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The Euler-Heisenberg Lagrangian at one loop

1936 W. Heisenberg and H. Euler: One-loop QED effective Lagrangian in a constant field (“Euler-Heisenberg
Lagrangian”)
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Here a, b are the two invariants of the Maxwell field, related to E, B by a2 — b2 =B2 — E? ab=E-B.
1936 V. Weisskopf: Analogously for Scalar QED
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Low-energy N-photon amplitudes

The Euler-Heisenberg Lagrangian has the information on the N - photon
amplitudes in the low energy limit (where all photon energies are small
compared to the electron mass, w; < m).

L.C. Martin, C. S., V. M. Villanueva, NPB 668 (2003) 335:
Explicit construction of the amplitudes from the weak field expansion
coefficients ¢y, defined by

L(a,b) = Z cuy a2 b
P

For each N and each helicity assignment, the dependence on the
momentum and polarization vectors is absorbed by a single invariant xp.



Imaginary part of the effective action

If the field has an electric component (b # 0) there are poles on the integration contour at ebT = k7 which
create an imaginary part. For the purely electric case one gets (J. Schwinger 1951)
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(B = eE/m?).

m  The kth term relates to coherent creation of k pairs in one Compton volume.

m Weak field limit 3 << 1 = only k = 1 relevant.

m ImL(E) depends on E non-perturbatively (nonanalytically), which is consistent with the interpretation of
pair creation as vacuum tunneling (F. Sauter 1931):
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Relation to pair creation

The relation to pair creation is based on the Optical Theorem,

which relates
e

to the “cut diagrams”
s RN e A

However, the latter individually all vanish for a constant field,
which can emit only zero-energy photons.

Thus what counts is the asymptotic behaviour for a large number
of photons.
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Borel dispersion relation

Thus for a constant field we cannot use dispersion relations for
individual diagrams; the appropriate generalization is a
Borel dispersion relation: define the weak field expansion by

£E) = S elm(5)”
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G.V. Dunne & C.S. 1999 NPB 564 (2000) 591
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Beyond one loop

Two loop (one-photon exchange) corrections:

Euler-Heisenberg Lagrangian:

Schwinger pair creation:

T OW
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2-Loop Euler-Heisenberg Lagrangian

V. |. Ritus 1975, S.L. Lebedev & V.I. Ritus 1984, W. Dittrich &
M. Reuter 1985, M. Reuter, M.G. Schmidt & C.S. 1997: The
two-loop correction £(?)(E) to the Euler-Heisenberg Lagrangian
leads to rather intractable integrals. However, the imaginary part
ImL®)(E) becomes extremely simple in the weak-field limit:

B—0 m4ﬁ2
8m3

ImLY(E) + ImLB)(E) (1+ am) e §



The exponentiation conjecture

S.L. Lebedev & V.I. Ritus 1984: Assuming that higher orders will lead to exponentiation
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Im£(1>(E) + ImL<2)(E) + Im[,(?’)(E) +... exp {7% + Dm'r] = Imﬁ(l)(E) e

then the result can be interpreted in the tunneling picture as the corrections to the Schwinger pair creation rate
due to the pair being created with a negative Coulomb interaction energy

« eE
m(E) & m+ dm(E), m(E) = -

where 6m(E) is the Ritus mass shift, originally derived from the crossed process of one-loop electron propagation in

the field:

Pair creation by the field Electron propagation in the field
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Exponentiation in Scalar QED

For Scalar QED, the corresponding conjecture was established already
two years earlier by (I.K. Affleck, O. Alvarez, N.S. Manton 1982), using
Feynman’s worldline path integral formalism and a semi-classical
approximation (“worldline instanton").
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Diagrams contributing to the exponentiation formula

Number of external legs

8

S
L

Number of loops

00

m Involves diagrams with any number of loops and legs.
m Includes also all counterdiagrams from mass renormalization.

= Not included: diagrams with more than one fermion loop (get suppressed in the weak-field limit).

_z
m Summation over the external legs — Schwinger factor e 5 .

m Summation over the internal photons insertions — Ritus-Lebedev/Affleck-Alvarez-Manton factor e®™ .
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Large N limit of the QED N-photon amplitudes

Curious: a summation over photon insertions into an electron loop
has produced the analytic factor e®™!
By Borel analysis, this factor can also be transferred to the large -
N limit of the N - photon amplitudes:

limpy_s 0o
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(G.V. Dunne and C.S. 2005).
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QED in 141 dimensions

The exponentiation conjecture has been verified at two loops in
Scalar and Spinor QED. A three-loop check is in order, but
calculating the three-loop EHL in D = 4 is too difficult.

M. Krasnansky 2005: Studied the Scalar QED EHL in D = 2,4, 6.
For D = 2:

62 2 /
3.2 (&5p — 4K&5p)

bop = —<w(/<c+%)—|n(/<;))

(W(x) = T'(x)/T(x), & = m?/(2ef), £2 = FF, F).

£(2)(2D)(K)

scal

Simpler, but nontrivial — Suggests to establish and verify the
above predictions for 2D QED.



The EHL in 2S Spinor QED

I. Huet, D.G.C. McKeon and C.S., JHEP 12 (2010) 036:

m  Used the method of Affleck at al. to generalize the exponentiation conjecture to the 2D case
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m  Calculated the one- and two-loop EHL in 2D spinor QED:
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Weak-field expansion coefficients

Explicit formulas not only for c(!)(n) but ¢(®)(n):
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Using properties of the Bernoulli numbers B, we can easily verify
that
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Asymptotic prediction for the 2-loop EHL in 2D QED

Rapid convergence of ¢(?)(n) to the asymptotic prediction:
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Three-loop EHL in 2D Spinor QED: diagrams

Diagrams contributing to the 3-loop EHL:
A B

>0 & =0

m  Only the one fermion-loop diagrams A and B are relevant for the exponentiation conjecture.
m At three-loop, the 2D EHL is already UV finite.

m  There are spurious IR - divergences, but they can be removed by going to the traceless gauge £ = —2.
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Diagram A

P
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| 03 cosh p(w — W) 1
AT A2cosh pw cosh pi(cosh piw cosh pw’)? 2p A cosh pw cosh pi
where p = e—g, a=w+w + W+ W, A= tanhpw + tanhpw’ + tanhpw + tanhpw.
m
52
(Relatively) easy to compute the weak-field expansion coefficients c(3)A(n) = %TF;‘ , which are rational numbers:
1 1 17 251
A A A A
e i e A
30 63 99
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(13 coefficients so far)
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Diagram B
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cosh(pw 1 C G?
. TR )
cosh pw cosh pw’ cosh piw cosh pw LA G2 AC
B = (tanhzz + tanhQZ)(tanhz/ + tanhz) + (tanhzz/ + tanhzi)(tanhz + tanhz)
C = tanhztanhz tanhz + tanhztanhz’ tanhz + tanhz tanhz tanhz + tanhz’ tanhz tanhz
G = tanhztanh2 — tanhz’ tanhz

(z = pw etc.).
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Weak-field expansion of diagram B

For diagram B, the calculation of the weak-field expansion
coefficients turned out to be much more difficult than for A:

m More difficult integrals.

m Expansion in the external field creates huge numerator
polynomials in the Feynman parameters.

In a first attempt using numerical integration we obtained only six
coefficients - too few for our purposes!

|. Huet, C. S. and M. Rausch de Traubenberg (in preparation):
Solution for both problems: Use the high symmetry of the diagram!



Integration-by-parts algorithm

Introduce the operator
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which acts simply on he trigonometric building blocks of the integrand.
Integrating by parts with this operator, it is possible to write the integrand of the n-th coefficient 3, as a total
derivative 8, = d0,. Then
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The remaining integrals are already of a standard type. In this way we obtained the first two coefficients:
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All coefficients will be of the form r; + r2(3 with rational numbers ry, r>.



Using the polynomial invariants of D,

Diagram B has the symmetries

Those generate the dihedral group D4. This allows one to rewrite the numerator polynomials as polynomials in the
variable # = w — w’ 4 W — W with coefficients that are polynomials in the four Dy - invariants a, v, j, h,

a = wHw rwtw

vioo= 2w+ w' W)+ (w i)W+ W)

i = aw—4ww —w'w)

h o= aww' W+ ww' w4+ wiw + w' ww) + (wiv — w' w)?

These invariants are moreover chosen such that they are annihiliated by d. Thus they are well-adapted to the
integration-by-parts algorithm.
This significantly reduces the size of the expressions generated by the expansion in the field.
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m We are confident to get enough expansion coefficients to settle
the question of the validity of the exponentiation conjecture in
1+ 1 dimensional QED by the time of Loops and Legs 2020.

m The techniques that we have developed for the calculation of
the 3-loop EHL in two dimension should in part also become
useful in an eventual calulation of this Lagrangian in four
dimensions.

Thank you for your attention!



