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Introduction
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]Status quo:
I The Standard Model of particle

physics describes three of the four
fundamental forces

⇒ A wide variety of experimental
results are explained by the
Standard Model

Still some things are not explained by the
Standard Model. E.g.:

I TeV transparency
I Energy loss in stars at different

evolution stages
I Dark matter

γ

EBL e+
e−

XBSource a XBGMF γ
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QCD axion and SM extension

Axion [Peccei,Quinn 77; Weinberg; Wilczek 78]

Pseudo scalar field that solves the strong CP-problem in QCD.
I The axion is a CP conserving dynamic field that explains the

small value of the static CP viol. angle θ in QDC
(Lθ = θ g

32πGµν
a G̃aµν , θ → a(x)

fa )
I The θ term produces an electric dipole moment of the

neutron: dn =≈ θ10−16 ecm, dexp
n < 2.9× 10−26 ecm
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QCD axion and SM extension
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Introduce a singlet complex scalar
σ featuring a global U(1) symme-
try, which is spontaneously broken
at the scale fa = vσ/Cag . a

Lint. ⊃ −
αs
8πCag

a
vσ

Gc
µνG̃cµν− α

8πCaγ
a
vσ

Fµν F̃µν+1
2Caf

∂µa
vσ

ψ̄f γ
µγ5ψf

a

g

g
a

γ

γ
a

f

f

Axion (Peccei-Quinn):
I Solves the strong

CP-problem
I It acts as CP conserving

dynamic field

Axion like particles (ALPs):
I Similar to axions with

different Caγ ,Caf ,Cag

I Can explain different
observations
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Axion and ALP hints
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 Low opacity hints

 KSVZ  DFSZ

 Cold dark matter

Star Cooling Hint
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Incomplete list of ALP experiments worldwide

ADMX
Washington CAST,

OSQAR
CERN

ADMX-HF
Yale

CAPP
Daejeon

PVLAS
Legnaro

SUMICO
Tokyo

GammeV
Fermilab

ALPS II
Hamburg

QUAX
LegnaroARIADNE

Reno

CASPER
Mainz

MADMAX
(Munich), ?

ABRACADABRA
MIT

IAXO
? Axion centre

Running experiment
Future experiment
Past experiment

[By Frank Bennett [Public domain], via Wikimedia Commons]
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Axion sources
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]Haloscopes:
I Local Milky Way dark

matter halo ALPs interact
with the experiments
magnetic field

Helioscopes:
I ALPs produced in the sun

interact with the
experiments magnetic field

Light shining through wall:
I ALPs are produced and

detected by the experiment
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Incomplete list of ALP experiments worldwide

ADMX
Washington ADMX-HF

Yale

CASPER
Mainz

MADMAX
(Munich), ?

ABRACADABRA
MIT

QUAX
Legnaro

CAST,
CERN

SUMICO
Tokyo

IAXO
?

QSQAR,
CERN

PVLAS
Legnaro

GammeV
Fermilab

ALPS II
Hamburg

ARIADNE
Reno

[By Frank Bennett [Public domain], via Wikimedia Commons]

other
gaγγ

5th force
LSW
Helioscope
Haloscope
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Axion Dark Matter Experiment (ADMX) [Sikivie 1983]
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Experimental setup:
I 8 T superconducting magnet
I Cavity cylinder: 1 m× 0.5 m
⇒ high-Q tunable microwave cavity
I Ultra low-noise microwave receiver
I Amplifier: SQUID + low noise

cryogenic HFET
Dominant background:

I Thermal noise arising from the
cavity

I Electronics noise from the receiver
Sensitivity:

I Signals down to 10−24 W can be
detected (equivalent to 1 axion
decay per minute)
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Superconducting Quantum Interference Device (SQUID)
First DC SQUID realized in 1964, Ford Research Labs

SQUID
Combines the phenomena of flux quantization in superconducting
rings with Josephson tunneling.

I Most sensitive detectors of
magnetic flux ⇒ Minimum
measurable flux variation
∼ 10−6Φ0; Φ0 = 2× 10−15 Tm2

ADMX:
I Antenna in the cavity picks up

current
I A coil above the SQUID translates

current to magnetic field

Ibias Ibias

V

J2

J1

Φ/Φ0

V

1 2
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ADMX analysis
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Data taking:
I Cavity power is averaged (Tav.bin ≈ 25 min) until S/N

exceeds a confident detection threshold per 125 Hz bin
I Cavity is tuned every 80 s in steps of ≈ 2 kHz
I Reducing the noise from 2 K (resistor amplifier) to 50 mK

(SQUID) ⇒ speed-up by factor of 1000
I Dicke radiometer eq. : S

N = Psignal
kBTnoise

√
t
b
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ADMX-HF @ Yale University
Haloscope At Yale Sensitive To Axion CDM (HAYSTAC)
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Experimental setup:
I 5 T magnet, r = 5 cm, h = 25 cm
I Q = 20000, tunable from 3.5 GHz to

5.85 GHz ⇒ ma: 19 µeV to 24 µeV
Sensitivity: 2.5× 10−23 W
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Dish Antennas
Idea arXiv:1212.2970 [hep-ph]

The photon field arising in a magnetic field from the Axion causes
the radiation of photons due to the boundary condition of a
vanishing electric field parallel to the reflecting surface of the dish
antenna (E‖

!= 0).
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I E-field in vacuum:
Ea(t) = − α

2πεCaγBθ(t)
I Inside the mirror: E ' 0
⇒ Continuity at the mirror surface

requires the emission of an EM
wave of amplitude |Ea|

I Pcenter ∼
(

B
5 T

Caγ

2

)2 A
1 m2 10−26 W
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MADMAX – boosted dish antenna
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Concept:
I Combine multiple dielectric discs (up to 80, � ∼ 1 m,
εr (LaAlO3) ∼ 25) that emit em-waves in magnetic field
(10 T)

I Position the discs such that constructive interference between
the plane waves is achieved

I Aimed mass range: 40 µeV to 400 µeV (10 GHz to 100 GHz)
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Cosmic Axion Spin Precession Experiment (CASPEr)
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Remember:

dn ≈ θ10−16 ecm = a0cos (mat)
fa

10−16 ecm

〈a0〉 = 0
a

Idea: static EDM ⇒ oscillating EDM [ arXiv:1306.6088,arXiv:1306.6089]

I Nuclei interact with background axion dark matter ⇒ acquire
time varying CP-odd nuclear moment (e.g. electric dipole
moment)

I Analog to nuclear magnetic resonance: nuclear moment
causes precession of nuclear spin in material sample in
presence of an electric field

I This can be measured via precision magnetometry
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CASPEr sensitivity
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M(t) ≈ npµE∗εSdn
sin
[(

ωL−mac2
~

)
t
]

ωL−mac2
~

sin (ωLt) ωL = 2µBext.

I SQUID sensitivity is required:
≈ 10−16 T/

√
Hz

I External magnetic filed limits the
sensitivity to higher masses (10 T/20 T)

I dn(t) ∼ gda(t)

I gd = 2.4 × 10−16 ecm
fa
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CERN Axion Solar Telescope (CAST)
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Experimental setup:
I 9 T, 10 m LHC superconducting

magnet
I ±8° vertical movement ⇒ 1.5 h

observation ever sunrise/sunset
I ±40° horizontal covers almost the

full azimuthal movement of the sun
during the year

I Two focusing X-ray telescopes ⇒
increase signal-to-background ratio
by a factor of 100

I Background measurements when
sun is not reachable
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CAST detectors
2 magnet bores → 4 detector positions:

I 2 bores on one side covered by a TPC (2003 – 2004) → 2
MicroMegas

I 1 bore on the opposite side with X-ray focussing optic →
equipped with CCD, SSD, InGrid detector

I 1 bore with MicroMegas

[2014 JINST 9 P01001]

DESY Klaus Zenker Axion searches 18
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CAST detectors
2 magnet bores → 4 detector positions:

I 2 bores on one side covered by a TPC (2003 – 2004) → 2
MicroMegas

I 1 bore on the opposite side with X-ray focussing optic →
equipped with CCD, SSD, InGrid detector

I 1 bore with MicroMegas
Background levels:

I Beam pipes and detectors are shielded against X-rays using
copper and lead

I MicroMegas: 6× 10−7 keV−1cm−2s−1 [2013 JINST 8 C12042]
Experimental setups:

I In the beginning vacuum in the bores was used ⇒ sensitive to
ma < 0.02 eV

I To increase the sensitivity to higher masses gas (He3 and He4)
at different pressure was inside the bores ⇒ ma < 1.18 eV
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International Axion Observatory (IAXO)
[CERN-SPSC-2013-022,2014 JINST 9 T05002]

Next generation of helioscopes:
I 8 bores for instrumentation equipped with X-ray telescopes
I New magnet designed to suit the needs (peak field: 5.4 T,

average field: 2.5 T, length: 20 m)
I Base line detector: MicroMegas
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Light shining though a wall experiment
[Okun 1982, Skivie 1983, Ansel‘m 1985, Van Bibber et al. 1987]

Laser
30 W

Detector
I TES+SQUID
I Heterodyne

wall

magnets magnets

≈ 100 m ≈ 100 m

γ

X X

γ

Physics:
I Number of photons produced via the Primakoff effect:

Nγ→φ→γ = η2

16βPCβRC
Plaser

Eγ

( gaγγ
GeV

B
T

l
m

)4
∆t

I For gaγγ = 10−11 this corresponds to 1 photon per 2 weeks!
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Light shining though a wall experiment

Nγ→φ→γ = η2

16βPCβRC
Plaser

Eγ

( gaγγ
GeV

B
T

l
m

)4
∆t

LSW ingredients
I Strong, long magnets ⇒ DESY
I Intense light source
I Optical resonators on the production and regeneration side
I Extremely sensitive detection scheme to detect a single

photon per day or even week

Benefit of LSW approach
LSW is in contrast to dark matter or solar axion searches a model
independent approach with full control of the signal creation!
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Transition Edge Sensor
Transition Edge Sensor
Microcalorimeter measuring the temperature difference induced by
a particle/photon in an absorber material.
Advantages of a TES (NIST):

I High efficiency (95 % at 1064 nm)
I Low dark count rate (10−4 s−1)
I Long term stability
I Good energy resolution (< 8 %)
I Good time resolution

NIST TES:
I Sensitive area (tungsten): 25 µm× 25 µm (Tc = 150 mK)
I Readout with Superconducting Quantum Interference Devices

(SQUID)
DESY Klaus Zenker Axion searches 22
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TES working principle

Vbias

RL

L
R0(T , I), C

TES
G = dPbath

dT

Tbath
!
< Tc

Vout

Figure: TES readout circuit.

NIST TES:
I Tbath = 80 mK,

Tc = 150 mK
I τeff. ≈ 1.5 µs

(τtherm. = 38 µs)

Figure: Sketch of TES characteristics
[de Korte et al. (2003), Proc. SPIE
4851].

Neg. electrothermal feedback
For R0 � RL: R ′0 = R0 + δR
→ I↓, P↓→ TES cools down

∆TIR ≈ 300 µK

δR ≈ 1 Ω

∆I ≈ 70 nA
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ARIADNE
Idea [Phys. Rev. Lett., 2014, 113, 161801]

Probe a new spin dependent long range CP-violating force between
macroscopic bodies.

I Mediator: axion
I Charge: spin

Ariadne:
I Spins will precess in the NRM

material off the axis of polarization
I Range: 100 µm < l < 10 cm⇒

10−6 eV < ma < 10−3 eV
I Source mass unpolarized/polarized

to test
monopole-dipole/dipole-dipole
coupling
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gaγγ parameter space
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 Low opacity hints
Star Cooling Hint

 IAXO

 FermiLAT
 HESS

 KSVZ  DFSZ

 Cold dark matter

 ADMX

 CAST

 ALPSI

 ALPSII
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QDC axion limits
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Summary
So far no ALP or Axion has been discovered BUT the interesting
phase space is just to be covered by the next generation
experiments that require:

I High magnetic field strength
I High quality micro wave cavities/ optical resonators with low

noise amplifiers
I Novel detectors like SQUIDs, MicroMegas, InGrid

Axion physics brings together experts from:

I NMR
I Optics
I X-ray

I Cryogenics
I Radio astronomy
I . . . particle physicists

So stay tuned. . . a new discovery might just be ahead!
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[www.colgate.ph, https://clipartfest.com]
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LSW Theory

Backup
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Superconducting Quantum Interference Device (SQUID)
First DC SQUID realized in 1964, Ford Research Labs

SQUID
Combines the phenomena of flux quantization in superconducting
rings with Josephson tunneling.

I Interference of macroscopic
wave functions:
Ψi = √nieiθi

I Superconducting loop with
one (RF SQUID) or two (DC
SQUID) Josephson junctions

I Most sensitive detectors of
magnetic flux ⇒ Minimum
measurable flux variation
∼ 10−6Φ0;
Φ0 = 2× 10−15 Tm2

Ψ1 Ψ2

Superconductor

Insulator/
Normalconductor

Ibias Ibias

V

J2

J1

Φ/Φ0

V

1 2
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Working principle
Key is the mixture of He3/He4:

I Phase separation below a
critical temperature of 0.86 K:

I concentrated phase
(He3-rich) with almost only
He3 (on top due to lower
density)

I diluted phase (He3-poor)
with about 6 % He3

Cooling:
I Remove He3 from the dilute phase
⇒ The fraction of He3 can not be below 6.5 %
⇒ He3 is diluted as it flows from the concentrated phase through

the phase boundary into the dilute phase
⇒ Heat necessary for the dilution is the useful cooling power of

the refrigerator
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Light shining though a wall experiment

Laser Detector

wall

Laser:
I Laser power (CW): 30 W @ 1064 nm
⇒ Similar laser as used by LIGO
I Polarised light with respect to a magnetic field for ALP search

Detector:
I Single photon counter (TES detection scheme)
I Heterodyne detection scheme
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Light shining though a wall experiment

Laser Detector

wall

Optical cavity:
I Fabry Perot cavity in the production (PC)
I Number of round trips in the cavity define the power build up
I Power build up: 5000 (150 kW in the cavity)
I Resonance condition is maintained by acting on the input

mirror and the laser frequency
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Light shining though a wall experiment

Laser Detector

wall

Cavity in the regeneration region (RC):
I Resonantly enhance also the back conversion (power build up

of 40000)
⇒ Both cavities need to share the same beam mode (95 %

spacial overlap)
I Resonance condition can not be maintained using the signal

wave length!
⇒ Frequency doubling ⇒ 532 nm light used to keep the RC

resonant for the signal photons (1064 nm)
I Alignment of mirrors on the central bread board needs to be

stableDESY Klaus Zenker Axion searches 34
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Light shining though a wall experiment

Laser Detector

wall

Cavity in the regeneration region (RC):
I Resonantly enhance also the back conversion (power build up

of 40000)
⇒ Both cavities need to share the same beam mode (95 %

spacial overlap)
I Resonance condition can not be maintained using the signal

wave length!
⇒ Frequency doubling ⇒ 532 nm light used to keep the RC

resonant for the signal photons (1064 nm)
I Alignment of mirrors on the central bread board needs to be

stableDESY Klaus Zenker Axion searches 34
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Light shining though a wall experiment

Laser Detector

wall

γ γ

Physics:
I Hidden photon search
I Gauge boson of extra U(1) gauge group
⇒ Generic feature of field and string-theory extensions of the SM
I Conversion via kinetic mixing

LWS main advantage
LSW is a model independent approach, where we have full control
of the signal creation!
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Light shining though a wall experiment

Laser Detector

wall

γ

X X

γ

magnets magnets

Physics:
I Search for axion like particles requires magnetic field

(Primakoff effect)

Pγ→φ→γ = 1
16FPCFRC (gaγγBl)4

= 6× 10−38FPCFRC

( gaγγ
10−10 GeV

B
1 T

l
10 m

)
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Optics layout
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Detect Axions with ALPS II
[arXiv:1610.07593, arXiv:1611.09855]
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Axion potential
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Below the QCD scale ΛQCD ∼ O(100)GeV, topological charge
fluctuations in QCD vacuum induce the potential energy

V (a) =
〈
αs
8π

a
fa

Gc
µνG̃cµν

〉
∼ Λ4

QCD

(
1− cos a

fa

)
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QDC axion models
DFSZ:

I All SM fermions have Peccei-Quinn charge
I This model requires the introduction of a 2 Higgs doublet

(like in MSSM)

a
f γ

γ

KSVZ:
I New heavy fermion with Peccei-Quinn charge
I SM particle don’t carry Peccei-Quinn charge

a
F γ

γ
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SM extension

[N
at

ur
e

ph
ys

ic
s

7,
20

11
]

Introduce a singlet complex scalar
σ featuring a global U(1) symme-
try, which is spontaneously broken
in vacuum:

σ(x) = 1√
2

(vσ + ρ(x)) eia(x)/vσ

Leaving the vacuum state:
I Along the buttom: ma = 0, spin: 0 ⇒

Nambu-Goldstone-Boson
I Quantum fluctuations in radial direction: mρ ∝ vσ, spin:0 ⇒

Analog to the Higgs
To realize feeble interactions with the SM:

vσ � v = 246 GeV
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SM interactions

Lint. ⊃ −
αs
8πCag

a
vσ

Gc
µνG̃cµν− α

8πCaγ
a
vσ

Fµν F̃µν+1
2Caf

∂µa
vσ

ψ̄f γ
µγ5ψf

a

g

g
a

γ

γ
a

f

f

I Cag and Caγ are determined by loops over fermions charged
under U(1):

a
γ

γ

a
q, l

γ

γ

I Axion mass: mA = 57.0(7) µeV
(

1011 GeV
fA

)
[Borsanyi et al. 2016]
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Axions in the inflationary universe
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I Initial field value θini = aini

fa depends
on the history of the early universe
(e.g. inflation)

I If the PQ symmetry is broken before
inflation, the axion field takes a single
value θini in our universe

⇒ Axions can explain dark matter with
fa � O(1011)GeV if |θini � O(1)

I If the PQ symmetry is broken after
inflation, topological defects are
formed, which also produces cold
axions

⇒ Axions can be dark matter for
fa � O(1011)GeV up to the lifetime of
topological defects
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