

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Jet cross sections with NNLOJET

Aude Gehrmann-De Ridder

Loops and Legs in Quantum Field Theory St. Goar, 30.04.2018

work with: J. Currie, T. Gehrmann, E.W.N. Glover, A. Huss, J. Pires

Jet production at the LHC

- Jet cross sections: measured differentially with per cent level uncertainties
- providing an ideal testing ground for QCD: 3
 - constrain PDFs (sensitive to gluon)
 - determine α_s
 - enable indirect BSM searches
- Mainly compared to NLO predictions
 - So far: no observed discrepancy within theory or experimental uncertainties
 - NLO here from NLOJET++

(Z. Nagy, Phys. Rev. D 68 (2003) 094002)

Single jet inclusive: (pp->jet +X) ATLAS@13TeV (arXiv:1711.02692)

Jet observables at LHC

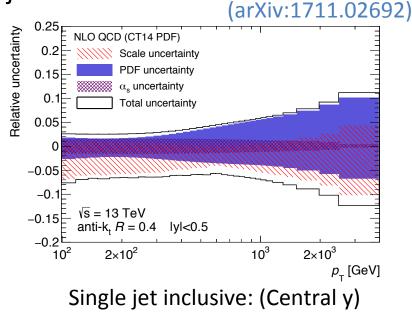
- Single jet inclusive cross section: pp → jet +X
 - Is the sum of individual single jet cross sections
 - each jet in an event contributes separetely,

leading to multiple entries of a single event in distributions

- differential in transverse momentum \boldsymbol{p}_{T} and rapidity \boldsymbol{y}
- Di-jet cross section: $pp \rightarrow 2$ jet +X
 - consider only two leading (in $\boldsymbol{p}_{\scriptscriptstyle T}$) jets in event
 - single entry per event
 - Multi-differential measurements possible (M_{JJ} , $\langle p_T \rangle$, ...)

Jet observables: Theory status

- Important steps and recent developments
 - NLO QCD [Ellis, Kunszt, Soper '92], [Giele, Glover, Kosower '94], [Nagy '03]
 - NLO QCD + PS (POWHEG) [Alioli, Hamilton, Nason, Oleari, Re '11]
 - NLO QCD + Resummation (threshold+jet radius) (talk by S. Moch)
 - NLO EW [Dittmaier, Huss, Speckner '12], [Campbell, Wackeroth, Zhou '16]
 - NLO QCD+EW [Frederix, Frixione, Hirschi, Pagani, Shao, Zaro '17]
 - NNLO QCD (this talk)


[Gehrmann, Glover, Pires, AG '13], [Currie, Glover, Pires '16] [Currie, Gehrmann, Glover, Huss, Pires, AG '17]

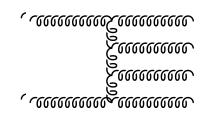
Jet cross sections: uncertainties

- Two types: parametric (PDF, α_s) and perturbative (truncation)
- Perturbative uncertainty: quantified by scale variation
 - Vary renormalization μ_R and factorization μ_F scales by factors [1/2;2] around some pre-defined central scale
 - Important limiting factor for using jet data in PDF fits

Aude Gehrmann-De Ridder, Loops&Legs 2008

- Size of uncertainties at NLO
 - Scale uncertainty important
 ♦ (p_T and y dependent)
- NNLO corrections needed
 - for precise determination PDFs and α_s

NLO QCD (CT14 PDF)


Coole up

air

Ingredients to jet production at NNLO

- explicit infrared poles from loop integral
- $d\sigma_{NNLO}^{RV}$ with one-loop matrix elements
- $d\sigma_{NNLO}^{RR}$ with tree-level matrix elements
 - implicit poles from single and double real emission
 - Infrared poles cancel in the sum

ፚ፝ዸዸዸዸዸዸዸዸዸዸዸዸዸዸ

Antenna subtraction at NNLO

• Parton level NNLO cross section with m-jets in the final state

$$\mathrm{d}\hat{\sigma}_{NNLO} = \int_{\mathrm{d}\phi_{m+2}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^{S} \right] + \int_{\mathrm{d}\phi_{m+1}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^{T} \right] + \int_{\mathrm{d}\phi_{m}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{VV} - \mathrm{d}\hat{\sigma}_{NNLO}^{U} \right]$$

- Unintegrated subtraction terms in $d\hat{\sigma}_{NNLO}^{S}$, $d\hat{\sigma}_{NNLO}^{T}$,
 - Mimic double real (RR) and real-virtual (RV) contributions in all infrared limits
- Integrated subtraction terms in $d\hat{\sigma}_{NNLO}^T$, $d\hat{\sigma}_{NNLO}^U$
 - Cancel explicit infrared poles in real-virtual (RV) and double virtual (VV)
- Terms in square brackets are
 - finite, well-behaved in all infrared regions
 - evaluated numerically with a parton level event generator
- Implementation in NNLOJET

NNLOJET

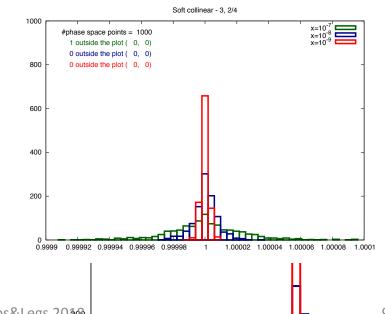
- NNLO parton level event generator
 - based on antenna subtraction

Infrastructure

- Process management
- Phase space, histogram routines
- Validation and testing
- ApplFast interface in progress
- Processes implemented at NNLO
 - Z+(0,1)jet, W+(0,1)jet (talk by D.Walker)
 - H+(0,1)jet (X.Chen et al.)
 - DIS-2j (J. Niehues et al.)
 - VBF H+2jet (talk by J. Cruz-Martinez)
 - Jet production (this talk)

NNLOJET project: X. Chen, J. Cruz-Martinez, J. Currie,

R. Gauld, T.Gehrmann, E.W.N. Glover, M. Höfer, A.Huss, T.Morgan, I. Majer J.Niehues, J. Pires, D. Walker, AG


Antenna subtraction: Checks

• Analytic pole cancellation $Poles(d\sigma^{RV} - d\sigma^{T}) = 0$

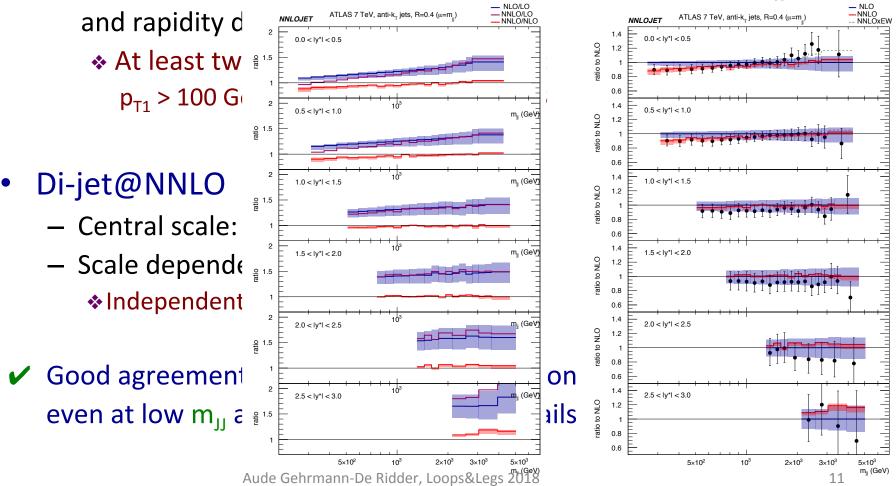
$$Poles(\mathrm{d}\sigma^{VV} - \mathrm{d}\sigma^{U}) = 0$$

• Unresolved limits for RR, RV $d\sigma^S \rightarrow d\sigma^{RR}$ $d\sigma^T \rightarrow d\sigma^{RV}$ Example $q\bar{q} \rightarrow Z + g_3 g_4 g_5 \ (g_3 \operatorname{soft}, g_4 \parallel \bar{q})$ Ratio $d\sigma^S/d\sigma^{RR} \rightarrow 1$ approaching singular limit

09:26:35maple/process/Z
<pre>\$ form autoqgB1g2ZgtoqU.frm</pre>
FORM 4.1 (Mar 13 2014) 64-bits
#-
poles = 0;
6.58 sec out of 6.64 sec

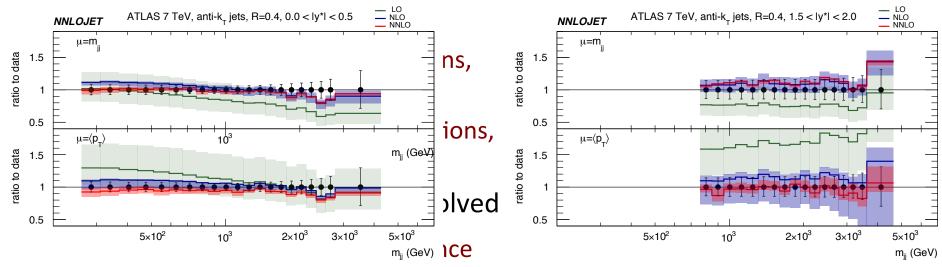
x=1

Di-jet production at NNLO


- Most complicated 2 \rightarrow 2 process: pp \rightarrow 2 jets +X
 - large number of parton-level sub-processes
 - Four QCD partons at tree level
 - Many more unresolved configurations than in V +jet
- NNLO corrections known:

(Currie, Gehrmann, Glover, Huss, Pires, AG '17)

- All channels at leading color (N^2 , NN_F , N_F^2)
- Gluon-gluon channel with full colour
- Subleading colour contributions: (a priori suppressed by 1/N²)
 - below two percent at NLO (all channels)
 - ✤ around ten percent of full NNLO contribution in gg channel


Di-jet invariant mass distribution

- ATLAS measurement @ 7TeV [JHEP 1405.059 (2014)]
 - double differential in invariant mass of the di-jet system m_{JJ}

Di-jet production: scale choice

- Common central scale choices
 - invariant mass m_{ii}
 - average transverse momentum of two leading jets $\langle p_T \rangle$
- Compare predictions (normalised to data)

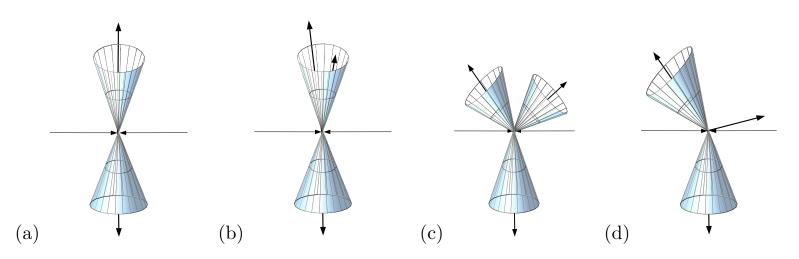
of predictions with small residual scale uncertainties

better choice: m_{ii}

Focus: Region of large rapidity differences: $1.5 < |y^*| < 2.0$

Single jet inclusive production at NNLO

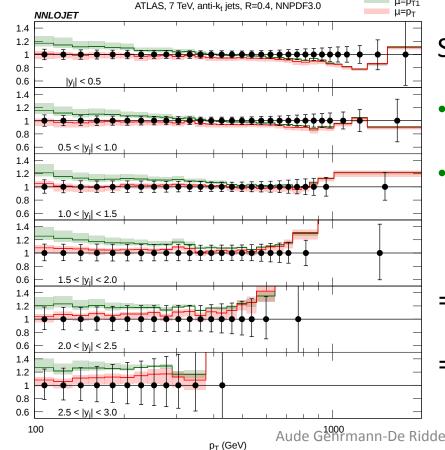
- Single jet inclusive cross section: pp → jet +X
 - Is the sum of separate single jet cross sections
- Central scale setting choices: Two categories
 - jet-based: scale different for each jet in an event
 - ex: p_T: transverse momentum of the individual jets
 - event-based: common scale for all jets in an event


ex: p_{T1}: transverse momentum of the leading jet

• At $O(\alpha_s^4)$

$$\frac{d\sigma}{dp_T}(\mu = p_T) = \frac{d\sigma}{dp_{T1}}(\mu = p_{T1}) + \frac{d\sigma}{dp_{T2}}(\mu = p_{T2}) + \frac{d\sigma}{dp_{T3}}(\mu = p_{T3}) + \frac{d\sigma}{dp_{T4}}(\mu = p_{T4})$$
$$\frac{d\sigma}{dp_T}(\mu = p_{T1}) = \frac{d\sigma}{dp_{T1}}(\mu = p_{T1}) + \frac{d\sigma}{dp_{T2}}(\mu = p_{T1}) + \frac{d\sigma}{dp_{T3}}(\mu = p_{T1}) + \frac{d\sigma}{dp_{T4}}(\mu = p_{T1})$$

p_T versus p_{T1} : Similarities and Differences


- p_T= p_{T1}
 - for leading order $(2 \rightarrow 2 \text{ kinematics})$
 - for high p_T-jets (back-to-back)
- p_T ≠ p_{T1}
 - for events with three or more jets
 - for events with jets outside the fiducial cuts

Single jet inclusive production - p_T vs. p_{T1}

• Compare NNLO predictions with scales $\mu = p_T$ or $\mu = p_{T1}$ with ATLAS @ 7 TeV (R=0.4) [JHEP 1502 153 (2015)]

- At least one reconstructed jet with: $p_T > 100 \text{ GeV}$ and |y| < 3

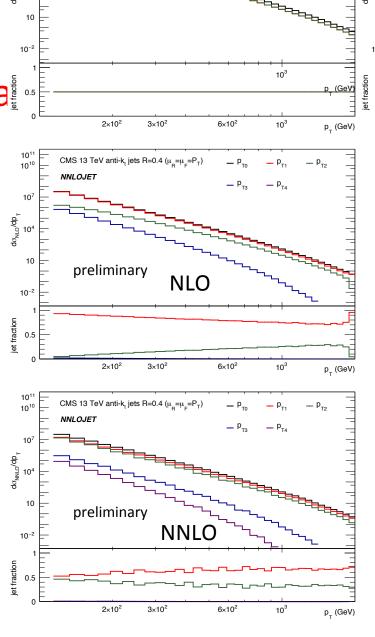
NNLO Ratio to data

Single jet at NNLO:

- high p_{T} : Stabilization and agreement of predictions
- low p_{T} : Significant differences: 15-20% with large uncertainty bands for both scale choices

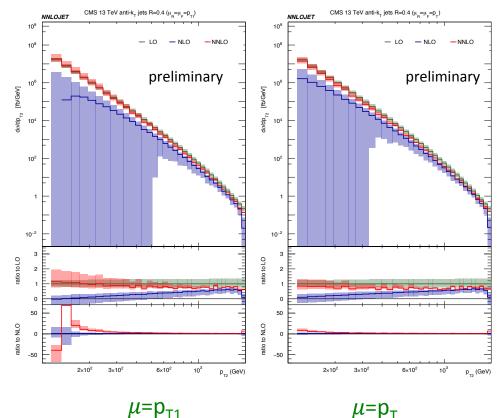
 \Rightarrow Large effects from scale ambiguity remain at NNLO (unlike in di-jet production) \Rightarrow Data better described with $\mu = p_T$ choice

Aude Gehrmann-De Ridder, Loops&Legs 2018


Individual jet contributions a 2×10² 3×10² 6×10² 10¹ CMS 13 TeV anti-k, jets R=0.4 (µ_=µ_=P₁ 10¹⁰ NNLOJET preliminary NLO 10-2 et fraction 0.5 6×10² 2×10² 3×10² 13 TeV anti-k, jets R=0.4 (μ_=μ 10¹⁰ NNI OJET ^Ldp/⁰l0⁴ 10 preliminary NNLC 10-2 jet fraction 3×10² 2×10² 6×10² $\mu_{R} = \mu_{F} = p_{T}$

NLO

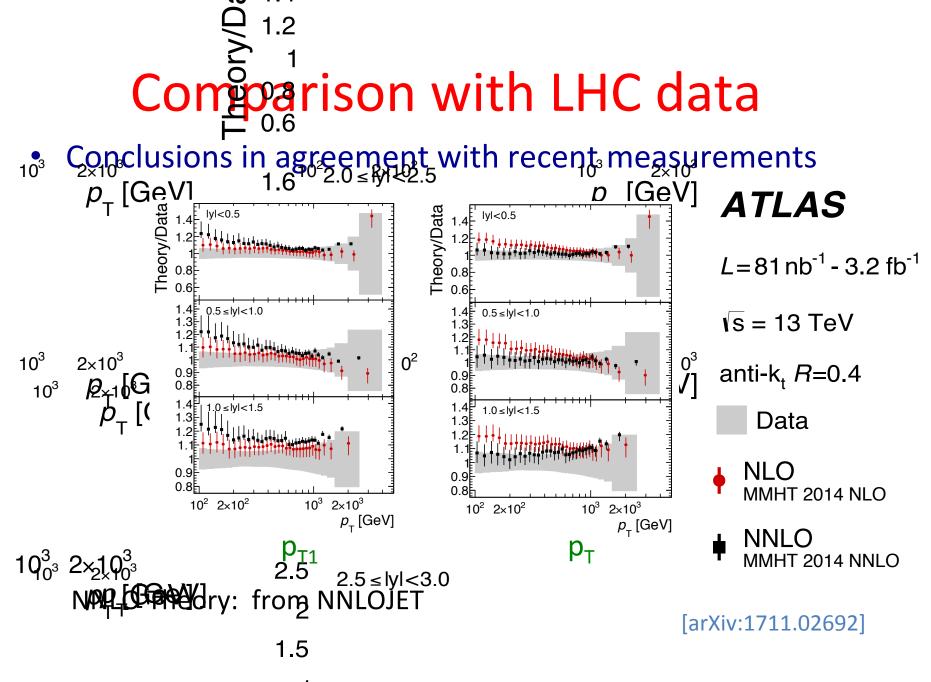
- Leading jet dominates
- Third jet negligible
- Second jet sizeable
 - \clubsuit high p_{T} : as significant as leading jet
 - \bullet low p_{T} : negligible


NNLO

- Leading and second jet similar over whole p_{τ} range
 - substantial increase of second jet contribution at low p_{T}
- Large alternating corrections to second jet distribution

Second jet transverse momentum distribution

- Corrections to second jet distribution
 - NLO: Large and negative with huge uncertainty
 - NNLO: Large and positive
- Ratios show
 - NLO problematic for both scales
 - but much worse for $\mu = p_{T1}$
 - Stabilisation at NNLO (in line with LO)
 - better choice: $\mu = p_T$



Scale setting issue in single jet production

- Change in NNLO predictions using μ=p_T or μ =p_{T1} at low p_T due to:
 - Increased importance of p_{T2} contribution from NLO to NNLO
 - p_{T2} distribution potentially sensitive on IR effects

presence of potentially large logs

- p_{T2} distribution better behaved for $\mu = p_T$
- Tentative recommendation
 - Use (jet-based) central scale $\mu = p_T$ in NNLO predictions for single jet inclusive p_T distributions

Aude Gehrmann-De Ridder, Loops&Legs 2018

Conclusions

- NNLO corrections to LHC jet production sizeable
- Perturbative convergence and impact of scale choices
 - Di-jets
 - NNLO corrections largely remove scale ambiguities
 - Single jet inclusive
 - ✤ jet-based versus event-based scales
 - ✤ scale ambiguities persist at NNLO
 - contribution from second jet perturbatively unstable
 - *μ=p_T: appears as best choice (convergence)

Outlook: Next steps

- Dissemination of NNLO results
 - Determination of (PDFs, α_s) require NNLO predictions to be computed multiple times (varying PDF sets, scales, etc.)
 - Repeated running of NNLO parton-level calculation is not realistically feasible
 - Grid generation using APPLfast-NNLO interface in progress
 (D. Britzger, C. Gwenlan, K. Rabbertz, M. Sutton)
 First application: H1 determination of α_s from jet production in DIS (H1: arXiv:1709.07251)
 - Precision phenomenology with NNLO jet observables is just starting