interconnection

Indium bumping process

universitätbonn




Sensor

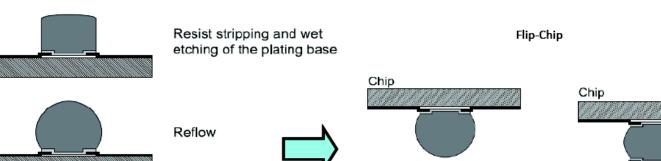
12.04.2017 Pixel technologies: Hybrid Pixel - Susanne Kuehn

Challenges of interconnection

Solder bumping & flip chip process

a)

b)


d)

e)

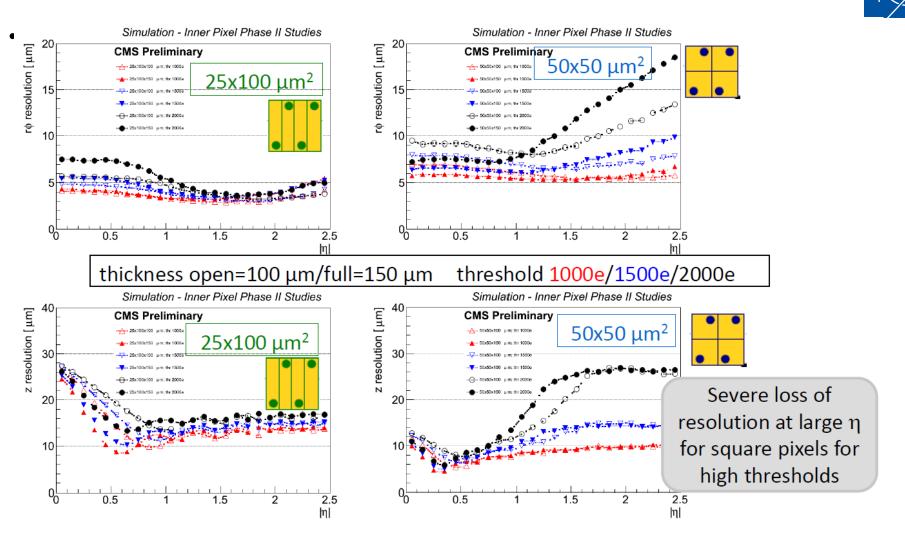
12.04.2017

Electroplating of Cu and PbSn

of Photoresist

Sensor

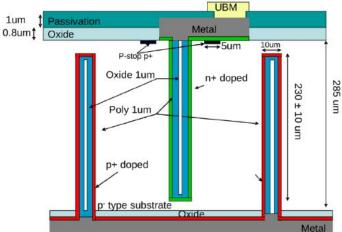
Sensor

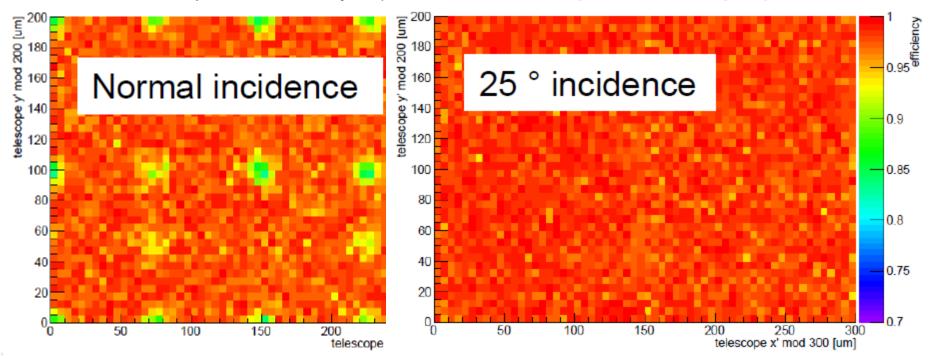


universitätbo

25 µm

Pixel technologies: Hybrid Pixel - Susanne Kuehn


Study of pitch in CMS


3D sensors from CNM in CMS

- 3D pixel sensors fabricated by CNM, Spain
- IBL run, read out with CMS PSI46dig ROC
- 100x150 µm²
- Double sided 3D process yields good sensors with "standard" pixel size

2x2 pixel cell efficiency map

2x2 pixel cell efficiency map

12.04.2017

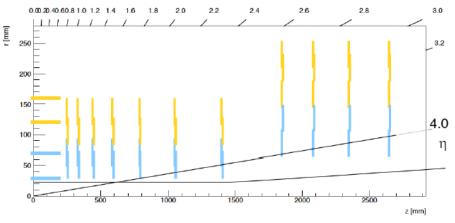
Pixel technologies: Hybrid Pixel - Susanne Kuehn

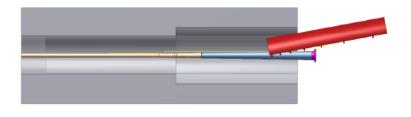
CMS Pixel detector for HL-LHC

G. Steinbrück, VERTEX 2016

Coverage of geometrical acceptance:

Barrel:


4 layers à la phase l: r₁ = 2.9 cm, r₄ = 16.0 cm but shorter: z_{max} = ±20 cm instead of ±27 cm


Forward:

coverage at large |η| obtained by increasing the number of discs (11+11) z₁ = ±25 cm z₁₁ = ±265 cm

Total: ~4.5 m² of Si

- Simple mechanics:
 - no turbines/blades in the FPIX discs
- Step in the pixel envelope
 - \blacksquare r=20 cm \rightarrow r =30 cm at z=160 cm
 - to allow the installation of the central section with beam pipe in place

12.04.2017 Pixel technologies: Hybrid Pixel - Susanne Kuehn

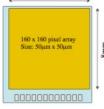
CMS options for readout chips

PSI46dig and PROC600

- IBM 250 nm, 100 x 150 μm², 80 x 52 pixels, rad hard > 5 MGy (PROC600)
- ROC4Sens (PSI)
 - IBM 250 nm, 50 x 50 μm², 155 x 160 pixels, no charge threshold, rad hard > 5 MGy, operated with CMS pixel test board, staggered BB pattern, opening 15 μm
 - available since summer 2016 (on PROC600 wafer)
- FCP130 (FNAL)
 - GF 130nm, 30 x 100 µm2 , 160 x 48 pixels, threshold: ~1000 e- , rad hard few MGy, DAQ under development
 - availability foreseen early 2017

RD53A:

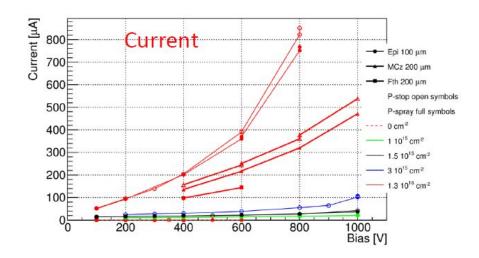
12.04.2017

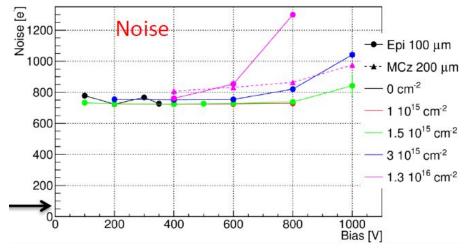

- 65nm, 50 x 50 μm2 , 400 x 192 pixels, min. threshold: 600 e- , rad hard up to 10 MGy non-staggered BB pattern
- availability 2017

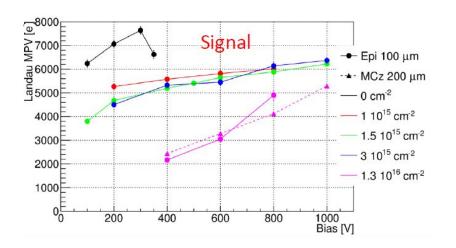
For ROC developments, see also talks on "RD53 status and plans" by L. Gaioni and "Radiation Tolerance of 65nm CMOS" by M. Menouni (Thu)

- FEI4 (ATLAS) (used for serial powering studies)
 - GF 130 nm, 50 x 250 μm², 336 x 80 pixels, threshold < 2000 e⁻, rad hard > 5 MGy

PSI46dig only chip available as of today, but not as rad. hard






CMS planar sensor study

G. Steinbrück, VERTEX 2016

N-in-p strip sensor study, 200 μm thickness

After high fluence and at high bias voltages sign of charge multiplication and increase in noise and leakage current

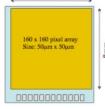
CMS options for readout chips

PSI46dig and PROC600

- IBM 250 nm, 100 x 150 μm², 80 x 52 pixels, rad hard > 5 MGy (PROC600)
- ROC4Sens (PSI)
 - IBM 250 nm, 50 x 50 μm², 155 x 160 pixels, no charge threshold, rad hard > 5 MGy, operated with CMS pixel test board, staggered BB pattern, opening 15 μm
 - available since summer 2016 (on PROC600 wafer)
- FCP130 (FNAL)
 - GF 130nm, 30 x 100 µm2 , 160 x 48 pixels, threshold: ~1000 e- , rad hard few MGy, DAQ under development
 - availability foreseen early 2017

RD53A:

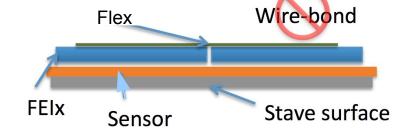
12.04.2017


- 65nm, 50 x 50 μm2 , 400 x 192 pixels, min. threshold: 600 e- , rad hard up to 10 MGy non-staggered BB pattern
- availability 2017

For ROC developments, see also talks on "RD53 status and plans" by L. Gaioni and "Radiation Tolerance of 65nm CMOS" by M. Menouni (Thu)

- FEI4 (ATLAS) (used for serial powering studies)
 - GF 130 nm, 50 x 250 μm², 336 x 80 pixels, threshold < 2000 e⁻, rad hard > 5 MGy

PSI46dig only chip available as of today, but not as rad. hard


32

R&D beyond HL-LHC on compact modules

- Modules with through-silicon-vias: wire-bond less pixel module
 - Deploying TSV processes
 - Instead of wire-bonds connect flex via solder balls on back of chip
 - Less fragile module
 - Reduced interconnect inductance
 - Wire-bond pads can be removed: reduced chip edge
 - Wafer-to-wafer bonding possible: no need for flip-chipping

3D sensor study with small pitch with CNM

- Joint RD50 project: ATLAS, CMS, LHCb
- 230 μm wafer, n-in-p, double sided
- CMS: Sensor designs for 3 chips
 - 1) ROC4sens 50x50 μm²
 - 2) PSI46dig 100x150 μm²
 - 3) Fermilab FCP130 30x100 μm²

Aims:

- Test small pitches (25x100 and 50x50)
- Aspect ratio: 8 μm holes in 230 μm (1:25)
- \blacksquare 100 μm and 200 μm slim edges
- Radiation hardness of different layouts

5 wafers completed December 2015 All diced Investigating Ni/Au UBM (electroless and electroplating) Flip-chip to FE-I4 validation in progress

12.04.2017

Pixel technologies: Hybrid Pixel - Susanne Kuehn