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• dijet azimuthal de-correlation

• kT-dependent factorization

• KaTie

• KaTie+Cascade

• amplitudes with off-shell initial states
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|Dijet azimuthal de-correlation| Bury, AvH, Jung, Kutak,
Sapeta, Serino 2017

The azimuthal de-correlations, that is the distribution of the angle in the transverse plane
between the two hardest jets, for pp→ jj at 7 TeV (data: CMS 2011).

This observable has no distribution at LO (tree-level) in collinear factorization.

Red prediction: collinear factorization at NLO
Blue prediction: kT -dependent factorization at tree-level
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|High Energy Factorization| a.k.a. kT -factorization

Catani, Ciafaloni, Hautmann 1991 Collins, Ellis 1991

σh1,h2→QQ =

∫
d2k1⊥

dx1

x1
F(x1, k1⊥)d

2k2⊥
dx2

x2
F(x2, k1⊥) σ̂gg

(
m2

x1x2s
,
k1⊥

m
,
k2⊥

m

)
• reduces to collinear factorization for s� m2 � k2⊥, but holds al so for s� m2 ∼ k2⊥

• typically associated with small-x physics, forward physics, saturation . . .

• k⊥-dependent F may satisfy BFKL-eqn, CCFM-eqn, BK-eqn, KGBJS-eqn, . . .

• allows for higher-order kinematical effects at leading order

• requires matrix elements with off-shell
initial-state partons with k2i = k

2
i⊥ < 0

k1 = x1p1 + k1⊥

k2 = x2p2 + k2⊥

• Can this factorization be generalized to other processes?

• This requires at least a formulation and calculation of off-shell matrix elements for
these processes.
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|KATIE| https://bitbucket.org/hameren/katie

• parton level event generator, like Alpgen, Helac, MadGraph, etc.

• arbitrary processes within the standard model (including effective Hg) with several
final-state particles.

• 0, 1, or 2 off-shell initial states.

• produces (partially un)weighted event files, for example in the LHEF format.

• requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids,
or with TMDlib Hautmann, Jung, Krämer, Mulders, Nocera, Rogers, Signori 2014.

• a calculation is steered by a single input file.

• employs an optimization stage in which the pre-samplers for all channels are optimized.

• during the generation stage several event files can be created in parallel.

• can generate (naively factorized) MPI events.

• event files can be processed further by parton-shower program like CASCADE.
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|KATIE| https://bitbucket.org/hameren/katie

• has been used in several studies

– Four-jet production in single- and double-parton scattering within high-energy
factorization, Kutak, Maciu la, Serino, Szczurek, AvH 2016

– Associated production of D-mesons with jets at the LHC, Maciu la, Szczurek 2017

– Towards tomography of quarkgluon plasma using double inclusive forward-central
jets in PbPb collision, Deák, Kutak, Tywoniuk 2017

– Single- and double-scattering production of four muons in ultraperipheral PbPb
collisions at the Large Hadron Collider, AvH, K lusek-Gawenda, Szczurek 2017

– Double-parton scattering effects in D 0B+ and B+B+ meson-meson pair produc-
tion in proton-proton collisions at the LHC, Maciu la, Szczurek 2018.

• covers complete parton-level phase space; no deformation of final-state momenta re-
quired when interfacing with initial-state parton shower

– Calculations with off-shell matrix elements, TMD parton densities and TMD
Parton showers, Bury, AvH, Jung, Kutak, Sapeta, Serino 2017
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|CASCADE| Jung, Baranov, Deak, Grebenyuk, Hautmann, Hentschinski,
Knutsson, Kraemer, Kutak, Lipatov, Zotov, 2010

• full hadron level Monte Carlo event generator

• uses the CCFM evolution equation for the initial state parton shower following the
backward evolution approach

• requires off-shell matrix elements for the hard scattering

• the transverse momentum of the initial partons of the hard scattering process is fixed
by the TMD and the parton shower does not change the kinematics

• The transverse momenta during the cascade follow the behavior of the TMD
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|KATIE + CASCADE| Bury, AvH, Jung, Kutak,
Sapeta, Serino 2017

kT -dependent pdfs from the prescription of Kimber, Martin, Ryskin, Watt 2001, 2010:

Aa(x, k
2
T , µ

2) =
∂

∂k2T

[
xfa(x, µ

2)∆a(k
2
T , µ

2)
]

∆g(k
2
T , µ

2) = exp

{
−

∫µ2
k2T

dκ2T
κ2T

αS(κ
2
T)

2π

(∫ 1−η
η

dξξPgg(ξ) +

∫ 1
0

nfPqg(ξ)

)}
η =

kT

µ+ kT

• also for quarks

• initial-state partons shower via backward-evolution and non-emission probability

∆(x, µi, µi−1) = exp

{
−

∫µ2i
µ2i−1

dq2

q2
αS(q

2)

2π

∑
a

∫
dzPab(z)

Aa

(
zx, k ′T(z), q

)
Ab

(
x, kT , q

) }

• angular ordering with factorization scale µ2 = (~kT 1 + ~kT 2)
2 + ŝ
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|Dijet azimuthal de-correlation| Bury, AvH, Jung, Kutak,
Sapeta, Serino 2017
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|Amplitudes with off-shell initial states|
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|Generalization of on-shellness|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p
Construct kµT explicitly in terms of pµ and qµ:

kµT (q) = −
κ

2
εµ −

κ∗

2
ε∗µ with


εµ =

〈p|γµ|q]
[pq]

, κ =
〈q|k/|p]
〈qp〉

ε∗µ =
〈q|γµ|p]
〈qp〉 , κ∗ =

〈p|k/|q]
[pq]

k2 = −κκ∗ is independent of qµ, but also individually κ and κ∗ are independent of qµ.
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|Amplitude as embedding| AvH, Kutak, Kotko 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

pµA = Λpµ1 −
κ∗1
2
ε∗µ1

pµA ′ = −(Λ− x1)p
µ
1 −

κ1

2
εµ1

p2A = p2A ′ = 0

pµA + pµA ′ = x1p
µ
1 −

κ1

2
εµ1 −

κ∗1
2
ε∗µ1 = kµ1
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|Amplitude as embedding| AvH, Kutak, Kotko 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

pµA = Λpµ1 −
κ∗1
2
ε∗µ1

pµA ′ = −(Λ− x1)p
µ
1 −

κ1

2
εµ1

Λ→∞
⇒

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i
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|Amplitude as embedding| AvH, Kutak, Kotko 2013
AvH, Kutak, Salwa 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

j

i

= −i δi,j u(p1)

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i

+ += + · · ·

qA γA

q

X
g g

γA

q

qA

q(k1)

g

qA γA

q

g

qA γA

q
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|Amplitude as embedding| AvH, Kutak, Kotko 2013
AvH, Kutak, Salwa 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

j

i

= −i δi,j u(p1)

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i

+ += + · · ·

qA γA

q

X
g g

γA

q

qA

q(k1)

g

qA γA

q

g

qA γA

q

x
xxIn agreement with the effective action approach of xx
xxLipatov 1995, Antonov, Lipatov, Kuraev, Cherednikov 2005 xx
xxLipatov, Vyazovsky 2000, Nefedov, Saleev, Shipilova 2013 xx
xxand the Wilson-line approach of xx
xxKotko 2014 xx
x
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑
i=2

∑
h=+,−

Ai,h

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h

“On-shell condition” for “off-shell” gluons: pi · ki = 0
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑
i=2

∑
h=+,−

Ai,h +

n−1∑
i=2

Bi

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h
Bi =

1̂

i

1

2pi·Ki,n

n̂

i
i− 1 i+ 1

“On-shell condition” for “off-shell” gluons: pi · ki = 0
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑
i=2

∑
h=+,−

Ai,h +

n−1∑
i=2

Bi + C + D ,

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h
Bi =

1̂

i

1

2pi·Ki,n

n̂

i
i− 1 i+ 1

C =

1̂ n̂

n− 12
1

κ1
D =

1̂ n̂

n− 12
1

κ∗1
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|Off-shell one-loop amplitudes|

Initial steps have already been taken in the parton reggeization approach employing Lipa-
tov’s effective action.
Hentschinski, Sabio Vera 2012
Chachamis, Hentschinski, Madrigal, Sabio Vera 2012
Nefedov, Saleev 2017

The main problem is caused by linear denominators in loop integrals and the divergecies
they cause. ∫

d4−2ε`
N(`)

p·(`+ K0) (`+ K1)2 (`+ K3)2 (`+ K4)2
= ?

In particular one would like to use a regularization that

• is manifestly Lorentz covariant

• manifestly preserves gauge invariance

• can be used incombination with dimensional regularization

• is practical
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Off-shell one-loop amplitudes|

where p, q are light-like with p·q > 0, where p·kT = q·kT = 0, and where

α =
−β2k2T

Λ(p+ q)2
, β =

1

1+
√
1− x/Λ

=⇒ {
p2A = p2A ′ = 0

pµA + pµA ′ = xpµ + k
µ
T

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for Λ→∞:

i
p/A + K/

(pA + K)2
=

ip/

2p·K + O
(
Λ−1

)
Divide by Λ to get the desired amplitude

〈pA|→ √Λ 〈p| , |pA ′ ]→ −
√
Λ |p]
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Off-shell one-loop amplitudes|

where p, q are light-like with p·q > 0, where p·kT = q·kT = 0, and where

α =
−β2k2T

Λ(p+ q)2
, β =

1

1+
√
1− x/Λ

=⇒ {
p2A = p2A ′ = 0

pµA + pµA ′ = xpµ + k
µ
T

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for Λ→∞:

i
p/A + K/

(pA + K)2
=

ip/

2p·K + O
(
Λ−1

)
• Λ-parametrization provides natural regularization for linear denominators in loop inte-

grals.

• Taking this limit after loop integration will lead to singularities logΛ.
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|∅→ Hgg∗ from ∅→ Hgqq̄| Schmidt 1997

Sgq = (pA + kg)
2 → 2Λp·kg

Sgq̄ = (pA ′ + kg) → −2Λp ·kg
Sqq̄ = k

2
T
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|∅→ Hgg∗ from ∅→ Hgqq̄| Schmidt 1997

Sgq = (pA + kg)
2 → 2Λp·kg

Sgq̄ = (pA ′ + kg) → −2Λp ·kg
Sqq̄ = k

2
T

m1
(
g+, q−, q̄+

)
∝
[
1

ε
− ln

(
−k2T
µ2

)]
lnΛ+ · · ·
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|∅→ ggg∗ from ∅→ ggqq̄| Ellis, Sexton 1986

t = (pA + k2)
2 → 2Λp·k2

u = (pA + k3) → −2Λp ·k2
s = k2T[
1

ε
− 1− ln

(
−k2T
µ2

)]
lnΛ
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Some four-point master integrals|

[d`] =
Γ(2− ε)µ2ε

Γ 2(1− ε)Γ(1+ ε)iπ2−ε
d4−2ε`

pA + K1

K4 K3

−pA + K2

=

∫
[d`]

Λ

`2 (`+ pA + K1)2 (`− K3 − K4)2 (`− K4)2

Just use known expressions for regularized scalar integrals, put
(pA + K1)

2 → 2Λp·K1 , (−pA + K2 + K4)
2 → −2Λp·(K2 + K4)

etcetera, and take Λ→∞
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Some four-point master integrals|

[d`] =
Γ(2− ε)µ2ε

Γ 2(1− ε)Γ(1+ ε)iπ2−ε
d4−2ε`

pA + K1

K4 K3

−pA + K2

=

∫
[d`]

Λ

`2 (`+ pA + K1)2 (`− K3 − K4)2 (`− K4)2

pA pA ′

K3K4

=
−1

p·K4 k2T

{[
1

ε
− ln

(
−k2T
µ2

)]
lnΛ+ · · ·

}
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Some four-point master integrals|

Boxes divergent in Λ only appear in graphs
contributing to the one-shell limit kT → 0.

pA pA ′

K3K4

=
−1

p·K4 k2T

{[
1

ε
− ln

(
−k2T
µ2

)]
lnΛ+ · · ·

}
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Some triangles|

pA K2 − pA

−K2

=
1

2p·k2

{
ln2Λ

2
+ ln

(
−2p·k2
µ2

)
lnΛ−

lnΛ

ε
+ · · ·

}

pA + K1 K2 − pA

k3

=
1

2p·(K1 − K2)

{
ln

(
−2p·K1
−2p·K2

)
lnΛ+ · · ·

}

pA pA ′

−k

=
Λ

k2T

{
1

ε2
−
1

ε
log

(
k2T
−µ2

)
+
1

2
log2

(
k2T
−µ2

)}
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Decomposition into master integrals|

Well-known decomposition for on-shell one-loop amplitudes in terms of master integrals
still holds for finite Λ.

A(1) =

∫
[d`]

N(`)∏
iDi(`)

=
∑
i,j,k,l

c4(i, j, k, l) I4(i, j, k, l) +
∑
i,j,k

c3(i, j, k) I3(i, j, k)

+
∑
i,j

c2(i, j) I2(i, j) +
∑
i

c1(i) I1(i) + R+ O(ε)

I4(i, j, k, l) =

∫
[d`]

1

Di(`)Dj(`)Dk(`)Dl(`)
, Di(`) = (`+ Ki)

2 −m2
i + iη

The coefficients c4, c3, c2.c1 are determined from the integrand .
(di)logarithms of external invariants and Λ appear in the master integrals I4, I3, I2.
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Decomposition into master integrals|

Well-known decomposition for on-shell one-loop amplitudes in terms of master integrals
still holds for finite Λ.

A(1) =

∫
[d`]

N(`)∏
iDi(`)

=
∑
i,j,k,l

c4(i, j, k, l) I4(i, j, k, l) +
∑
i,j,k

c3(i, j, k) I3(i, j, k)

+
∑
i,j

c2(i, j) I2(i, j) +
∑
i

c1(i) I1(i) + R+ O(ε)

It is not completely correct to take Λ → ∞ in the integrand before reduction, and just
replace

1

2p·(`+ K) → Λ

(`+Λp+ K)2

in the master integrals
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Non-commuting limits|

Integrand-based reduction methods cannot be applied with näıve limit Λ→∞ on inte-
grand. For example, the integrand of the following graph (Feynman gauge) vanishes in
that limit, but the integral does not:

Λp+ K

ℓ

=

∫
[d`]
〈p|γµ(/̀+Λp/+ K/)γµ|p]

`2(`+Λp+ K)2

= 2p·K
[

lnΛ−
1

ε
− 1+ ln

(
−
2p·K
µ2

)
+ O(ε)

]

But 〈p|γµp/γµ|p] = 0, so näıve power counting in Λ does not work.
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|Non-commuting limits|

kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

For two-point master integrals and one three-point master integrals, integration does not
commute with the limit Λ→∞: integration “eats” a power of Λ from the denominator.

Λp+ K −Λp− K =

∫
[d`]

`2 (`+Λp+ K)2
→ 1

ε
+ 2− log

(
2Λp·K
−µ2

)

pA

pA ′

−k

=

∫
[d`]

`2 (`+ pA)2 (`+ k)2
→ 1

k2T

{
1

ε2
−
1

ε
log

(
k2T
−µ2

)
+
1

2
log2

(
k2T
−µ2

)}

This complication manifests itself also in the fact that for these master integrals the
solutions to the cut equations diverge with Λ.
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|Divergent solutions to cut equations|
1) Boxes with 4 or 3 Λ-denominators, triangles with 3 or 2, bubbles with 2, eg:∫

[d`]

(`+Λp+ K0)2(`+Λp+ K1)2(`+Λp+ K2)2(`+Λp+ K3)2

has solutions `µ = −Λpµ+qµ with some finite qµ. Looking at the corresponding residues,
we see that the contribution of these masters to vanish.

2) Boxes with 2 Λ-denominators∫
[d`]Λ2

(`+ K0)2(`+ K1)2(`+Λp+ K2)2(`+Λp+ K3)2

give but non-vanishing contribution. Divergence reflects the fact that there is no solution
to p·(`+K2) = p·(`+K3) = 0, because this implies p·K2 = p·K3. This then implies that
these are not master intergrals, and decompose into triangles.

3) Bubbles and the special triangle∫
[d`]

`2 (`+Λp+ K)2
,

∫
[d`]

`2 (`+ pA)2 (`+ pA + pA ′)2

give a finite contribution.
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|Summary|

• kT -dependent factorization gives the opportunity to have complete kinematics at lowest
order in perturbative calculations

• it allows for the application of initial-state parton showers without changing the hard
kinematics

• hard scattering amplitudes are well defined and computable at tree-level

• there is a natural regularization for the singularities at one loop related to linear de-
nominators which, however, does not trivialize the calculation
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