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The Euler-Heisenberg Lagrangian at one loop

1936 W. Heisenberg and H. Euler: One-loop QED effective Lagrangian in a constant field (“Euler-Heisenberg

Lagrangian”)

L(1)(a, b) = −
1

8π2

∫ ∞
0

dT

T 3
e
−m2T

[
(eaT )(ebT )

tanh(eaT ) tan(ebT )
−

e2

3
(a2 − b2)T 2 − 1

]

Here a, b are the two invariants of the Maxwell field, related to E, B by a2 − b2 = B2 − E2, ab = E · B.

1936 V. Weisskopf: Analogously for Scalar QED

L(1)
scal

(a, b) =
1

16π2

∫ ∞
0

dT

T 3
e
−m2T

[
(eaT )(ebT )

sinh(eaT ) sin(ebT )
+

e2

6
(a2 − b2)T 2 − 1

]
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Low-energy N-photon amplitudes

The Euler-Heisenberg Lagrangian has the information on the N - photon
amplitudes in the low energy limit (where all photon energies are small
compared to the electron mass, ωi � m ).

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

1

L.C. Martin, C. S., V. M. Villanueva, NPB 668 (2003) 335:
Explicit construction of the amplitudes from the weak field expansion
coefficients ckl , defined by

L(a, b) =
∑

k,l

ckl a
2kb2l

For each N and each helicity assignment, the dependence on the
momentum and polarization vectors is absorbed by a single invariant χN .
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Imaginary part of the effective action

If the field has an electric component (b 6= 0) there are poles on the integration contour at ebT = kπ which
create an imaginary part. For the purely electric case one gets (J. Schwinger 1951)

ImL(1)(E) =
m4

8π3
β

2
∞∑
k=1

1

k2
exp

[
−
πk

β

]

ImL(1)
scal

(E) = −
m4

16π3
β

2
∞∑
k=1

(−1)k

k2
exp

[
−
πk

β

]

(β = eE/m2).

The kth term relates to coherent creation of k pairs in one Compton volume.

Weak field limit β � 1⇒ only k = 1 relevant.

ImL(E) depends on E non-perturbatively (nonanalytically), which is consistent with the interpretation of
pair creation as vacuum tunneling (F. Sauter 1931): 2

!E

e− e+

FIG. 1: Pair production as the separation of a virtual vacuum dipole pair under the influence of an external electric field.

building on earlier work of Sauter [18]. This result sets a basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e h̄
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2 (1.4)

As a useful guiding analogy, recall Oppenheimer’s computation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp

[
−4

3

√
2mE

3/2
b

eEh̄

]
. (1.5)

Taking as a representative atomic energy scale the binding energy of hydrogen, Eb = me4

2h̄2 ≈ 13.6 eV, we find

P hydrogen ∼ exp

[
−2

3

m2 e5

E h̄4

]
. (1.6)

This result sets a basic scale of field strength and intensity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

h̄4 = α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2 (1.7)

These, indeed, are the familiar scales of atomic ionization experiments. Note that E ionization
c differs from Ec by a factor

of α3 ∼ 4 × 10−7. These simple estimates explain why vacuum pair production has not yet been observed – it is an
astonishingly weak effect with conventional lasers [20, 21]. This is because it is primarily a non-perturbative effect,
that depends exponentially on the (inverse) electric field strength, and there is a factor of ∼ 107 difference between
the critical field scales in the atomic regime and in the vacuum pair production regime. Thus, with standard lasers
that can routinely probe ionization, there is no hope to see vacuum pair production. However, recent technological
advances in laser science, and also in theoretical refinements of the Heisenberg-Euler computation, suggest that lasers
such as those planned for ELI may be able to reach this elusive nonperturbative regime. This has the potential to open
up an entirely new domain of experiments, with the prospect of fundamental discoveries and practical applications,
as are described in many talks in this conference.

II. THE QED EFFECTIVE ACTION

In quantum field theory, the key object that encodes vacuum polarization corrections to classical Maxwell electro-
dynamics is the ”effective action” Γ[A], which is a functional of the applied classical gauge field Aµ(x) [22, 23, 24].
The effective action is the relativistic quantum field theory analogue of the grand potential of statistical physics, in
the sense that it contains a wealth of information about the quantum system: here, the nonlinear properties of the

quantum vacuum. For example, the polarization tensor Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and the

magnetic permeability µij of the quantum vacuum, and is obtained by varying the effective action Γ[A] with respect
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Relation to pair creation

The relation to pair creation is based on the Optical Theorem,
which relates

Figure 7: Higher order terms in the Euler-Heisenberg lagrangian.
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with the arguments 4, 6, 8, and 10, respectively.
Similarly, we can draw the diagrams from many particle physics in figures 8
and 9:
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2.7 Immediate mode

In addition to the automatic layout of vertices, feynMF features an immediate
mode, in which feynMF’s drawing commands operate directly on METAFONT’s
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Figure 1: Photon-photon scattering in QED (left) and BI theory (right).

4

to the “cut diagrams”

+ + · · ·

1

However, the latter individually all vanish for a constant field,
which can emit only zero-energy photons.
Thus what counts is the asymptotic behaviour for a large number
of photons.
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Borel dispersion relation

Thus for a constant field we cannot use dispersion relations for
individual diagrams; the appropriate generalization is a
Borel dispersion relation: define the weak field expansion by

L(E ) =
∞∑

n=2

c(n)
( eE
m2

)2n

c(n)
n→∞∼ c∞Γ[2n − 2]

then

ImL(E ) ∼)
β→0∼ c∞ e−

πm2

eE

G.V. Dunne & C.S. 1999 NPB 564 (2000) 591
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Beyond one loop

Two loop (one-photon exchange) corrections:

Euler-Heisenberg Lagrangian:

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

1

Schwinger pair creation:

+ + · · ·

1
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2-Loop Euler-Heisenberg Lagrangian

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

1

V. I. Ritus 1975, S.L. Lebedev & V.I. Ritus 1984, W. Dittrich &
M. Reuter 1985, M. Reuter, M.G. Schmidt & C.S. 1997: The
two-loop correction L(2)(E ) to the Euler-Heisenberg Lagrangian
leads to rather intractable integrals. However, the imaginary part
ImL(2)(E ) becomes extremely simple in the weak-field limit:

ImL(1)(E ) + ImL(2)(E )
β→0∼ m4β2

8π3

(
1 + απ

)
e
−π
β
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The exponentiation conjecture

S.L. Lebedev & V.I. Ritus 1984: Assuming that higher orders will lead to exponentiation

ImL(1)(E) + ImL(2)(E) + ImL(3)(E) + . . .
β→0∼

m4β2

8π3
exp

[
−
π

β
+ απ

]
= ImL(1)(E) e

απ

then the result can be interpreted in the tunneling picture as the corrections to the Schwinger pair creation rate
due to the pair being created with a negative Coulomb interaction energy

m(E) ≈ m + δm(E), δm(E) = −
α

2

eE

m

where δm(E) is the Ritus mass shift, originally derived from the crossed process of one-loop electron propagation in
the field:

+ + · · ·

1

⇐⇒

+
+

··
·

1

Pair creation by the field Electron propagation in the field
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Exponentiation in Scalar QED

For Scalar QED, the corresponding conjecture was established already
two years earlier by (I.K. Affleck, O. Alvarez, N.S. Manton 1982), using
Feynman’s worldline path integral formalism and a semi-classical
approximation (“worldline instanton”).

∞∑

l=1

ImL(l)
scal(E )

β→0∼ −m4β2

16π3
exp
[
−π
β

+ απ
]

= ImL(1)
scal(E ) eαπ
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Diagrams contributing to the exponentiation formula
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

Moreover, the mass appearing in (1.15) is argued to be still the physical
renormalized mass, which means that the above figure should strictly speak-
ing include also the mass renormalization counter diagrams which appear in
EHL calculations starting from two loops.

The derivation given in [33] is very simple, if formal. Based on a station-
ary path approximation of Feynman’s worldline path integral representation
[34] of Lscal(E), it actually uses only a one-loop semiclassical trajectory, and
arguments that this trajectory remains valid in the presence of virtual pho-
ton insertions. This also implies that non-quenched diagrams do not con-
tribute in the limit (1.15), which is why we have shown only the quenched
ones in fig. 1.

Although the derivation of (1.15) in [33] cannot be considered rigorous,
an independent heuristic derivation of (1.15), as well as extension to the
spinor QED case (with the same factor of eαπ) was given by Lebedev and
Ritus [31] through the consideration of higher-order corrections to the pair
creation energy in the vacuum tunneling picture. At the two-loop level,
(1.15) and its spinor QED extension state that

6

Involves diagrams with any number of loops and legs.

Includes also all counterdiagrams from mass renormalization.

Not included: diagrams with more than one fermion loop (get suppressed in the weak-field limit).

Summation over the external legs→ Schwinger factor e
−π

β .

Summation over the internal photons insertions→ Ritus-Lebedev/Affleck-Alvarez-Manton factor eαπ .
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Large N limit of the QED N-photon amplitudes

Curious: a summation over photon insertions into an electron loop
has produced the analytic factor eαπ!
By Borel analysis, this factor can also be transferred to the large -
N limit of the N - photon amplitudes:

limN→∞
Γ(all−loop)[k1, ε

+
1 ; . . . ; kN , ε

+
N ]

Γ(1)[k1, ε
+
1 ; . . . ; kN , ε

+
N ]

= eαπ .

(G.V. Dunne and C.S. 2005).
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QED in 1+1 dimensions

The exponentiation conjecture has been verified at two loops in
Scalar and Spinor QED. A three-loop check is in order, but
calculating the three-loop EHL in D = 4 is too difficult.

M. Krasnansky 2005: Studied the Scalar QED EHL in D = 2, 4, 6.
For D = 2:

L(2)(2D)
scal (κ) = − e2

32π2

(
ξ2

2D − 4κξ′2D
)
,

ξ2D = −
(
ψ(κ+

1

2
)− ln(κ)

)

(ψ(x) = Γ′(x)/Γ(x), κ = m2/(2ef ), f 2 = 1
4FµνF

µν).

Simpler, but nontrivial → Suggests to establish and verify the
above predictions for 2D QED.
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The EHL in 2S Spinor QED

I. Huet, D.G.C. McKeon and C.S., JHEP 12 (2010) 036:

Used the method of Affleck at al. to generalize the exponentiation conjecture to the 2D case:

ImL(all−loop)
2D

∼ e
−m2π

eE
+α̃π2κ2

where α̃ = 2e2

πm2 κ = m2/(2ef ), f 2 = 1
4
FµνFµν .

Calculated the one- and two-loop EHL in 2D spinor QED:

L(1)(κ) = −
m2

4π

1

κ

[
lnΓ(κ)− κ(lnκ− 1) +

1

2
ln
( κ

2π

)]
L(2)(f ) =

m2

4π

α̃

4

[
ψ̃(κ) + κψ̃

′(κ) + ln(λ0m
2) + γ + 2

]

where

ψ̃(x) ≡ ψ(x)− ln x +
1

2x
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Weak-field expansion coefficients

Explicit formulas not only for c(1)(n) but c(2)(n):

c(1)(n) = (−1)n+1 B2n

4n(2n − 1)

c(2)(n) = (−1)n+1 α̃

8

2n − 1

2n
B2n

Using properties of the Bernoulli numbers Bn, we can easily verify
that

lim
n→∞

c(2)(n)

c(1)(n + 1)
= α̃π2
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Asymptotic prediction for the 2-loop EHL in 2D QED

Rapid convergence of c(2)(n) to the asymptotic prediction:

5 10 15

0.2

0.4

0.6

0.8

1.0
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Three-loop EHL in 2D Spinor QED: diagrams

Diagrams contributing to the 3-loop EHL:

! " #

! " #

Only the one fermion-loop diagrams A and B are relevant for the exponentiation conjecture.

At three-loop, the 2D EHL is already UV finite.

There are spurious IR - divergences, but they can be removed by going to the traceless gauge ξ = −2.
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Diagram A

α

p_

µ

p’

k

q
p = p ^ p

ν

β

The only contribution from the double trace within (5) will be (odd powers of m never appear by parity,
Euclidean QED so the amplitude is real) the real and even (in m) part of:

ΨA =
e4

16π6

∫ ∞

0
dzdz̄dẑdz γ̄γ′

∫
d2q d2k d2p

k4q4
ϕϕ̄ϕ̂ϕ′tr(gk/p̄/ k/ĝq/ p/ ′q/ ) (6)

the terms in the trace that contribute are two, namely, mass dependent and mass independent:

(1) = m2tr(eσ3(z−ẑ)k/p̄/ k/q/ p/ ′q/ )

(2) = −γγ̂tr(p/ k/p̄/ k/p/ q/ p/ ′q/ ) (7)

Also, we write the p-dependent part of the argument of the exponential by defining

ϕϕ̄ϕ̂ϕ′ := Ωe−ap2+p·βe−(t̄k2+t′q2), (8)

where we abbreviate t ≡ tanh z/ef , t′ ≡ tanh z′/ef , etc., defined

a = t + t̄ + t̂ + t′, Ω =
γγ̂γ̄γ′

(ef)4
e−2κ(z+ẑ+z̄+z′), and the vector β = −2(t̄k + t′q). (9)

The amplitude is then given by

ΨA =
e4

16π6

∫
dz γ̄γ′Ω

∫
d2k d2q

k4q4
e−(t̄k2+t′q2)

∫
d2p e−ap2+p·β [(1) + (2)] (10)

where
∫

dz is an obvious shorthand. We find both contributions separately

2.1 Term (1) p-integral

We decompose further

(1) = m2tr(eσ3(z−ẑ)[k/p/ k/q/ p/ q/ + q2k/p/ k/q/ + k2k/q/ p/ q/ + k2q2k/q/ ]) := (1)a + (1)b + (1)c + (1)d (11)

A straightforward calculation gives after some work

2

L3A(f ) =
α̃2m2

32π

∫ ∞
0

dwdw′dŵdw̄ IA e
−a

IA =
ρ3

A2 cosh ρw cosh ρŵ(cosh ρw̄ cosh ρw′)2

[
cosh ρ(w − ŵ)

2ρ
−

1

A cosh ρw cosh ρŵ

]

where ρ = ef
m2 , a = w + w′ + ŵ + w̄, A = tanhρw + tanhρw′ + tanhρŵ + tanhρw̄.

(Relatively) easy to compute the weak-field expansion coefficients c(3)A(n) = α̃2

64
ΓAn , which are rational numbers:

ΓA0 = −
1

3
, ΓA1 = −

1

30
, ΓA2 =

17

63
, ΓA3 =

251

99
, . . .

(13 coefficients so far)
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Diagram B

4 Final result for  A

Adding up both contributions and taking prefactors into account gives finally the integral representation:

 A =
e4

8⇡3(ef)4

Z 1

0
dzdz̄dẑdz0

e�2(z+ẑ+z̄+z0)

a2 cosh z cosh ẑ(cosh z̄ cosh z0)2

⇥
"
m2 cosh(z � ẑ) � 2

a cosh z cosh ẑ

#
(32)

=
e4

4⇡3ef

Z 1

0
dzdz̄dẑdz0

e�2(z+ẑ+z̄+z0)

A2 cosh z cosh ẑ(cosh z̄ cosh z0)2

(33)

⇥
"
 cosh(z � ẑ) � 1

A cosh z cosh ẑ

#
(34)

where
A = tanh z + tanh z0 + tanh ẑ + tanh z̄

5 Diagram B

α

ν

β

p
_

p

p

p’
 ^

q

k

µ

We will use k, q, and p as the independent variables. The remaining variables are expressed in terms of them
as

p0 = p + q

p̄ = p + k

p̂ = p + q + k

(35)

With these conventions, the contribution of this diagram is written as

5

L3B (f ) =
α̃2m2

128π

∫ ∞
0

dwdw′dŵdw̄ IB e
−a
,

IB =
ρ3

cosh2 ρw cosh2 ρw′ cosh2 ρŵ cosh2 ρw̄

B

A3C

−ρ
cosh(ρw̃)

cosh ρw cosh ρw′ cosh ρŵ cosh ρw̄

[ 1

A
−

C

G2
ln
(

1 +
G2

AC

)]

B = (tanh
2
z + tanh

2
ẑ)(tanhz

′ + tanhz̄) + (tanh
2
z
′ + tanh

2
z̄)(tanhz + tanhẑ)

C = tanhz tanhz
′
tanh ẑ + tanhz tanhz

′
tanhz̄ + tanhz tanhẑ tanhz̄ + tanhz

′
tanhẑ tanhz̄

G = tanhz tanhẑ− tanhz
′
tanhz̄

(z = ρw etc.).
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Weak-field expansion of diagram B

For diagram B, the calculation of the weak-field expansion
coefficients turned out to be much more difficult than for A:

More difficult integrals.

Expansion in the external field creates huge numerator
polynomials in the Feynman parameters.

In a first attempt using numerical integration we obtained only six
coefficients - too few for our purposes!

I. Huet, C. S. and M. Rausch de Traubenberg (in preparation):
Solution for both problems: Use the high symmetry of the diagram!
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Integration-by-parts algorithm

Introduce the operator

d̃ ≡
∂

∂w
−

∂

∂w′
+

∂

∂ŵ
−

∂

∂w̄

which acts simply on he trigonometric building blocks of the integrand.
Integrating by parts with this operator, it is possible to write the integrand of the n-th coefficient βn as a total
derivative βn = d̃θn . Then

∫ ∞
0

dwdw′dŵdw̄ e
−a
βn =

∫ ∞
0

dwdw̄dŵdw′ d̃ e
−(w+w′+ŵ+w̄)

θn = 4

∫ ∞
0

dwdw′dŵ e
−(w+w′+ŵ)

θn|w̄=0

The remaining integrals are already of a standard type. In this way we obtained the first two coefficients:

ΓB0 = −
3

2
+

7

4
ζ3

ΓB1 = −
251

120
+

35

16
ζ3

All coefficients will be of the form r1 + r2ζ3 with rational numbers r1, r2.
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Using the polynomial invariants of D4

Diagram B has the symmetries

w ↔ ŵ

w′ ↔ w̄

(w, ŵ) ↔ (w′, w̄)

Those generate the dihedral group D4. This allows one to rewrite the numerator polynomials as polynomials in the
variable w̃ = w − w′ + ŵ − w̄ with coefficients that are polynomials in the four D4 - invariants a, v, j, h,

a = w + w′ + ŵ + w̄

v = 2(wŵ + w′w̄) + (w + ŵ)(w′ + w̄)

j = aw̃ − 4(wŵ − w′w̄)

h = a(ww′ŵ + ww′w̄ + wŵw̄ + w′ŵ w̄) + (wŵ − w′w̄)2

These invariants are moreover chosen such that they are annihiliated by d̃ . Thus they are well-adapted to the
integration-by-parts algorithm.
This significantly reduces the size of the expressions generated by the expansion in the field.
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Outlook

We are confident to get enough expansion coefficients to settle
the question of the validity of the exponentiation conjecture in
1 + 1 dimensional QED by the time of Loops and Legs 2020.

The techniques that we have developed for the calculation of
the 3-loop EHL in two dimension should in part also become
useful in an eventual calulation of this Lagrangian in four
dimensions.

Thank you for your attention!


