

Update on tests with passive strucutres on CHESS 2 chip

ATLAS Strip CMOS meeting, 06.12.2016

Bojan Hiti, Igor Mandić et al.

Jožef Stefan Institute, Experimental Particle Physics Department (F9)

Ljubljana, Slovenia

Samples

Chips from wafer 19: 600-2000 Ohm-cm

Resistivity	Wafer	Wafers	Number	
$[\Omega\text{-cm}]$	numbers	cut	of cut chips	
std	1-6	1, 2	94	
50-100	7-12	7, 8	97	
200-300	13-18	13, 14	94	
600-2000	19-24	19, 20	95	

Neutron fluences 0e14, 1e14, 3e14, 5e14, 1e15, 2e15 neq/cm2

E-TCT Charge collection profiles W19

- Large charge collection width (up to 120 μm)
- High resistivity material → Charge collection width falling monotonously with irradiation (acceptor removal fast)
- Unirradiated sample cannot be biased (breakdown at 18 V 2 samples)

Depletion depth W19

$$Width(V_{\text{bias}}) = w_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e_0 N_{\text{eff}}}} V_{\text{bias}}$$

 Sqrt functions falling monotonously with fluence

Neff vs. fluence

Points still need verification, very preliminary, not correct!

Neff vs. fluence

Fit:
$$N_{\rm eff} = N_{\rm eff0} - N_{\rm c} \cdot (1 - \exp(-c \cdot \Phi_{\rm eq})) + g_c \cdot \Phi_{\rm eq}$$

Radiation introduced deep acceptors

Sr90 charge

- TCT 1e14: depletion zone 120 um at 100 V
- We still collect less charge than expected (f.e. meas. 7000 e vs. 12000 e expected)
- Investigate with top TCT ?

Sr90 spectra W19

Sr90 Comparison for different substrates

10

Top TCT

11

- Charge from Sr90 measurements systematically only 60 % of that expected for the depletion depth measured by E-TCT
- Top TCT with IR light (abs. depth 1 mm) gives a similar picture as Sr90 measurements

W1 (20 Ohm cm) - flash

Resistivity	Wafer	Wafers	Number
$[\Omega\text{-cm}]$	numbers	cut	of cut chips
std	1-6	1, 2	94
50-100	7-12	7, 8	97
200-300	13-18	13, 14	94
600-2000	19-24	19, 20	95

Bojan Hiti (IJS) CHESS 2 passive structures 6. 12. 2016 12

Summary

13

- Additional series of CHESS2 chips measured with E-TCT and Sr90: 50, 200, 2000 Ohm
 cm
- No data for unirradiated chips (cannot bias above 18 V)
- E-TCT:
 - Depletion depth reduces with irradiation (as expected)
- Sr90
 - Charge is lower than expected from E-TCT
 - Consistency between 3 different substrate resistivities
 - Top TCT indicates some non-uniformity in the charge collection across the array, might be the source of lower charge
- One more wafer (standard resistivity) to measure in this study

BACKUP

Charge profiles W7, W13

Edge-TCT charge collection profile across central pixel

• increase of width with fluence up to 1e15

W13 (200 Ω ·cm)

not much change of profile width with fluence

REMINDER Depletion depth W7, W13

width of charge collection profile vs. bias

W7 (50 Ω ·cm)

W13 (200 Ω ·cm)

Fit:
$$Width(V_{\text{bias}}) = w_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e_0 N_{\text{eff}}}} V_{\text{bias}}$$

At $\Phi = 0$

- W7: $N_{eff} = 2.3e14 \text{ cm}^{-3}$ \rightarrow 56 $\Omega \cdot \text{cm}$
- W13: $N_{eff} = 6.6e13 \text{ cm}^{-3}$
- **→** 200 Ω·cm

→ Good fit, good agreement with nominal resistivity

REMINDER Sr90 W7, W13

W13 (200 Ω ·cm)

- large drop of collected charge (delta ≈ 1300 el) after first irradiation step to 1e14 n/cm2
 - → reduced contribution from diffusion
- TCT measurements indicate depleted region > 50 μm
 - Expect > 5000 el. from drift
 - Measure 2000 el.

IV-curves wafer 13

No IV curves for wafer 7 due to a bug, but 0e14, 1e14, 1e15, 2e15 OK up to 120 V 5e14 up to 110 V, 3e14 at least up to 90 V

High resistivity wafers

21

- After suggestion from Santa Cruz tried biasing the substrate from other pads:
 - a & d → breakdown at 18 V
 - a & b → breakdown at 18 V
 - c & d \rightarrow breakdown at 1 V
 - c & b → breakdown at 1 V

Planning also to measure IV of irradiated devices on probe station to see if there is improvement after irradiation

a – LPA nwells

b – LPA substrate

c – Large Pad

nwells

d – Large Pad

substrate

Profiles W19 1e14

Profiles W19 3e14

Profiles W19 5e14

Profiles W19 1e15

Profiles W19 2e15

