applications of integrand reduction to two-loop amplitudes in QCD

Simon Badger (IPPP, Durham)

in collaboration with, Christian Brønnum-Hansen Bayu Hartanto and Tiziano Peraro

Loops and Legs 30th April 2018

the NNLO frontier

new subtractions methods

 \Longrightarrow

(almost) complete set of $2\rightarrow 2$ processes at NNLO!

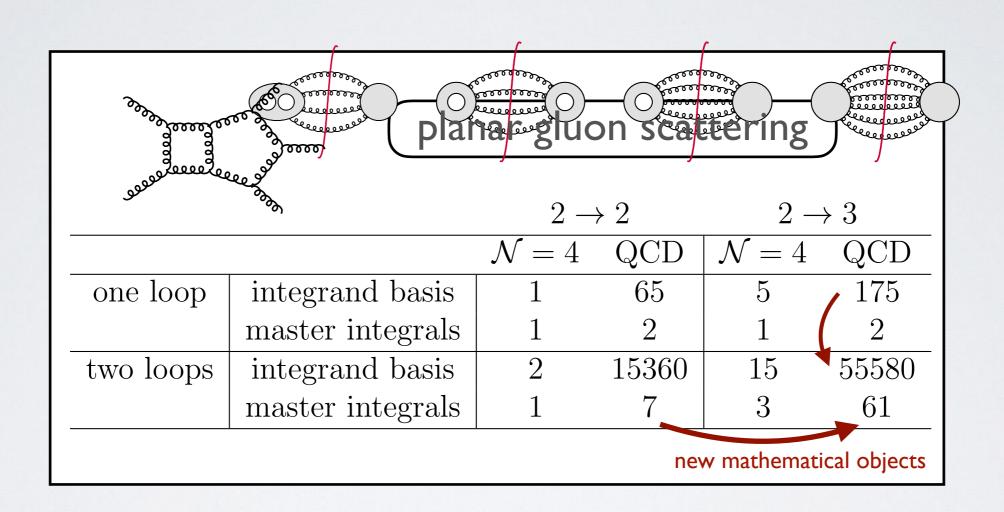
qT, n-jettiness, antenna, sector decomposition/STRIPPER

process	precision observables
$pp \rightarrow 3j$	jet multiplicity ratios, α_s at high energies, 3-jet mass
$pp o \gamma \gamma + j$	background to Higgs p_T , signal/background interference effects
$pp \to H + 2j$	Higgs p_T , Higgs coupling through vector boson fusion (VBF)
pp o V + 2j	Vector boson p_T , W^+/W^- ratios and multiplicity scaling
$pp \rightarrow VV + j$	backgrounds to p_T spectra for new physics decaying via vector boson

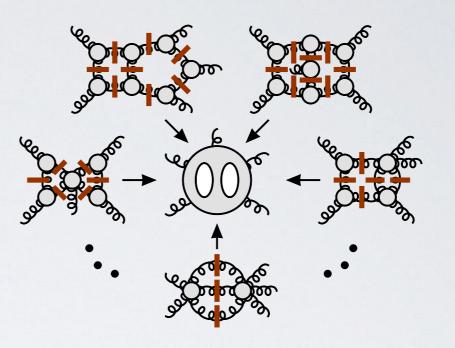
example: 3j/2j ratio at the LHC can probe of the running of α_s in a new energy regime

e.g. CMS @ 7 TeV $\alpha_s(m_Z^2) = 0.1148 \pm 0.0014 ({\rm exp.}) \pm 0.0018 ({\rm PDF}) \pm 0.0050 ({\rm theory})$

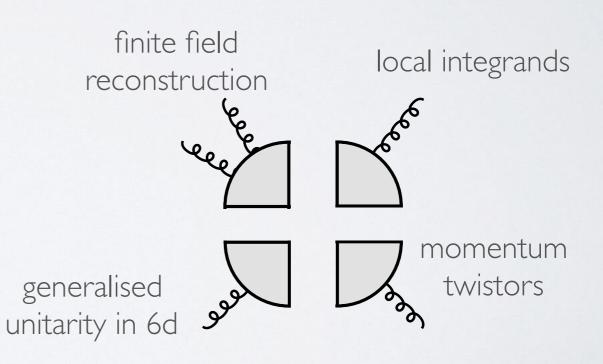
complexity for 2→3 processes



outline



- integrand reduction for dimensional regulated amplitudes
- two loop integrands and planar five gluon helicity amplitudes



$$(\text{amplitude}) = \sum_{c} (\text{colour})_{c} (\text{ordered amplitude})_{c}$$

$$\downarrow \text{ strip colour factors}$$

$$(\text{ordered amplitude}) = \sum_{i} (\text{kinematic})_{i} (\text{integral})_{i}$$

$$\text{special basis of functions}$$

rational function

of kinematics

loop-level methods

diagrams $\xrightarrow{\text{reduction}}$ master integrals $\xrightarrow{\text{integration}}$ amplitude

integration-by-parts

[many Laporta style codes: FIRE5, Reduze2, Grinder, Kira...]

integrand reduction

[I-loop (CutTools,LoopTools), multi-loop: polyn. div.]

tensor reduction

[many implementations: LoopTools, Collier, FeynCalc, PJFry, ...]

generalized unitarity

[BlackHat, NJet, Rocket,...]

sector decomposition

[numerical: FIESTA4, pySecDec]

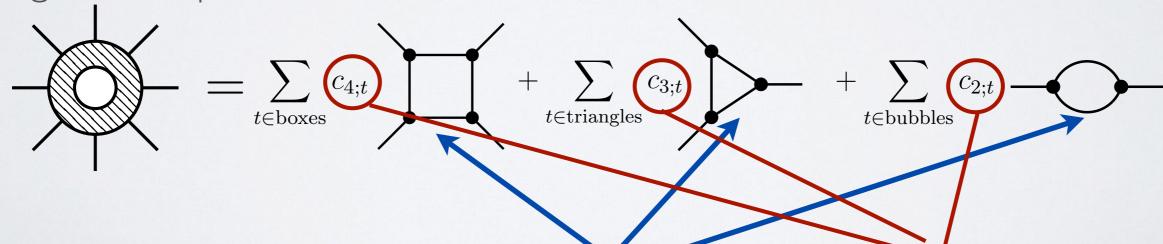
differential equations

[a lot of progress with Henn's "canonical" approach]

direct evaluation

[MPL (Bogner), HyperInt (Panzer)]

e.g. one-loop



integral basis separates analytic and algebraic parts

on-shell/alternative techniques for reducing two-loop QCD amplitudes

unitarity, spanning cuts etc.

Bern, Dixon, de Freitas, Wong, Kosower (2000-2003)

maximal unitarity

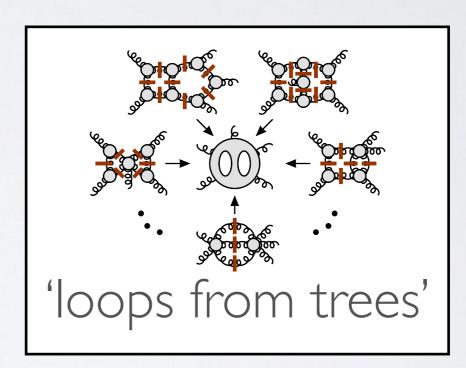
[Kosower, Larsen, Johansson, Caron-Huot, Zhang, Søgaard]

numerical unitarity

[Abreu, Febres-Cordero*, Ita, Jaquier, Page*, Zeng*]

integrand reduction (+ generalised unitarity)

[Mastrolia, Ossola, SB, Frellesvig, Zhang, Mirabella, Peraro, Malamos, Kleiss, Papadopoulos, Verheyen, Feng, Huang]



unitarity compatible integration-by-parts identities

[Gluza, Kosower, Kajda 1009.0472] [Schabinger 1111.4220][Ita 1510.05626] [Larsen, Zhang 1511.01071][Georgoudis, Larsen, Zhang 1612.04252][Kosower 1804.00131]

*see other talks this week

summary of state-of-the-art

first results for planar $2 \rightarrow 3$ gluon scattering amplitudes

2→3 master integrals

[Papadopoulos*, Tommasini, Wever arXiv: 1511.09404]

[Gehrmann, Henn*, Lo Presti arXiv:1511.05409]

[Chicherin, Henn, Mitev arXiv:1712.09610]

a first look at two-loop five-gluon amplitudes in QCD

[SB, Brønnum-Hansen, Hartanto, Peraro arXiv:1712.02229]

Planar two-loop five-gluon amplitudes from numerical unitarity

[Abreu, Febres-Cordero, Ita, Page, Zeng arXiv:1712.03946]

Efficient integrand reduction for particles with spin

[Boels, Jin, Luo arXiv: 1802.06761]

previously. Mall-plus test cases

$$[SB, Frellesvig, Zhang (2013)]$$

$$[SB, Mogull, O'Connell, Ochriov (2015)]$$

$$[SB, Mogull, Peraro (2016)]$$

$$[SB, Mogull, Peraro (2016)]$$

$$[SB, Mogull, Peraro (2016)]$$

$$[SB, Mogull, Peraro (2016)]$$

analytic d-dimensional integrands using six-dimensional spinor-helicity and generalised unitarity cuts

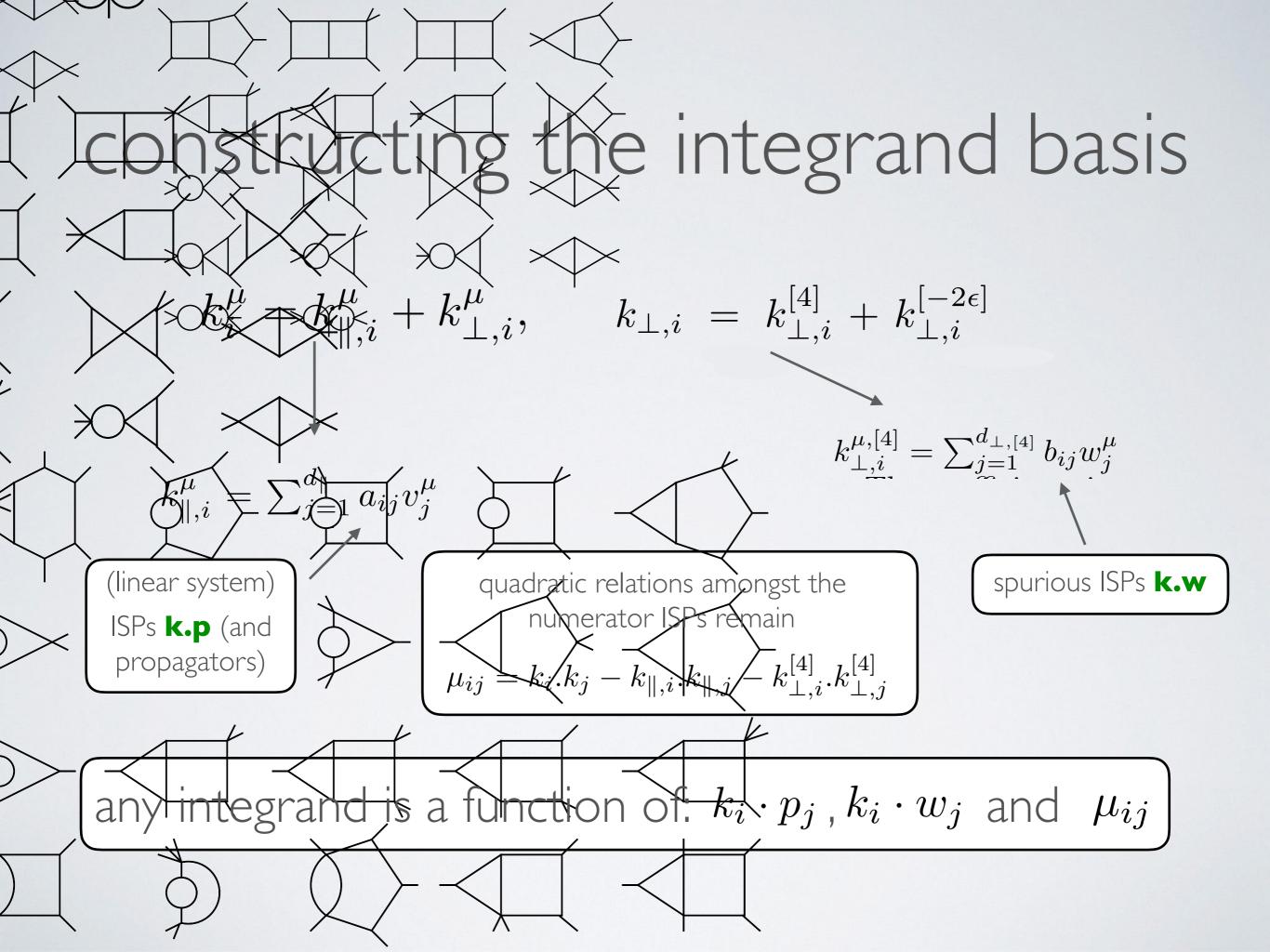
医 其 其 妥 X

M & M

amplitudes and integrands

$$A = \int_{k} \sum_{i} \frac{\Delta_{i}(k, p)}{(\text{propagators})_{i}}$$

how can we parameterise the irreducible numerator?



constructing the integrand basis

$$\Delta(k_i \cdot p_j, k_i \cdot w_j, \mu_{ij}) = \sum (\text{coefficients}) (\text{monomial})$$

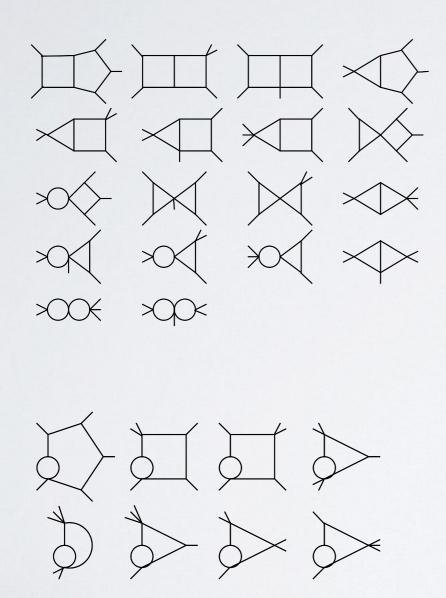
- · updated algorithm no longer requires polynomial division
- integrand contains spurious terms

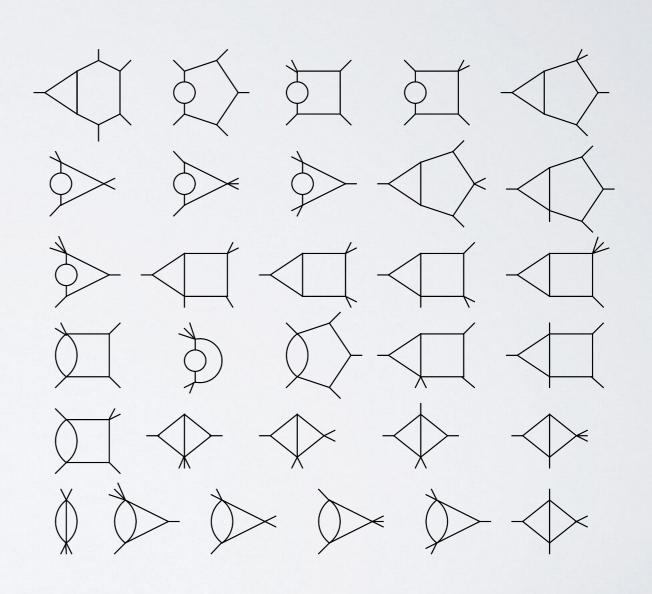
$$\int_{k} k_i \cdot w_j = 0$$

- integrand basis depends on the ordering of the possible ISP monomials
- beyond one-loop the integrals can be further reduced using integration-by-parts identities

$$\int_{k} \frac{\partial}{\partial k_{\mu}} \frac{v_{\mu}(k, p)}{\text{(propagators)}} = 0$$

two-loop five-gluon scattering in QCD





two-loop five-gluon scattering in QCD

helicity	flavour	non-zero	non-spurious	contributions
		coefficients	coefficients	$@ \ \mathcal{O}(\epsilon^0)$
	$(d_s-2)^0$	50	50	0
+++++	$(d_s-2)^1$	175	165	50
	$(d_s-2)^2$	320	90	60
	$(d_s-2)^0$	1153	761	405
-++++	$(d_s-2)^1$	8745	4020	3436
	$(d_s-2)^2$	1037	100	68
	$(d_s-2)^0$	2234	1267	976
+++	$(d_s-2)^1$	11844	5342	4659
	$(d_s-2)^2$	1641	71	48
	$(d_s-2)^0$	3137	1732	1335
-+-++	$(d_s-2)^1$	15282	6654	5734
	$(d_s - 2)^2$	3639	47	32

TABLE I. The number of non-zero coefficients found at the integrand level both before ('non-zero') and after ('non-spurious') removing monomials which integrate to zero. Last column ('contributions @ $\mathcal{O}(\epsilon^0)$ ') gives the number of coefficients contributing to the finite part. Each helicity amplitude is split into the components of $d_s - 2$.

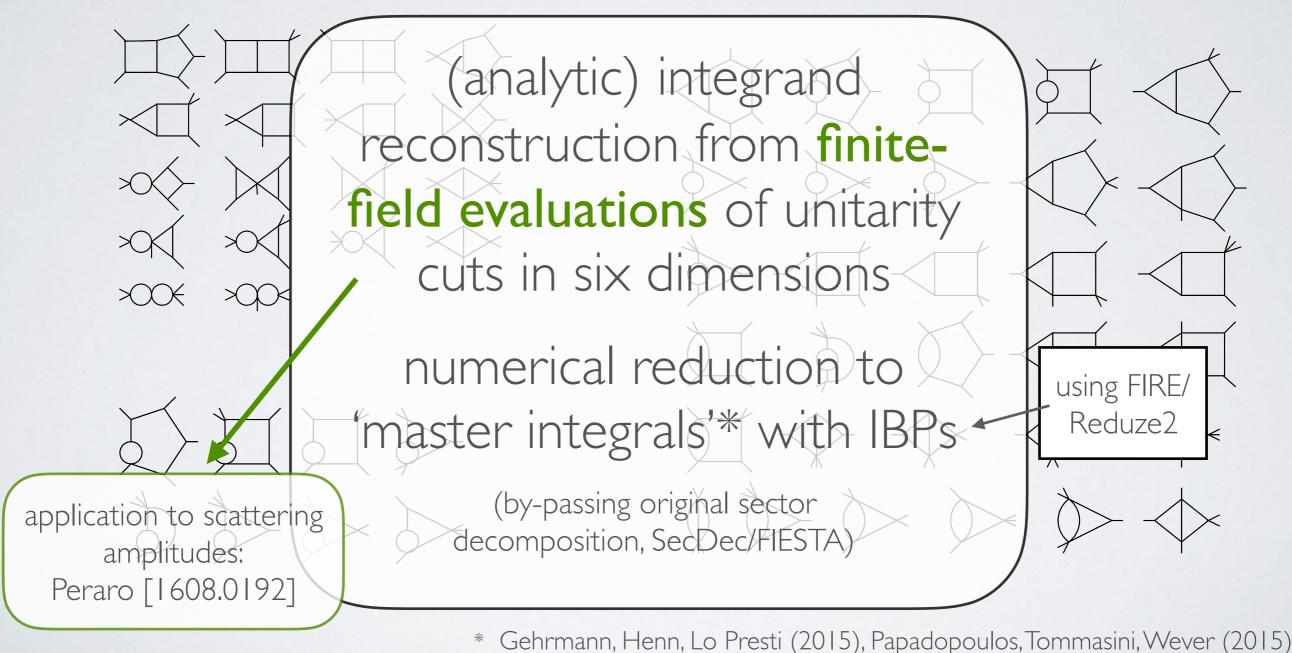
SB, Brønnum-Hansen, Hartanto Peraro Phys.Rev.Lett. 120 (2018) no.9, 092001

$$\mathcal{A}^{(L)}(1,2,3,4,5) = n^L g_s^3 \sum_{\sigma \in S_5/Z_5} \operatorname{tr} \left(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(5)}} \right) \times A^{(L)} \left(\sigma(1), \sigma(2), \sigma(3), \sigma(4), \sigma(5) \right), \tag{1}$$

$$A^{(2)}(1,2,3,4,5) = \int [dk_1][dk_2] \sum_{T} \frac{\Delta_T(\{k\},\{p\})}{\prod_{\alpha \in T} D_{\alpha}}$$

a first look at two-loop five-gluon scattering in QCD

SB, Brønnum-Hansen, Hartanto Peraro Phys.Rev.Lett. 120 (2018) no.9, 092001



a first look at two-loop five-gluon scattering in QCD

SB, Brønnum-Hansen, Hartanto, Peraro Phys.Rev.Lett. 120 (2018) no.9, 092001

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{+++}^{(2),[0]}$	12.5	27.7526	-23.773	-168.117	-175.207 ± 0.004
$P_{-+++}^{(2),[0]}$	12.5	27.7526	-23.773	-168.116	_
$\widehat{A}_{-+-++}^{(2),[0]}$	12.5	27.7526	2.5029	-35.8094	69.661±0.009
$P^{(2),[0]}_{++}$	12.5	27.7526	2.5028	-35.8086	

TABLE II. The numerical evaluation of $\widehat{A}^{(2),[0]}(1,2,3,4,5)$ using $\{x_1 = -1, x_2 = 79/90, x_3 = 16/61, x_4 = 37/78, x_5 = 83/102\}$ in Eq.(6). The comparison with the universal pole structure, P, is shown. The +++++ and -++++ amplitudes vanish to $\mathcal{O}(\epsilon)$ for this $(d_s - 2)^0$ component.

verified by Abreu, Febres Cordero, Ita, Page, Zeng [1712.05721]

	5	7		
	ϵ^{-4} ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{+++++}^{(2),[1]}$	0.0000	-2.5000	-6.4324	-5.311 ± 0.000
$P_{+++++}^{(2),[1]}$	0 0	-2.5000	-6.4324	$\times \leftarrow \vdash \rightarrow$
$\widehat{A}_{-++++}^{(2),[1]}$	0.0000	-2.5000	-12.749	-22.098 ± 0.030
$P^{(2),[1]}_{-+++}$	0 0	-2.5000	-12.749	
$\widehat{A}^{(2),[1]}$	0 -0.625	0 -1.8175	-0.4871	3.127 ± 0.030
$P_{+++}^{(2),[1]}$	0 -0.6250	0 -1.8175	-0.4869	
$\widehat{A}_{-+-++}^{(2),[1]}$	0 -0.624	9 -2.7761	-5.0017	0.172 ± 0.030
$P_{-+-++}^{(2),[1]}$	0 -0.625	0 -2.7759	-5.0018	

TABLE III. The numerical evaluation of $\widehat{A}^{(2),[1]}(1,2,3,4,5)$ and comparison with the universal pole structure, P, at the same kinematic point of Tab. II.

universal poles

$$P^{(2)} = I^{(2)}A^{(0)} + I^{(1)}A^{(1)}$$

[Catani] [Becher, Neubert] [Gnendiger, Signer, Stockinger]

$$x_1 = -1, \quad x_2 = \frac{79}{90}, \quad x_3 = \frac{16}{61}, \quad x_4 = \frac{37}{78}, \quad x_5 = \frac{83}{102}.$$

$$s_{12} = -1, \quad s_{23} = -\frac{37}{78}, \quad s_{34} = -\frac{2023381}{3194997}, \quad s_{45} = -\frac{83}{102}, \quad s_{15} = -\frac{193672}{606645}.$$

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{+++}^{(2),[0]}$	12.5	27.7526	-23.7728	-168.1162	-175.2103
$P_{+++}^{(2),[0]}$	12.5	27.7526	-23.7728	-168.1163	_
$\widehat{A}_{-+-++}^{(2),[0]}$	12.5	27.7526	2.5028	-35.8084	69.6695
$P_{-+-++}^{(2),[0]}$	12.5	27.7526	2.5028	-35.8086	_

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{+++++}^{(2),[1]}$	0	0	-2.5	-6.4324	-5.3107
$P_{+++++}^{(2),[1]}$	0	0	-2.5	-6.4324	_
$\widehat{A}_{-++++}^{(2),[1]}$	0	0	-2.5	-12.7492	-22.0981
$P_{-++++}^{(2),[1]}$	0	0	-2.5	-12.7492	
$\widehat{A}_{+++}^{(2),[1]}$	0	-0.625	-1.8175	-0.4869	3.1270
$P_{+++}^{(2),[1]}$	0	-0.625	-1.8175	-0.4869	
$\widehat{A}_{-+-++}^{(2),[1]}$	0	-0.625	-2.7759	-5.0018	0.1807
$P_{-+-++}^{(2),[1]}$	0	-0.625	-2.7759	-5.0018	

	$\widehat{A}_{+++++}^{(2),[2]}$	$\widehat{A}_{-++++}^{(2),[2]}$	$\widehat{A}_{+++}^{(2),[2]}$	$\widehat{A}_{-+-++}^{(2),[2]}$
ϵ^0	3.6255	-0.0664	0.2056	0.0269

evaluation in the physical region

reduction to MI of Gehrmann, Henn, Lo Presti (or alternatively Papadopoulos, Tommasini, Wever)

d_s=2 fully analytic, full d_s dep. partially numerical

$$x_1 = \frac{113}{7}, \quad x_2 = -\frac{2}{9} - \frac{i}{19}, \quad x_3 = -\frac{1}{7} - \frac{i}{5}, \quad x_4 = \frac{1351150}{13847751}, \quad x_5 = -\frac{91971}{566867}.$$

$$s_{12} = \frac{113}{7}, \quad s_{23} = -\frac{152679950}{96934257}, \quad s_{34} = \frac{1023105842}{138882415}, \quad s_{45} = \frac{10392723}{3968069}, \quad s_{15} = -\frac{8362}{32585}.$$

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{+++}^{(2),[0]}$	12.5	-9.17716 + 47.12389 i	-107.40046 - 25.96698 i	17.24014 - 221.41370 i	388.44694 - 167.45494 i
$P_{+++}^{(2),[0]}$	12.5	-9.17716 + 47.12389 i	-107.40046 - 25.96698 i	17.24013 - 221.41373 i	_
$\widehat{A}_{-+-++}^{(2),[0]}$	12.5	$\textbf{-9.17716} + 47.12389 \ i$	-111.02853 - 12.85282 i	-39.80016 - 216.36601 i	342.75366 - 309.25531 i
$P_{-+-++}^{(2),[0]}$	12.5	$\textbf{-9.17716} + 47.12389 \ i$	-111.02853 - 12.85282 i	-39.80018 - 216.36604 i	_

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{+++++}^{(2),[1]}$	0	0	-2.5	0.60532 - 12.48936 i	$35.03354 + 9.27449 \; i$
$P_{+++++}^{(2),[1]}$	0	0	-2.5	0.60532 - $12.48936 i$	
$\widehat{A}_{-++++}^{(2),[1]}$	0	0	-2.5	-7.59409 - 2.99885 i	-0.44360 - 20.85875 i
$P_{-++++}^{(2),[1]}$	0	0	-2.5	-7.59408 - 2.99885 <i>i</i>	_
$\widehat{A}_{+++}^{(2),[1]}$	0	-0.625	-0.65676 - 0.42849 i	-1.02853 + 0.30760 i	-0.55509 - 6.22641 i
$P_{+++}^{(2),[1]}$	0	-0.625	-0.65676 - 0.42849 i	$-1.02853 + 0.30760 \; i$	_
$\widehat{A}_{-+-++}^{(2),[1]}$	0	-0.625	-0.45984 - 0.97559 i	$1.44962 + 0.53917 \ i$	$-0.62978 + 2.07080 \; i$
$P_{-+-++}^{(2),[1]}$	0	-0.625	-0.45984 - 0.97559 i	$1.44962 + 0.53917 \; i$	_

	$\widehat{A}_{+++++}^{(2),[2]}$	$\widehat{A}_{-++++}^{(2),[2]}$	$\widehat{A}_{+++}^{(2),[2]}$	$\widehat{A}_{-+-++}^{(2),[2]}$
ϵ^0	0.60217 - 0.01985 i	-0.10910 - 0.01807 i	-0.06306 - 0.01305 i	-0.03481 - 0.00699 i

manifest UV and IR poles at the integrand level

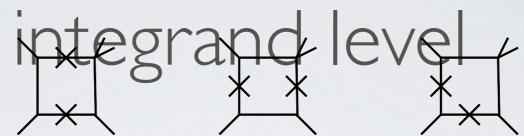
$$A_{5}^{(1)} = \sum_{i=1}^{5} \{1, \mu_{11}, \mu_{11}^{2}\} + \{1, \mu_{11}\} + \sum_{i=1}^{5} \{1, \mu_{11}\} + \sum_{i=1}^{5} \{1, \mu_{11}\} + \{1, \mu_{1$$

$$A_5^{(1)} = \sum_{5}^{5} \left\{1\right\} + \sum_{6}^{5} \left\{1\right\} + \left\{1\right$$

\times

manifest UV and IR poles at the





= $(k-k_1^*)$ \times [Ocal numerators manage IR divergences [Arkani-Hamed, Bourjaily, Cachazo, Trnka (2012)]

remove d-dimensional integrals with UV counterterms

$$\mu_{11}^2 + \frac{1}{u} \left(\begin{array}{c} \times \\ \times \end{array} \mu_{11} + \begin{array}{c} \times \\ \times \end{array} \mu_{11} - \begin{array}{c} \times \\ \times \end{array} \mu_{11} \right) = \mathcal{O}(\epsilon)$$

$$\mu_{11}^2 - \frac{1}{s} \left(\begin{array}{c} \times \\ \times \end{array} \mu_{11} \right) = \mathcal{O}(\epsilon)$$

$$\Delta \left(\bigcup \left(k - k_1^* \right), (k - k_2^*) \right) + \text{spurious} + \mathcal{O}(\epsilon)$$

manifest W and IR poles at the integrand level

also find counter-terms for the triangle topologies

$$\mu_{11} + \frac{1}{3s_{12}} + \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \mu_{11} + \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \mu_{11} - \frac{1}{3(s_{23} - s_{45})} \left(\begin{array}{c} \\ \\$$

$$\Delta \left(\right) + \text{spurious} + \mathcal{O}(\epsilon).$$

manifest UV and IR poles at the integrand level

• UV counter-terms for both 4d and 6d bubbles in the pi_2 cut
$$\begin{array}{c} i + 1 & 2 \\ i + 1 &$$

$$\Delta \left(\stackrel{i+1}{\longrightarrow} \right) \left\{ 1 - \frac{(k)^2 (k - p_{i,i+1})^2}{(k + p_{1,i-1})^2 (k + p_{1,i-1} - p_{1,2})^2} \right\} + \text{spurious} + \mathcal{O}(\epsilon).$$

$$\Delta \left(\stackrel{2}{\longrightarrow} \right) \left\{ 1, \mu_{11} \right\} + \text{spurious} + \mathcal{O}(\epsilon).$$

manifest UV and IR poles at the integrand level

$$A_{5}^{(1)} - I^{(1)}A_{5}^{(0)} = \Delta \left(\bigcup_{i=1}^{k} \left\{ (k - k_{1}^{*}), (k - k_{2}^{*}) \right\} + \Delta \left(\bigcup_{i=1}^{k+1} \bigcup_{i=1}^{k} \left\{ (k - k_{1}^{*}), (k - k_{2}^{*}) \right\} + \Delta \left(\bigcup_{i=1}^{k+1} \bigcup_{i=1}^{k+1} \left\{ (k - k_{1}^{*}), (k - k_{2}^{*}) \right\} + \Delta \left(\bigcup_{i=1}^{k+1} \bigcup_{i=1}^{k+1} \left\{ (k - k_{1}^{*}), (k - k_{2}^{*}) \right\} + \Delta \left(\bigcup_{i=1}^{k+1} \bigcup_{i=1}^{k+1} \left\{ (k - k_{1}^{*}), (k - k_{2}^{*}) \right\} + \Delta \left(\bigcup_{i=1}^{k+1} \bigcup_{i=1}^{k+1} \left\{ (k - k_{1}^{*}), (k - k_{2}^{*}) \right\} + \Delta \left(\bigcup_{i=1}^{k+1} \bigcup_{i=1}^{k+1} \bigcup_{i=1}^{k+1} \left\{ (k - k_{1}^{*}), (k - k_{2}^{*}) \right\} + \Delta \left(\bigcup_{i=1}^{k+1} \bigcup_{i=1$$

Universal IR and UV poles are now manifest and can be subtracted at the integrand level

summary

- two-loop amplitudes from on-shell building blocks:
 - · generalised unitarity cuts and integrand reduction in d-dimensions
 - first results for realistic processes. Lot's more to do for NNLO

a local integrand basis?

['prescriptive unitarity' Bourjaily, Herrmann, Trnka (2017)]

non-planar?

[Arkani-Hamed Bourjaily, Cachazo, Postnikov, Trnka (2015)] [Bern, Herrmann, Litsey, Stankowicz, Trnka (2016)] [Bern, Enciso, Ita, Zeng (2017)] backup

one-loop box example

$$P = \langle x_{14}^2 - \mu_{11} - stu, x_{11}, x_{12}, x_{13} \rangle$$
scalar products

irreducible numerator

$$\Delta_4 = c_0 + c_1 x_{14} + c_2 \mu_{11} + c_3 \mu_{11} x_{14} + c_4 \mu_{11}^2$$

 p_2

on-shell solution

$$\bar{k}^{\mu} = \frac{s(1+\tau)}{4\langle 4|2|1]}\langle 4|\gamma^{\mu}|1] + \frac{s(1-\tau)}{4\langle 1|2|4]}\langle 1|\gamma^{\mu}|4]$$

$$x_{14} = \frac{st}{2}\tau \qquad \mu_{11} = -\frac{st}{4u}(1-\tau^{2})$$

$$x_{1j} = k_{i} \cdot v_{j} \qquad k_{i}^{[-2\epsilon]} \cdot k_{j}^{[-2\epsilon]} = -\mu_{ij}$$

$$\begin{cases}
1 & -\frac{t}{2} & 0 & 0 & 0 \\
0 & t & -\frac{st}{u} & \frac{st^{2}}{2u} & 0 \\
0 & 0 & \frac{st}{u} & -\frac{3st^{2}}{2u} & \frac{s^{2}t^{2}}{u^{2}} \\
0 & 0 & 0 & \frac{st^{2}}{u} & -\frac{2s^{2}t^{2}}{u^{2}} \\
0 & 0 & 0 & \frac{s^{2}t^{2}}{u^{2}} & \frac{s^{2}t^{2}}{u^{2}}
\end{cases}$$

$$x_{ij} = k_i \cdot v_j \qquad k_i^{[-2\epsilon]} \cdot k_j^{[-2\epsilon]} = -\mu_{ij}$$

tree-level "data"
$$\Delta_4(k(au)) = \sum_{i=0}^4 d_i au^i$$

$$\begin{pmatrix} 1 & -\frac{t}{2} & 0 & 0 & 0 \\ 0 & t & -\frac{st}{u} & \frac{st^2}{2u} & 0 \\ 0 & 0 & \frac{st}{u} & -\frac{3st^2}{2u} & \frac{s^2t^2}{u^2} \\ 0 & 0 & 0 & \frac{st^2}{u} & -\frac{2s^2t^2}{u^2} \\ 0 & 0 & 0 & 0 & \frac{s^2t^2}{u^2} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \\ d_4 \end{pmatrix}$$

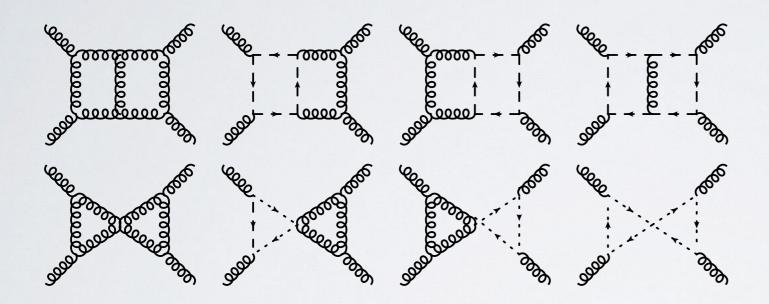
continue reduction with subtractions

$$\Delta_{3;123}(k(\tau_1, \tau_2)) = N(k(\tau_1, \tau_2), p_1, p_2, p_3, p_4) - \frac{\Delta_4(k(\tau_1, \tau_2))}{(k(\tau_1, \tau_2) + p_4)^2}$$

numerator construction

FDH scheme at two-loops

[Bern, De Freitas, Dixon, Wong (2002)]



$$g^{\mu}{}_{\mu} = d_s$$

c.f. Feynman rules + Feynman gauge and ghosts (scalars)

Tree-amplitudes using six-dimensional helicity method

need to capture $\mu_{11},\,\mu_{22},\,\mu_{12}$

[Cheung, O'Connell (2009)]

[Bern, Carrasco, Dennen, Huang, Ita (2011)]

[Davies (2012)]

use momentum twistors to deal with the complicated kinematics at $2\rightarrow 3$

[Hodges (2009)]

momentum twistors

[Hodges (2009)]

recall: spinor-helicity SU(2)×SU(2) ~ $p_i^{\mu} \leftrightarrow (\lambda_{\alpha i}, \tilde{\lambda}_i^{\dot{\alpha}})$

$$Z_{iA} = (\lambda_{\alpha}(i), \mu^{\dot{\alpha}}(i))$$

kinematic variables with manifest momentum conservation or a rational phase space generator

$$W_{i}^{A} = (\tilde{\mu}_{\alpha}(i), \tilde{\lambda}^{\dot{\alpha}}(i)) = \frac{\varepsilon^{ABCD} Z_{(i-1)B} Z_{iC} Z_{(i+1)D}}{\langle i-1i \rangle \langle ii+1 \rangle} \implies \tilde{\lambda}(i)^{\dot{\alpha}} = \frac{\langle i-1i \rangle \mu^{\dot{\alpha}}(i+1) + \langle i+1i-1 \rangle \mu^{\dot{\alpha}}(i) + \langle ii+1 \rangle \mu^{\dot{\alpha}}(i-1)}{\langle i-1i \rangle \langle ii+1 \rangle}$$

$$\implies \sum_{i=1}^{n} \lambda_{\alpha}(i)\tilde{\lambda}_{\dot{\alpha}}(i) = 0_{\alpha\dot{\alpha}}$$

(an over simplified version of)

finite field reconstructions

not a new idea - used in most (all?) computer algebra systems

applications: factorisation, linear systems etc.

$$f(x,y) \xrightarrow{\frac{-3x^2y^4 - \frac{3x^2y^3}{2} + \frac{6xy^2}{5} + \frac{3xy}{5} - \frac{8y^6}{5} - \frac{4y^5}{5} + \frac{9y^2}{4} + \frac{241y}{72} + \frac{10}{9}}{25}} \xrightarrow{A} \xrightarrow{\frac{10}{9}(1+2y)} f(x,y)$$

A - very slow, large intermediate expressions etc., scales poorly with complexity, simple final result

B - avoids complicated algebra, sometimes limited applications (precision etc.)

C - avoids complicated algebra but using arbitrary precision arithmetic is expensive

 $C_p = C \mod p$ - simpler (faster) computations, use multiple evaluations to reconstruct C (or A!) using 'Chinese Remainder Theorem', potentially scales much better than A with complexity

(an over simplified version of) finite field reconstructions

not a new idea - used in most (all?) computer algebra systems

applications: factorisation, linear systems etc.

 $8 2 4 3x^2y^3 6xy^2 3xy 8y^6 4y^5 9y^2 241y 10$

10/

recent examples of pQFT applications:

"A novel approach to integration by parts reduction" von Manteuffel, Schabinger (2014) arXiv:1406.45

"Scattering amplitudes over finite fields and multivariate functional reconstruction"

Peraro (2016) <u>arXiv:1608.01902</u>

"Differential equations on unitarity cut surfaces" Zeng (2017) arXiv:1702.02355

 $C_p = C \mod p$ - simpler (faster) computations, use multiple evaluations to reconstruct C (or A!) using 'Chinese Remainder Theorem'

ult