JUNO

- Sebastian Lorenz -

on behalf of the JUNO Collaboration

10th Terascale Detector Workshop 2017

DESY Hamburg, April 13th 2017

- Determining the neutrino mass ordering with the Jiangmen Underground Neutrino Observatory
- > The JUNO detector

Outline

- Liquid Scintillator + Container
- PMT System & Electronics
- Cherenkov Veto
- Mass ordering sensitivity and other physics
- Summary

J Neutrino Oscillations: What we know

We know that...

- ...the three known neutrino flavors oscillate...
- $> \dots$ as a function of
 - three mixing angles θ_{ij} ,
 - three (two independent) mass-squared differences Δm^2_{kl} ,
 - one phase factor $\delta_{\text{CP}},$
 - source distance L,
 - neutrino energy E.

> ...neutrinos have mass! (Nobel Prize 2015)

	Any Ordering	
	3σ range	
$\sin^2 \theta_{12}$	$0.273 \rightarrow 0.348$	
$ heta_{12}/^{\circ}$	$31.52 \rightarrow 36.18$	
$\sin^2 \theta_{23}$	0.388 ightarrow 0.632	
$ heta_{23}/^{\circ}$	$38.6 \rightarrow 52.7$	
$\sin^2 \theta_{13}$	$0.01938 \to 0.02396$	
$ heta_{13}/^\circ$	$8.00 \rightarrow 8.90$	
$\delta_{ m CP}/^{\circ}$	$0 \rightarrow 360$	
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	7.02 ightarrow 8.08	
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$ \begin{bmatrix} +2.413 \to +2.645 \\ -2.630 \to -2.409 \end{bmatrix} $	∆m [:] on i

 Δm_{31}^2 or Δm_{32}^2 , depending on mass ordering

JHEP 11 (2014) 052, NuFit 2.2 (2016), www.nu-fit.org

$$P(\ell \to \ell') = \sin^2(2\theta) \, \sin^2\left(\frac{\Delta m^2 L}{4E}\right) \,, \quad \ell \neq \ell'$$

(Two-flavor oscillation formula in vacuum; natural units)

We don't know...

- \succ ...the value of δ_{CP} (leptonic CP-violation / conservation).
- > ...the neutrino mass ordering (MO) (road to δ_{CP} ; mass model building).
- ...if there are sterile neutrinos (physics beyond the SM).

Terascale Det. WS 2017, April 13th 2017

> Approach: probe oscillatory fine structure in survival probability of reactor \overline{v}_e at a baseline length of ~53 km

> Requirements:

- large target mass (20 kt)
- low energy threshold for $\overline{\nu}_e$
- very good energy resolution (≤ 3% @ 1 MeV)
- low energy scale uncertainty (< 1%)

> Approach: probe oscillatory fine structure in survival probability of reactor \overline{v}_e at a baseline length of ~53 km

> Requirements:

- large target mass (20 kt)
- low energy threshold for \overline{v}_e
- very good energy resolution
 (≤ 3% @ 1 MeV)
- low energy scale uncertainty (< 1%)

Liquid scintillator (LS) technology!

- > LS is the best technology for low-energy neutrino detection (Borexino), especially for reactor $\overline{\nu_e}$ (Daya Bay, Double Chooz, KamLAND, RENO)
- ➢ Primary \overline{v}_e detection channel in LS: inverse beta decay (IBD)
 → delayed coincidence signature

> Calorimetric measurement of \overline{v}_e energy E_v : $E_v = E_{prompt} + 0.784 \text{ MeV}$

JG U JUNO Experimental Site

- v_e source: 2 nuclear power plants at ~53km distance; 10 cores with a total of 35.8GW thermal power (26.6GW by start of data taking around 2020)
- > Expected \overline{v}_e event rate: 83 per day
- Detector site chosen with respect to:
 - optimal mean distance to the cores
 - low spread in core-detector distances

Terascale Det. WS 2017, April 13th 2017

JG U JUNO Underground Site

JUNO

JUNO is a funded project

- Civil construction for underground site started early 2015
- Tunnels ~80% completed;
 will be finished in 1-5 months

- > About 700 m overburden
- > Muon event rate: \sim 3 per second
- Signal to cosmogenic background ratio of 1:1 expected

JG U JUNO Detector Design

"JUNO Conceptual Design Report" - arXiv: 1508.07166

- Top tracker (solid scintillator)
- Calibration system, chimney

• Central detector (CD)

- LS in acrylic vessel (35.4 m diam.)
- > Ultra-pure water buffer (2 m)
- Stainless steel latticed shell (40.1 m diam.)
- > Optical separation
- \blacktriangleright ~18 k 20" and ~36 k 3" PMTs
- Earth magnetic field shielding coils
- Water Cherenkov veto pool
 - > 44 m deep, 43.5 m wide
 - ≻ ~2 k 20" PMTs
- Anchoring against buoyancy

JG U JUNO Liquid Scintillator

- > Design goal: 1.2k p.e./MeV
- > Requirements:
 - High light yield: ~10k photons/MeV
 - → Pure organic solvent
 - → High fluor (PPO) concentration
 - High transparency: L_{att} > 20 m @ 430 nm
 - → High-quality, transparent solvent \rightarrow LAB
 - → Shift to long wavelengths → bis-MSB

Terascale Det. WS 2017, April 13th 2017

JG U JUNO Liquid Scintillator R&D

LS characterization

Scattering, attenuation, light quenching,...

- LS purification test at Daya Bay
 - AI_2O_3 column \rightarrow remove organic impurities
 - Distillation → remove radioactive metal ions
 - Gas stripping \rightarrow remove volatile impurities (Ar, Kr, Rn)
 - Water extraction → remove polarized impurities (U, Th)
 - → Reach transparency and radiopurity goal of ≤ 10⁻¹⁵g/g (U/Th) Borexino expertise on board!
- Development of online LS monitoring systems
 - Test optical properties before CD filling
 - In-situ monitoring of changes e.g., due to aging, temperature gradient,...

JG U JUNO Central Detector

JUNO

- Several options for CD discussed
- Safety was given priority
- Acrylic sphere + stainless steel latticed shell
- > Sphere made of \sim 260 panels with 12 cm thickness
- ➣ 590 connecting nodes, 60 pillars
- > Total weight: \sim 600t acrylic + \sim 590t steel

JG U JUNO Double Calorimetry PMT System

- > Design goal: 1.2k p.e. / MeV
- Requirements:
 - High optical coverage
 - High photon detection efficiency
 - Acceptable noise / radiopurity levels
 - Acceptable time resolution (event reco)
 - Broad dynamic range (IBD → muons → Supernova-v burst)
- > JUNO will have two <u>independent</u> CD PMT systems! ("Double calorimetry")

18 k large 20" PMTs

- 75% coverage
- Stochastic term: 3%/sqrt(E)
- Slower + worse p.e. resolution
- High dark noise

Proposed PMT module

36 k small 3" PMTs (under optimization)

- 3% coverage
- Stochastic term: 10%/sqrt(E)
- Faster + better p.e. resolution
- Low dark noise

No supplier chosen yet!

JG U JUNO 20" PMT System

- Maximum coverage
- > Two different types
- ➢ Integrated control and readout → "intelligent PMTs"
- Mass-testing about to start

Supper layer arrangement method 77.8% coverage

20" Hamamatsu PMT (JPN)		20" IHEP-NNCV MCP-PMT (CHN)	
5 k units		to k units	
Photo- cathode	transmission	transmission + reflection	
Relative collection eff.	100%	110%	
QE (400 nm)	30%	26% (T) + 4% (R)	
TTS (FWHM)	$\sim 3 \text{ns}$	\sim 12 ns	
Dark rate	\sim 30 kHz	\sim 30 kHz	

Terascale Det. WS 2017, April 13th 2017

JG U JUNO MCP-PMT

- In development since 2009;
 5", 12" and 20" prototypes produced
- Latest MCP design: ~100% collection efficiency but ~12ns TTS (FWHM)
- Material selection important to control intrinsic background (e.g., ⁴⁰K in glass)
- Mass production started

JG U JUNO DAQ & Electronics ("Intelligent PMTs")

- > Three large dynamic range ADCs
- Highly configurable alternative operating modes
- Internal buffer memory
- > Optional overshoot compensation

Water Cherenkov veto

- > 20 kt ultra-pure water
- Shielding + Cherenkov detector
- > 2 k large 20" PMTs
- Optimized detection efficiency for Cherenkov light from cosmic muons

Top Tracker

- Three layers of OPERA plastic scintillator (49 m² / module)
- Only partial coverage due to available modules
- Tag ~50% of muons; provides sample to test reconstruction in CD

JG U JUNO Sensitivity and Other Physics

> Median sensitivity to neutrino MO (100k IBD events, \sim 6 years of running):

w/o external input on $|\Delta m^2_{\mu\mu}|$: ~3 σ

w/ external input on |Δm²_{μμ}| at 0.5-1% level (NOVA + T2K): 3.7–4.4σ

Precision measurements of flavor oscillation parameters:

Parameter $\sin^2 \theta_{12}$ Δm_{21}^2 $|\Delta m_{ee}^2|$ effective atm.
mass splittingPrecision (Current)4.1%2.6%1.9%Precision (JUNO)0.67%0.50%0.44%

> Other physics (some examples):

Geo ∨ ∼400 events/year

 \rightarrow radiogenic heat, U/Th ratio

Solar v

some tens of $^8\text{B-}\nu$ / day

 \rightarrow solar metallicity, flavor oscil.

Core-collapse supernova ν@ 10 kpc dist: ~5000 IBD in 10 s

 \rightarrow test supernova models

Diffuse supernova v bkg. \sim 1-2 events/year after cuts

 \rightarrow discovery, SN rate, ...

JG U JUNO Timeline & Collaboration

International JUNO Collaboration: formally established August 2014

Terascale Det. WS 2017, April 13th 2017

Sebastian Lorenz, JG|U Mainz

- With its 20kt LS detector, the medium-baseline experiment JUNO in China aims to determine the neutrino mass ordering by measuring the fine structure in the reactor ve survival probability
- JUNO is a funded, international project; data taking will start around 2020
- ≻ Critical items: energy resolution ≤ 3%/sqrt(E) and energy scale uncertainty < 1%</p>
- > Median sensitivity to neutrino mass ordering with 100k IBD events: $\geq 3\sigma$
- > Moreover, measurements...

Summary

- ... of oscillation parameters at sub-percent level precision
- ... with terrestrial and astrophysical neutrinos

Thank you for your kind attention!

Further Information

Terascale Det. WS 2017, April 13th 2017

Sebastian Lorenz, JG|U Mainz

Medium-Baseline v_e Oscillations **IGU**

 $P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$ $P_{31} = \cos^2(\theta_{12})\sin^2(2\theta_{13})\sin^2(\Delta_{31})$ $P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$ $\Delta_{ij} = 1.27 \Delta m_{ij}^2 L/E$

$$\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$$

NH : $|\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|$
IH : $|\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|$

$$\frac{|\Delta m^2_{21}|}{|\Delta m^2_{32}|} \sim 0.03$$

Precision of $\sin^2 \theta_{12}$, Δm_{21}^2 and $|\Delta m_{ee}^2|$ from the nominal setup to those including additional systematic uncertainties. The systematics are added one by one

	Nominal	+B2B (1%)	+BG	+EL (1%)	+NL (1%)
$\ln^2 \theta_{12}$ Δm_{21}^2	0.54% 0.24%	0.60% 0.27%	0.62% 0.29%	$0.64\% \\ 0.44\%$	0.67% 0.59%
Δm_{ee}^2	0.27%	0.31%	0.31%	0.35%	0.44%

"Neutrino physics with JUNO" - J. Phys. G 43 (2016) 030401

Terascale Det. WS 2017, April 13th 2017

Sebastian Lorenz, JG|U Mainz

> High, uniform photoelectron yield (~1200 p.e. / MeV)

- Spherical detector (easier non-uniformity correction)
- High light yield scintillator + low attenuation (no Gd loading)
- High photocathode coverage (\sim 75%)
- PMTs with high detection efficiency (~30%)
- > Low noise \rightarrow Clean materials and quiet PMTs
- Comprehensive calibration program

JG U JUNO Calibration

JUNO

- > The challenge:
 - overall energy resolution: $\leq 3\%$ / sqrt(E)
 - energy scale uncertainty: <1%
- Four complementary calibration systems
 - 1D: Automatic Calibration Unit (ACU)
 → central axis scan
 - 2D: Cable Loop System (CLS)
 - \rightarrow scan vertical planes
 - Guide Tube Calibration System (GTCS)
 - \rightarrow CD outer surface scan
 - 3D: Remotely Operated under-liquidscintillator Vehicle (ROV)
 → whole detector scan

Method	System
Rope Length Calculation	CLS, ACU and GTCS
Ultrasonic receiver	ROV, CLS
CCD(Independent)	ROV, CLS

- Radioactive sources:
 - photons: ⁴⁰K, ⁵⁴Mn, ⁶⁰Co, ¹³⁷Cs
 - positrons: ²²Na, ⁶⁸Ge
 - neutrons: ²⁴¹Am-Be, ²⁴¹Am-¹³C, ²⁴¹Pu-¹³C, ²⁵²Cf

Terascale Det. WS 2017, April 13th 2017

Sebastian Lorenz, JG|U Mainz

Terascale Det. WS 2017, April 13th 2017

Sebastian Lorenz, JG|U Mainz