DUNE and ProtoDUNE

Andrzej M. Szelc 10th Terascale Detector Workshop 2017, Hamburg 13/04/2017

Outline

- The physics of DUNE
- Detecting neutrinos with LArTPCs
- Building large scale LArTPCs protoDUNE at CERN.

MANCHESTER 1824

DUNE collaboration

>900 collaborators from 30 countries

MANCHESTER 1824 DUNE

CERN Collaboration Meeting, January 2017

DUNE at a glance

Neutrino beam with power up to 2 MW from Fermilab to SURF, Lead in South Dakota.

DUNE physics programme: Big Questions in Neutrino Physics

- Oscillation Physics:
 - Mass Hierarchy
 - CP Violation in the lepton sector
 - Precise tests of the 3 neutrino paradigm
- Nucleon Decay
 - New detector technology offers sensitivity to less explored decay channels
- SuperNova burst neutrinos & Astrophysics
 - Sensitivity to neutrinos offers complementarity with other detector technologies
- Precision neutrino interaction physics (Near Detector)

Neutrino Oscillation Physics

- Measure Neutrino Spectra at 1300 km with a wide-band beam
- DUNE will be able to determine MH and θ_{23} octant, probe CPV, test 3-flavor paradigm.
- Looking for $v_e(\overline{v}_e)$ appearance in a v_{μ} (\overline{v}_{μ})beam
- Rates affected by $\delta_{\rm CP}$ and mass hierarchy

Physics Performance vs Exposure: MH

MH Sensitivity

Physics Performance vs Exposure: CPV

CP Violation Sensitivity 10 DUNE Sensitivity (Staged) $\delta_{CP} = -\pi/2$ **DUNE Sensitivity** 7 years (staged) Normal Ordering 50% of δ_{CP} values Normal Ordering 10 years (staged) $\sin^2 2\theta_{13} = 0.085 \pm 0.003$ 75% of δ_{CP} values $\sin^2 2\theta_{13} = 0.085 \pm 0.003$ Nominal Analysis **10**— $\sin^2\theta_{23} = 0.441 \pm 0.042$ $sin^2 \theta_{23} = 0.441 \pm 0.042$ θ₂₃: NuFit 2016 (90% C.L. range) $\cdots \theta_{13} \& \theta_{23}$ unconstrained 8 5σ II 6 b **3**σ -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 δ_{CP}/π 14 10 6 12

CP Violation Sensitivity

Years

Proton decay

- GUT models predict proton decays
- LAr detectors are much more sensitive to several nucleon decay modes (especially with kaons)
- Low thresholds + good event reconstruction and PID

Decay Mode	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p ightarrow K^+ \overline{ u}$	19%	4	97%	1
$p ightarrow K^0 \mu^+$	10%	8	47%	< 2
$p ightarrow K^+ \mu^- \pi^+$			97%	1
$n ightarrow K^+ e^-$	10%	3	96%	< 2
$n ightarrow e^+ \pi^-$	19%	2	44%	0.8

Supernova Neutrinos

- LAr detectors are mainly sensitive to v_{a} via: $v_{a} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*}$
- Sensitivity to neutronization burst
- Sensitivity to mass hierarchy

MANCHESTER 1824

Why Liquid Argon?

Bubble chamber quality of data with added full calorimetry.

MANCHESTER 1824

DUNE

LArTPCs

DUNE

DUNE at a glance

Neutrino beam with power up to 1.2 MW from Fermilab to SURF, Lead in South Dakota.

Neutrino energy (GeV)

DUNE Near Detector

- Fine Grained straw-tube tracker inside of 0.4 T magnetic field surrounded by lead-scintillator ECal and RPC muon tracker
- Other designs under consideration:
 - LAr TPC
 - High Pressure GAr TPC
 - Hybrid
- Still open question. Plan to establish soon: many opportunities to contribute.

See recent ND workshop at Fermilab:

https://indico.fnal.gov/conferenceO therViews.py?view=standard&confld=1

MANCHESTER

Far Detector

- Four ~10 ktonne liquid argon modules
- Full detector built in stages
- ~40 ktonne total fiducial volume
- Steel-supported membrane cryostat technology
- Three caverns: two to support the modules and a central utility space

Single Phase LAr Detector (reference design)

- First 10 kt detector will be single phase.
- Active volume: 12m x 14m x 58 m
- 17.1/13.8/11.6 kton Total/Active/Fiducial mass
- 150 Anode Plane Assemblies (APA)
- 200 Cathode Plane Assemblies
- A:C:A:C:A arrangement
- Cathode planes (CPA) at -180kV: 3.6 m drift length

Dual Phase Lar Detector (alternative design)

Modularity allows using different detector designs

- A dual-phase implementation of a DUNE FD module is the alternative design in the CDR
- 3x3m² CRP modules at the gas-liquid interface.
- Hanging field cage and cathode @600kV (12 m drift)
- Decoupled PD system (720 8" PMT)
- 12.1/10.64 kton Active/Fiducial mass

3x3m2 CRP

APA design

Wrapped Anode Plane Assemblies (APA).

Construction sites being set up in Europe and USA.

First produced APAs will be installed in protoDUNE

2.3 m

A.M. Szelc | DUNE and ProtoDUNE, Terascale Detector Workshop 2017

MANCHESTER 1824

Far Detector development Path

Development and prototyping through the Fermilab SBN and CERN neutrino platform programmes

ProtoDUNE's in the CERN north area

ProtoDUNE's at CERN

• Two large scale prototypes on CERN beamline.

Double Phase

Single Phase

Cryostats being built

Light detection in protoDUNE-SP

Getting HV and beam into the detector

 Beam plug filled with gas nitrogen – minimizes amount of material beam needs to traverse before field cage.

HV Feedthrough needs to hold -180kV in LAr

DUNE and ProtoDUNE timelines

A.M. Szelc | DUNE and ProtoDUNE, Terascale Detector Workshop 2017

DUNE

Summary

- DUNE will use a beam of neutrinos from Fermilab to SURF, to address fundamental questions in neutrino physics:
 - Is there CP violation in the neutrino sector?
 - What is the mass ordering?
- Broad physics programme including nucleon decay and supernova neutrinos (underground location).
- The first detector is scheduled to start construction in 2021.
- Intensive effort to build large scale prototypes (protoDUNEs) on charged particle beam at CERN ongoing!
- First protoDUNE data in 2018!

Thank You!

Backup

Fermilab Accelerator Complex

Main Injector Design Intensity: 700 kW (expected by 2/2016)

Proton Improvement Plan II and III

Upgrades to increase proton yield

- PIP II: (Ready by ~2025)
 MI beam power → 1.2 MW
 - Upgrade to 800 MeV linac
 - Booster and MI rep. rates increased.
- PIP III: (> 2025)
 MI beam power → 2.3 MW
 - Upgrade to 8GeV linac OR
 - Upgrade to 2GeV linac and
 - Replace booster with rapid cycling synchrotron (RCS)

protoDUNE-SP

Other challenges: event reconstruction

- Need to reconstruct tracks and showers, measure their energy and perform particle identification.
- Complex event topologies require sophisticated algorithms
- Automatisation a major challenge, multivariate techniques.

Oscillation Physics Milestones

- Best case scenario:
 - reach 3σ CPV sensitivity with ~70 kt MW year
 - reach 5σ MH sensitivity with ~20 kt MW year

Physics milestone	Exposure $kt \cdot MW \cdot year$	Exposure $kt \cdot MW \cdot year$
	(reference beam)	(optimized beam)
$1^{\circ} \theta_{23}$ resolution ($\theta_{23} = 42^{\circ}$)	70	45
CPV at 3σ ($\delta_{ m CP}=+\pi/2$)	70	60
CPV at 3σ ($\delta_{ m CP} = -\pi/2$)	160	100
CPV at 5σ ($\delta_{\mathrm{CP}} = +\pi/2$)	280	210
MH at 5σ (worst point)	400	230
10° resolution ($\delta_{\rm CP}=0$)	450	290
CPV at 5σ ($\delta_{\rm CP} = -\pi/2$)	525	320
CPV at 5σ 50% of $\delta_{ m CP}$	810	550
Reactor θ_{13} resolution	1200	850
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		
CPV at 3σ 75% of $\delta_{ m CP}$	1320	850

Looking for the Signal

Assumes: $\sin^2 2\theta_{13} = 0.084$, $\sin^2 2\theta_{23} = 0.45$, $\Delta m^2_{31} = 2.47 \times 10^{-3}$

- Wide-band beam:
 - Measure ν_e appearance and ν_μ disappearance over range of energies
 - MH & CPV effects are separable

Timeline

- July 2015 "CD-1 Refresh" review. Conceptual design review. Completed!
- Oct 2015: protoDUNE **approved** at CERN
- <u>Dec 2015</u> CD-3a CF Far Site. Needed to authorize far site conventional facilities work including underground excavation and outfitting. - Completed!
- 2017 Ongoing shaft renovation at SURF complete
- 2017 Start of far site conventional facilities.
- 2018 Testing of "full-scale" far detector elements at CERN
- 2019 Technical Design review
- 2021 Ready for start of installation of the first far detector module
- 2024 start of physics with one detector module
 - Additional far detector modules every ~2 years.
- 2026 Beam available
- 2026 Near detector available
- 2028 DUNE construction finished

Scintillation light in argon

Emission:

Photons are all ~128 nm – VUV

Transport:

Liquid argon is mostly transparent to its scintillation.

At longer distances Rayleigh scattering ~55m $f(\lambda)$ and absorption, e.g. @2ppm N2 begin play a role. Note high refractive

Detection:

Liquid argon is almost the only thing transparent to its scintillation.

Detection is challenging – most often need to use Wavelength shifting compounds, like TPB.

MANCHESTER 1824

PMTs vs SiPMs

PMTs

- Proven detector technology in liquid argon.
- Excellent timing resolution ~ ns.
- e.g. Hamamatsu R5912 8" PMTs
- Small channel/active area ratio.
- Non-negligible size, relatively high voltage.

250 200 150

SiPMs

- SiPMs: Relatively new on the block.
 - Excellent performance in liquid argon. Small voltage needed to operate.
- Small active size

 need to be

LED pulsed at Clever to avoid temp large channel (0.5 p.e. threshold) MUmber.

MANCHESTER

Amplitude [ADC]

SiPMs and coated bars

- WLS coated bars coupled to SiPMs (current DUNE baseline design).
- SiPM timing not as good as PMTs (Industry is working on this).
- Photon travel time in bar adds to this.
- Work ongoing to minimize attenuation in bars.
- Will be tested in 35ton prototype soon.

DUNE @ SURF

A.M. Szelc | DUNE and ProtoDUNE, Terascale Detector Workshop 2017

DUNE

MANCHESTER 1824

SURF: South Dakota Underground Research Facility

- Experimental Facilities at 4850 ft level
- Facility donated to the State of South Dakota for science in perpetuity
- Two vertical access shafts for safety
- Ross shaft refurbishment in progress and is ~55% complete
- Working two 12 hour shifts/day in order to be done by 2017
- Will allow large excavations at SURF in 2017!

LBNF/ DUNE Schedule Summary Overview

