TES: status and next steps ALPS collaboration meeting in Mainz

Klaus Zenker

07.03.2017

Overview

For the TES detection scheme the following hardware is needed:

Detector system

- Cryostat
 - He compressor
 - (Cooler for the water supplied to the He compressor)
 - Vacuum pump
- TESs
- SQUIDs
- Computer with software

- SQUID electronics
- SQUID software
- 2 channel ADC board



Overview

For the TES detection scheme the following hardware is needed:

Detector system

New cryostat

We checked the market for a ADR replacement:

- Dilution refrigerators are compatable in terms of price and cool down time
- Advantage: continuous operation, high cooling power, no magnet
- We contacted the following companies:
 - Entropy (Germany)
 - Bluefors (Finnland)
 - Lyden (Netherlands)
 - CryoConcept (France)
 - Janis (USA)
 - Oxford Instruments (UK)

Tender process

We received funding for a new cryostat and will start a Europe wide tender soon.

- 35 days time window to hand in quotes
- ▶ 15 days quoate review by us and the purchasing department
- 10 days to raise objections by outgunned companies
- 3 days cotract signing
- typical delivery time: 6 months
- \Rightarrow No cryostat before November 2017

Detector and readout

TES:

- Jörn Beyer promised it will be no problem to get TES from NIST and SQUIDs from PTB
- ▶ We might have to buy new SQUID electronics $O(10K \in)$ Readout:
 - Alazar dual channel card with up to 250 MSPS and 16 bit resolution is ready to be used
 - ► Hardware (high rate) and software (low rate) trigger are set up
 - Onboard FPGA option for triggering not yet exploited

Green light filter

Why?

Avoid dead time and heating of the TES.

Aim: $R_{\lambda=532 \text{ nm}} \approx R_{\text{background}} \approx 10^{-6} \text{ s}^{-1}|_{\text{TDR}} (10^{-4} \text{ s}^{-1}|_{\text{current}})$

We started working on the attenuation unit again:

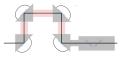
- ► Following Rezas approach and ussing components from him
- ► 4 new HR1064HT532/45 were bought from LaserComponents ⇒ Move from transmission of infrared to reflection ⇒ possible fluorescence light is produced in transmission

Green light filter

Why?

Avoid dead time and heating of the TES.

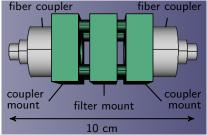
Aim: $R_{\lambda=532 \text{ nm}} \approx R_{\text{background}} \approx 10^{-6} \text{ s}^{-1}|_{\text{TDR}} (10^{-4} \text{ s}^{-1}|_{\text{current}})$


We started working on the attenuation unit again:

- ► Following Rezas approach and ussing components from him
- ▶ 4 new HR1064HT532/45 were bought from LaserComponents

 \Rightarrow Move from transmission of infrared to reflection \Rightarrow

possible fluorescence light is produced in transmission First results:


- Mirrors perform as specified by the manifacturor
- Better performance (reflection of infrared and transmission of green) can be achieved by using an angle different from 45
- $7 \times 10^{-5} (3 \times 10^{-6} \text{ for tuned angle})$ attenuation of green shown for 98 % IR transmission

Black-body radiation filter

- Measured fiber-to-fiber coupling efficiency: 82 %
- Expected coupling efficiency with anti-reflectve coating on fiber tips: 89 %

▶ Filter option: band-pass filter for (1064 ± 10) nm with transmission for 1064 nm of \ge 95 % and else a blocking of \ge 0D4

To be shown: Is the alignment maintained when cooling the bench

- ▶ Test at −80 °C with dry ice
- Final test at 70 K in some cryostat

Overview

The current software frame work is written in C++. ROOT is mainly used in the analysis package and optional for the alpsIO and alazar package.

Packages:

alpsIO: Handling of acquired and simulated data.

- alazar: Data taking with ALAZAR boards used by the TES data acquisition system and the fast monitoring discussed above.
- analysis: TES data simulation, TES data analysis, time line analysis.

alpsIO package

Supported data formats:

- ROOT files (offers good data compression)
- Binary files (useful for fast readout)
- Text files (support is only given for reading them in order to convert old TES data)

alpsIO package

Supported data formats:

- ROOT files (offers good data compression)
- Binary files (useful for fast readout)
- Text files (support is only given for reading them in order to convert old TES data)

Data structure:

- Vector of data samples (2 byte for RAW and 8 byte for converted data) per buffer and channel
- Timestamp and trigger information per buffer and channel
- Meta data like sampling frequency, acquisition type (time line/triggered data), acquisition device (ATS9626, ATS9416, DPO7104C)

alazar package

General:

- ► Effort was put into this package to write it as generic as possible ⇒ Supporting all ALAZAR boards
- \blacktriangleright It makes use of the $\rm ALAZAR$ SDK
- ► We implemeted only dual port *Direct Memory Access* ⇒ While data taking data is already transfered to host memory

alazar package

General:

- ► Effort was put into this package to write it as generic as possible ⇒ Supporting all ALAZAR boards
- It makes use of the ALAZAR SDK
- ► We implemeted only dual port *Direct Memory Access* ⇒ While data taking data is already transfered to host memory

Readout modes:

- ► Continuous acquisition ⇒ Limited by the host memory and data transfer rate from the board to the host memory and finally by the time needed to write data to disk
- Software triggered
- External triggered

Analysis package

Simulation:

- Pulse simulation according to small signal theory (pulse parameter are taken from data)
- ► Noise ⇒ Sampling noise from a measured noise spectrum includes also the bandwidth of the SQUID electronics

Analysis package

Simulation:

- Pulse simulation according to small signal theory (pulse parameter are taken from data)
- ► Noise ⇒ Sampling noise from a measured noise spectrum includes also the bandwidth of the SQUID electronics

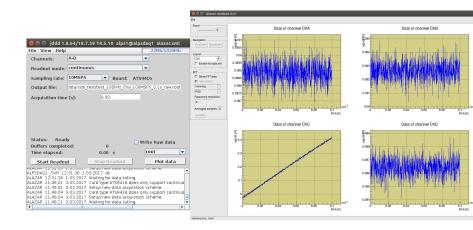
Reconstuction:

- Pulse finder based on low pass filtered first derivative
- Pulse fitting based on small signal theory pulse shape

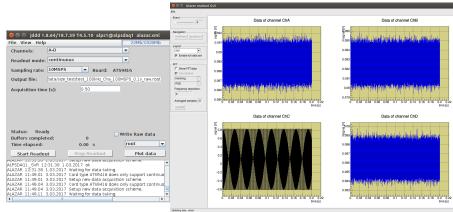
Analysis package

Simulation:

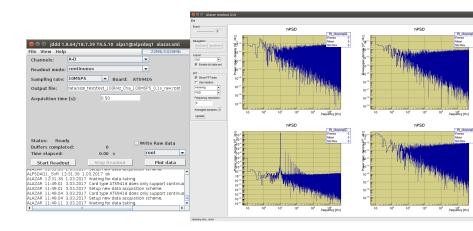
- Pulse simulation according to small signal theory (pulse parameter are taken from data)
- ► Noise ⇒ Sampling noise from a measured noise spectrum includes also the bandwidth of the SQUID electronics

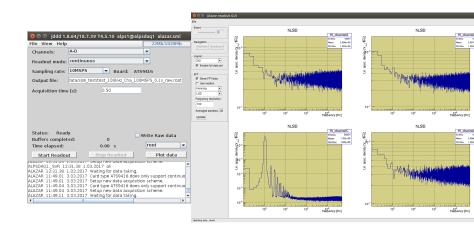

Reconstuction:

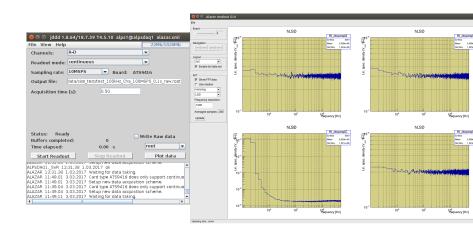
- Pulse finder based on low pass filtered first derivative
- Pulse fitting based on small signal theory pulse shape Misc:
 - FFT including different window function of time line data
 - ► Fixing the desired frequency resolution allows to split the time line and calculate an average noise per frequency bin ⇒ Averaging is either done by considering the median or the arithmetic mean

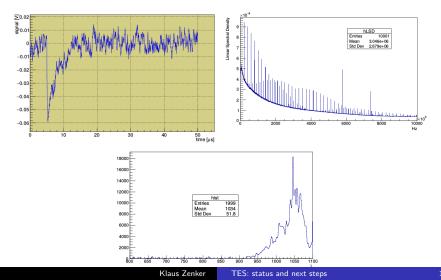


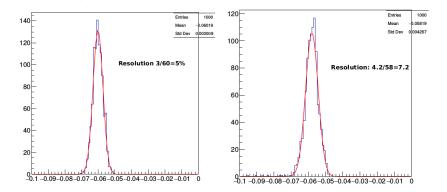
😣 🗇 🗉 jddd 1.8.64/18.7.39 T4.5.10 alps1@alpsdaq1 alazar.xml							
File View Help					22Mb/1	820Mb	
Channels:	A-D						
	continuous						
Readout mode:	continuo	us					
Sampling rate:	10MSPS	-	Board:	ATS94	16		
Output file:	jata/size_t	est/test_10	0kHz_Cha_	100MS	PS_0.1s_ra	w.root	
Acquisition time	[s]:	0.50					
Status: Read							
Buffers completed:		0		Wr	Nrite Raw data		
Time elapsed:		0.00	s		root		-
	-						4
Start Readou		Stop Re		」.	Plot o	lata	4
ALPSDAQ1. SVR 12	.21.20.1.6	Cetup new	uara acqu	TOILIOIT	cheme.		ľ
ALAZAR 12:31.38	1.03.2017	Waiting for	data takin	ia.			Г
ALAZAR 11:49.01	3.03.2017	Card type A	TS9416 di	pes onl		continu	0
ALAZAR 11:49.01							
ALAZAR 11:49.04 :						continu	a
ALAZAR 11:49.04					scheme.		E
ALAZAR 11:49.11	3.03.2017	waiting for	data takin	g.		1.	12
4							





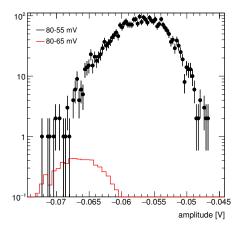





Example: Energy resolution

We estimated the energy resolution assuming a realistic laser spectrum.

Example: Energy resolution


We estimated the energy resolution assuming a realistic laser spectrum.

Estimation of black-body photon reduction by the filter bench

- Filter cut-off is set to -65 mV
- 1 order of magnitude suppression in the signal region (around -65 mV)

Summary

- We will have a new cryostat by the end of 2017
- ► TES detection scheme should be operagtional in 2018 again
- Optimization of backgroud reduction is ongoing
- Software for data acquisition and analysis is in place to be tested

