Precision studies of vector boson plus heavy quarks at the LHC

Laura Reina

Loops and Legs in Quantum Field Theory

St. Goar - May 4, 2018

Thanks to:

D. Figueroa¹, S. Honeywell¹, S. Quackenbush¹, C. Reuschle¹, D. Wackeroth²

1) Florida State University

2) State University of New York at Buffalo

Outline

- \triangleright V+HQ (V = W/Z, HQ = b, t): physics motivation
- $\triangleright\,$ Theoretical characterization of $V{+}{\rm HQ}$ production
- \triangleright In a nutshell: status of V+t quarks associated production
- \triangleright Main focus: V+b jets
 - $\triangleright~V+1b$ jet v
sV+2bjets v
s LHC data
 - \triangleright QCD+EW corrections
 - \triangleright m_b effects
- \triangleright Outlook

Motivations

- \triangleright V+HQ (b,t) main **background** to several important SM and BSM signatures:
 - \triangleright WH/ZH associated production, $H \rightarrow b\bar{b}$
 - \triangleright $t\bar{t}H$ associated production
 - \triangleright single-top production

Motivations (cont.)

- \triangleright V + t quarks: access to EW **top anomalous couplings**
- \triangleright V + b jets: intriguing theoretical structure
 - \triangleright W/Z + b jets are multi-scale processes ($m_b \gg \Lambda_{QCD}, m_b \ll M_{W/Z}$)
 - \triangleright Need to control sensitivity to $\mathbf{m}_{\mathbf{b}}$ in theoretical predictions
 - \hookrightarrow hard matrix element
 - \hookrightarrow parton shower
 - $\hookrightarrow \text{PDF} \dots$
 - ▷ direct access to b parton density (e.g. $bg \rightarrow Zb$)
 - ▷ **testing ground** for complex processes involving *b* jets (ex.: $t\bar{t} + b$ jets)

Theoretical synopsis: W vs. Z, and t vs. b-jets

 $V + t\bar{t}, V + 2b$ jets: via the tree-level processes $(n_f = 4 \rightarrow, m_{t,b} \neq 0)$ $\rightarrow q\bar{q}' \rightarrow Wb\bar{b}, Wt\bar{t}$

 $\rightarrow q\bar{q}, gg \rightarrow Zb\bar{b}, Zt\bar{t}$

and corresponding higher-order corrections.

V + t, V + 1b jet:

still via the tree-level processes $(n_f = 4, m_b \neq 0)$

 $\rightarrow q\bar{q}' \rightarrow Wb\bar{b}$ $\rightarrow q\bar{q}, gg \rightarrow Zb\bar{b}$

but also $(n_f = 5 \rightarrow, m_b = 0, \text{ only kept as IR regulator} \rightarrow 5\text{FS}),$

and corresponding higher-order corrections.

$W/Z + t\bar{t}$: theoretical developments

- NLO QCD: Lazopoulos, McElmurry, Melnikov, Petriello, arXiv:0804.2220;
 Kardos, Papadopoulos, Trócsányi, arXiv:1111.0610; Campbell, Ellis, arXiv:1204.5678
- NLOQCD+PS: Garzelli, Kardos, Papadopoulos, Trócsányi, arXiv:1111.1444, arXiv:1208.2665
- ▷ NLO QCD+EW: Frixione, Hirschi, Pagani, Shao, Zaro, arXiv:1504.03446

Comparison between different NLO+PS tools

 4^{th} CERN Yellow Report of the Higgs XS WG, $t\bar{t}H/tH$ WG, arXiv:1610.07922

\hookrightarrow Consistency within still substantial theoretical uncertainty.

W + t: a component of single-top production

- \triangleright NLO QCD: Zhu, hep-ph/0109269.
- ▷ NLO+NNLL QCD: Kidonakis, arXiv:1005.4451

 \hookrightarrow NLO corrections $(gg \to Wt + b)$ interfere with $t\bar{t}$ background. \hookrightarrow Not an ideal candidate to study *b*-initiate processes, nor to measure *b* PDF.

V + b jets: NLO QCD and QCD+PS studies

- W + 2b jets
 - Febres Cordero, L.R., Wackeroth, hep-ph/0606102, arXiv:0906.1923 (4FS)
 - Badger, Campbell, Ellis, arXiv:1011.6647 (4FS, $W \to l\nu$) \to MCFM
 - Oleari, L.R., arXiv.1105.4488 (4FS) \rightarrow POWHEG-BOX
 - Frederix, et al., arXiv:1106.6019 (4FS) \rightarrow MG5aMC@NLO
- W + 2b + jet
 - L.R., Schutzmeier, arXiv:1110.4438 (4FS, one-loop only)
 - -Luisoni, Oleari, Tramontano, arXiv:1502.01213 (4FS) \rightarrow POWHEG-BOX
- W + 2b + n jets (n = 0, 1, 2, 3)
 - Anger, Febres Cordero, Ita, Sotnikov, arXiv:1712.05721
- W + 2 jets with at least one b jet
 - − Campbell, et al., arXiv:0809.3003, arXiv:1107.3714 (5FS) → MCFM
- Z + 2b jets
 - Febres Cordero, L.R., Wackeroth, arXiv:0806.0808, arXiv:0906.1923 (4FS)
 - − Frederix, et al., arXiv:1106.6019 (4FS) → MG5aMC@NLO
 - Krauss, Napoletano, Schumann arXiv:1612.04640 (4FS) \rightarrow OL+SHERPA
- Z + 1b jet, Z + 2 jets with at least one b jet
 - Campbell, Ellis, Maltoni, Willenbrock, hep-ph/0312024 (5FS) \rightarrow MCFM
 - Campbell, Ellis, Maltoni, Willenbrock, hep-ph/0510362 (5FS) \rightarrow MCFM
 - − Frederix, et al., arXiv:1106.6019 (5FS) → MG5aMC@NLO
 - Krauss, Napoletano, Schumann arXiv:1612.04640 (5FS) \rightarrow OL+SHERPA

W + b jets: theory vs experiments

- \hookrightarrow well known **large NLO QCD** corrections
- \hookrightarrow exclusive sums of NLO QCD corrections to $Wb\bar{b} + \{j, 2j, 3j\}$ add stability
- \hookrightarrow QCD NNLO will certainly bring the **theory accuracy within percent level**.

Z + b jets: theory vs experiments

\hookrightarrow Interesting comparison 4FS $(gg, q\bar{q} \rightarrow Zb\bar{b} + h.o.)$ vs. 5FS $(bg \rightarrow Zb + h.o.)$

- \hookrightarrow If QCD uncertainty is reduced, **need to investigate**:
 - QCD+EW corrections
 - **m**_b **effects** at all levels, from PDF to NLO PS interface
- \hookrightarrow **Z** + **1b jet**: good candidate to study these effects:
 - important for LHC phenomenology, and QCD of HQ
 - 5FS: simple $2 \rightarrow 2$ process (nice if you want to add NNLO)
 - clean w.r.t. (e.g.) 5FS $W + t \ (bg \rightarrow Wt)$

Aiming at a precision program for Z + b jets

[Figueroa, Honeywell, Quackenbush, L.R., Reuschle, Wackeroth, arXiv:1805.01353]

- \triangleright Focus on $\mathbf{Z} + \mathbf{1b}$ jet as best candidate process
 - $\triangleright \ bg \to Zb + O(\alpha_s) + O(\alpha)$
 - $\triangleright \ b\gamma \to bg \text{ very small (neglected)}$
- ▷ Added NLO QCD and EW corrections
 - ▷ one-loop corrections via NLOX (full fledged QCD+EW one-loop provider)
 - ▷ real correction (QED only) via PSS (δ_s, δ_c) and dipole subtraction
 - ▷ $N_f = 5$ active flavors, G_{μ} EW input scheme, CTEQ14qed PDFs.
- \triangleright Included m_b effects at all different levels: massive 5FS
 - \triangleright b quark massive in both initial and final state
 - ▷ dipole subtraction extended to include massive i.s. dipoles
 (⇔ see Dittmaier, hep-ph/9904440)
 - ▷ m_b regulates collinear singularities from $b \to bg/\gamma$ and $g \to b\bar{b}$: i.s. collinear logs subtracted in b quark PDF \to caveat:
 - \hookrightarrow proper matching with PDF (e.g. $b \to bg$ collinear logs) still incomplete \hookrightarrow full m_b effects in PDF still incomplete

Adding NLO QCD+EW corrections

Adding NLO QCD+EW corrections (cont.)

- ▷ EW effects mostly within current NLO QCD uncertainty
- \triangleright still, clearly visible at high p_T and very visible using a multiplicative approach

Adding m_b effects in NLO QCD+EW corrections

- $\triangleright m_b$ effects mainly at low p_T and mostly within current NLO QCD uncertainty
- ▷ still clearly visible in angular distributions (e.g. pseudorapidity)

Outlook

- ▷ The study of V+HQ (t, b) production has very clear phenomenological motivations and has a very clear impact on LHC physics:
 - \hookrightarrow precision physics (Higgs couplings)
 - \hookrightarrow searches for new physics beyond the SM
- ▷ Theoretical prediction including NLO QCD are available, often interfaced with PS event generators. NLO EW have been calculated in several cases $(V + t\bar{t} \text{ and } Z + 1b \text{ jet}).$
- ▷ V + b jets has the largest NLO QCD uncertainty, and recent progress has shown that a precision program is possible if
 - \hookrightarrow NNLO as well as NLO EW corrections are included
 - \hookrightarrow a consistent massive *b* quark framework is used, at all stages of the calculation.