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FACTORISATION OF AMPLITUDES
IN THE HIGH-ENERGY
AND IN THE INFRARED LIMIT
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PARTICLE SCATTERING IN KINEMATICAL LIMITS

 The motivation to study particle scattering in kinematical limits is twofold:

- From a phenomenological perspective, differential distributions in kinematic limits develop

large logarithms, which may spoil the convergence of the perturbative expansion, and need

to be resummed.
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PARTICLE SCATTERING IN KINEMATICAL LIMITS

 From a theoretical perspective, scattering amplitudes are complicated functions of the

kinematical invariants, their calculation is non-trivial, and it is subject of intense study.
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« Express Feynman integrals in terms of known functions (HPLs, elliptic integrals, etc)
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* Analytic structure of infrared divergences.

* Information and constraints can be obtained by considering kinematical limits:

« the number of invariants is reduced;
-> this talk

- identify factorisation properties and iterative structures of the amplitude.



2 => 2 SCATTERING IN THE HIGH-ENERGY LIMIT

P1 P4
—
t channel
s channel
P2 P3

* Consider 2 — 2 scattering amplitudes in the high-energy limit:

s=(p1+p2)° > —t=—(p1 —ps)° > 0.

+ The amplitude is expanded in the small ratio |t/s|; we consider here the leading power term:

1 [t ol it - i
M’ij—”?j(S? t? M ) Mv[,]—>zg (M ) M’E]—)’L] (luz ) M’Ej]—ﬁ,] (_) S



2 => 2 SCATTERING IN THE HIGH-ENERGY LIMIT

 Gluon-gluon scattering amplitude at tree level:
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* In the high-energy limit only the second diagram contributes at leading power.
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+ The amplitude at higher orders contains logarithms of the ratio |s/t|.They can be characterised in
terms of Regge poles and cuts:at LL
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» The function () is known as the Regge trajectory
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2 => 2 SCATTERING IN THE HIGH-ENERGY LIMIT

* Determining the amplitude beyond LL requires to understand Regge cuts. \
- Regge structure becomes evident decomposing the amplitude into even and § §

odd parts (projection onto eigenstates of signature, or crossing symmetry s <> u):
MB)(s1) =1 (./\/l(s, = Al — 5, t)).

* M(* and M() are respectively imaginary and real, when expressed in terms of the signature-
even combination of logs

1 —s — 10 — =l
LElogE‘—iz:—(log stz + log utz>.
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- Beyond tree level the amplitude has a non-trivial color structure

il i — Z el MUl (s 1),
* Decompose the amplitude in a color orthonormal basis in the t-channel

SR8=108, P8, P10 10 27

* Invoking Bose symmetry we deduce

odd: MBal Aq[10+10] even: MU M8l Aq[27 (gg scattering) .




2 => 2 SCATTERING IN THE HIGH-ENERGY LIMIT

Odd : M[Sa],/\/l[10+1_0] Even : M[1]7 M[SS],M[27]
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Caron-Huot, 201 3; Del Duca, Falcioni, Magnea, LV, 2014, Caron-Huot, Gardi, LY, 2017



2 => 2 SCATTERING IN THE HIGH-ENERGY LIMIT

» High-energy limit = forward scattering: to

o \/x*

leading power, the fast projectile and target
described in terms of VWilson lines:
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—C9

21 21

Korchemskaya, Korchemsky, 1994, 1996;
Babansky, Balitsky, 2002, Caron-Huot, 2013
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- The Wilson line stretches from —o00 to +o0 and thus develops rapidity divergencies. The
regularised Wilson lines obeys the Balitsky-|IMWLK evolution equation:

d n
= [U(zl) LUz = Y Hy [U(zl) el
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Evolution in rapidity resums the high-energy log:
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2 => 2 SCATTERING IN THE HIGH-ENERGY LIMIT

* In perturbation theory the unitary matrices U(z) will be close to identity and so can be usefully

parametrised by a field W
U(z) = e'9s UV )
Caron-Huot, 2013

 The color-adjoint field W sources a BFKL Reggeised gluon.A generic projectile, created with
four-momentum p| and absorbed with p4, can thus be expanded at weak coupling as

i) = 95 Ds 1 (t) IW) + g7 Do (t) [WW) + g2 Dy 3(t) [WWW) +
=S O

* Focus on the Regge-cut contributions: define a “reduced” amplitude by removing the Reggeized

gluon and collinear divergences

A

W — (.78 e R

- The scattering amplitude is obtained by taking the expectation value of Wilson lines evolved to
equal rapidity:
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Caron-Huot, 2013, Caron-Huot, Gardi, LV, 2017



INTERMEZZO: REGGE VS INFRARED
FACTORIZATION




REGGEVS INFRARED FACTORISATION

* We have a tool to calculate scattering amplitudes to high orders in perturbation theory
(in the high-energy limit).

- Application: test (and predict) the analytic structure of infrared divergences in gauge theories.

 The infrared divergences of amplitudes are controlled by a renormalization group equation:

R (1)) = i ({pa) 1 s (e i (e e e

Becher, Neubert, 2009; Gardi, Magnea, 2009

where Z, is given as a path-ordered exponential of the soft-anomalous dimension:

Zy ({pi}vuaa8(:u2)) = Rexp {_;LM %I‘n ({pi}aAv@S()‘Q))} y

* The soft anomalous dimension for scattering of massless partons (piZ = 0) is an operators in
color space given, to three loops, by

'y ({pi}v A, O‘S()‘Z)) = I‘gip' ({]%}; A, ()48()‘2)) + Ay, ({Pijkl}) '



REGGEVS INFRARED FACTORISATION

L', ({Z%}y A, O‘S()‘Z)) e I‘f(rizip' ({pz’}a A, CVS()‘2)) + A, ({pijrt ) -

ey 1
a4

“dipole formula” “quadrupole correction”

* Early studies of constraints from soft-collinear factorisation, collinear limits, and the
high-energy limit in Becher, Neubert, 2009; Dixon, Gardi, Magnea, 2009; Del Duca,
Duhr, Gardi, Magnea, White, 201 |; Neubert, LV, 2012;

- first evidence of “beyond dipole” contribution at four loops in Caron-Huot, 201 3;

- finally calculated exactly in Almelid, Duhr, Gardi, 2015, 201 6; 3 ,
* confirmed, in 2 => 2 scattering in N=4 SYM in Henn, Mistlberger, 201 6; z ?g
* confirmed, in the high energy limit, in Caron-Huot, Gardi, LV, 2017; ;‘

* re-derived based on a bootstrap approach in Almelid, Duhr, Gardi, McLeod, White, 2017.
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THE TWO REGGEON CUT




THE 2-REGGEON CUT

Odd : Ml p10+10) Even : MU, MB, MPT

LL

M\ >
NLL é |
See Caron-Huot, / g

Gardi, LV, 2017 E—
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 Here we calculate

M(+) NLL = (¢) (+)‘6—HL‘¢(+)>.
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THE 2-REGGEON CUT

« The amplitude takes the form of an iterated integral over the BFKL kernel:
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* The “target averaged wave function” reads:

QD (p k)= HO® 2 (p,k), H=(204—T;)Hi +(Cs—T7)Hp

* Graphically:

M0
e QU (p, k) v




THE 2-REGGEON CUT

« Woavefunction evolution: two color structures

O V(p k)= HQYD(p, k), H=(204—T*H +(Cs—-T2H,
with
H(p,k) = [ DK (5. b K) 9. ) — ¥, )]

Hy, U(p, k) = J(p, k) U(p, k), |

Initial condition:

D (REN =

* The function fis the BFKL kernel
/ ) k’Q (p or k’)2 p2
f(pvk 7]{‘.) =T kg(k A ]{‘,)2 e (p_ ]C)Q(k = k,/)2 CA kQ(p Sk k.)2’
k) — —26/[D/~c’] e st

* Wavefunction can be expressed in terms of single-valued HPLs (Dixon, Pennington, Duhr, 2012;
Del Duca, Dixon, Pennington, Duhr, 201 3; Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca,

left — right symmetry top — bottom symmetry

Papathanasiou, Verbeek 2016, ...).




THE 2-REGGEON CUT

* Up to four loops one gets

MG = —im 22 T2, MO,

WD = in B |+ Tper T+ B4 0] (Ca-THTLL MO,
MED = in (20')3 (21)3 B 114C3 i 3?;;(4 £ 351C5 oMl 0(63)] (Ca— T2 T2, MO
Ml(\?;ﬁ) =T (ZO!)4 {(C’A — T ( (2;4 s 17§<5 e s (9(62)> Caron-Huot, 2013

16C4 : e+ O(e ))}Ts_u/\/l .

« At four loop a new color structure appear, with a single pole

not predicted by the dipole formula of infrared divergences!

 The fact that it arises only at four loops is a consequence of

the “top-bottom” symmetry of the ladder.




2-REGGEON CUT: SOFT APPROXIMATION

* Can calculate the amplitude to higher orders - the calculation becomes rapidly involved.
- However, here we are interested in the infrared singularities only.

Shortcut: closer inspection of the Hamiltonian reveals that the wavefunction is finite!

(k) = [ DK £k K) 90,k = U B),

f{mqj(pa k) 5 J(p, k)qj(pv k)v ‘\‘\
finite!

- All divergences must arise from the last integration!
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* Divergences arises only from the limit k = p or k = 0 limit. Consider one of the two regions,

and multiply the result by two.

- This is consistent, because evolution in the soft region (k = 0) stays within the soft region.



2-REGGEON CUT: SOFT APPROXIMATION

* In the soft limit the integrations becomes trivial. Ve obtain an all-order solution

t-0(p, ) = G T o (1) (2)T] {14 B0 e T

== m=0

where
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* It is immediate to get the reduced amplitude
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* The result is valid up to the single poles, which allows one to achieve a tremendous simplification

Ve

g 1 B | Gty S (0) .
MNLL ‘3 ol (26)6 /) 15 R(G) CA 4 T% (CA s Tt) Ts—uM g 0(6 )7 |

\; — —

where Caron-Huot, Gardi, Reichel, LV, 2017
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TWO REGGEON CUT: SOFT APPROXIMATION

* Expand for a few orders in the strong coupling constant:

E
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Caron-Huot, Gardi,

]
A new color structure appears every three loops! Reichel, LV, 2017

* Resumming the amplitude to all loops we get

VIT
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2-REGGEON CUT:
INFRARED SINGULARITIES




2-REGGEON CUT: INFRARED SINGULARITIES

« Recall the infrared factorisation formula

M ({p’b}mua O‘S(:u2)> =Z ({pi}huaas(:u2)) H ({pi}huaas(:u2)) )

with e
Z ({p:}, 1, as(1?)) ZPeXp{;/O @F({pi},%%(ﬁ))} ,

Expand the soft anomalous dimension in the high-energy logarithm:

r (Ozs()\)) — DL (058()\), L) + I'nLL (Ozs(A), L) + I'nNLL (058()\), L) |

At LL one has
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2-REGGEON CUT: INFRARED SINGULARITIES

* We get the infrared-factorised representation of the reduced amplitude:

2€ T

e 2
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* Matching with the result from the Regge theory allows us to obtain
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2-REGGEON CUT: INFRARED SINGULARITIES

- Explicitly, for the first few orders we have:

_71 S _72 _73
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* The result can be used as constraint in a bootstrap approach to the soft anomalous dimension.

\

See e.g. Almelid, Duhr, Gardi, McLeod, White, 2017



2-REGGEON CUT: INFRARED SINGULARITIES

+ The anomalous dimension has an infinite radius of convergence as a function x = L Q/11,

i.e. it is an entire function, free of any singularities for any finite x.Write it as

E: 0% O CE
Fl(\TL)L — 7/7'('? G (?L) Tg_u ; G(CU) — Ez_:lx 1G( ) y
* Plotting G(x) for larger values of x reveals oscillations with a constant period and an

exponentially growing amplitude. Here we plot the logarithm of |G(x)| weighted by the sign of
G(x):

Caron-Huot, Gardi,
Reichel, LV, 2017

ign[G(x) In|G(x)|
|

» The function is well approximated by

G(z) = ce*® cos (bx + d) , 1 g7 S 28 ()25 S R
2( (A6 E O AR S 2SI




CONCLUSION

We solved the BFKL evolution of even 2 => 2 scattering amplitudes at NLL in the high-
energy logarithms, in the soft limit.

This allows us to determine the structure of infrared divergences of this amplitude to
all orders in perturbation theory, and extract the corresponding soft anomalous
dimension.

From a perturbative point of view, new infrared divergences proportional to a new
color structure appear every three loops.

From an analytic point of view, the soft anomalous dimension is given in terms of an
entire function, which can be parameterised asymptotically in terms of a few
parameters.

The information obtained concerning infrared singularities can be used to constrain the
structure of the soft anomalous dimension in general kinematics.



