
Hopf algebra for
Feynman diagrams and integrals

Ruth Britto

Trinity College Dublin

Loops and Legs in Quantum Field Theory, 2018

Based on work with Samuel Abreu, Claude Duhr, Einan Gardi, and James
Matthew



Feynman integrals have a Hopf algebra structure that maps the functions
to simpler ones in a way that exposes their behavior in differential
equations and discontinuities

At 1 loop, this Hopf algebra is consistent with the Hopf algebra of multiple
polylogarithms, in the ε-expansion of Feynman integrals in dimensional
regularization

Also consistent with emerging Hopf algebras on hypergeometric functions
in closed forms

Seek general Hopf algebra on families of integrals



Hopf algebra operations

∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log2 z) = 1⊗ log2 z + 2 log z ⊗ log z + log2 z ⊗ 1

∆(Li2(z)) = 1⊗ Li2(z) + Li2(z)⊗ 1 + Li1(z)⊗ log z

Discontinuities and cuts:

∆ Disc = (Disc⊗1) ∆

Differential operators:
∆ ∂ = (1⊗ ∂) ∆
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Master formula for Hopf algebra on integrals

Coactions of the following form:

∆

(∫
γ

ω

)
=
∑
i

∫
γ

ωi ⊗
∫
γi

ω

with a duality condition

Pss

∫
γi

ωj = δij .

Pss is semi-simple projection (“drop logarithms but not π”).

The master formula coaction is like inserting a complete set of states (“ωi are a
set of master integrands for ω”).
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Algebras and bialgebras

An algebra H is a ring (addition group & multiplication)
which has a multiplicative unit (1)
and which is also a vector space over a field K .

Example: n × n matrices with entries in K .
In this talk, the field is always K = Q.

A bialgebra is an algebra H with two maps, the coaction ∆ : H → H ⊗ H, and
the counit ε : H → Q, satisfying the following axioms.

Coassociativity: (∆⊗ id)∆ = (id⊗∆)∆

∆ and ε are algebra homomorphisms:
∆(a · b) = ∆(a) ·∆(b) and ε(a · b) = ε(a) · ε(b)

The counit and the coaction are related by (ε⊗ id)∆ = (id⊗ ε)∆ = id
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The “incidence” bialgebra [Joni, Rota]

A simple combinatorial algebra: let [n] = {1, 2, . . . , n}.
Elements: pairs of nested subsets S ⊆ T , where S ⊆ T ⊆ [n].

{1} ⊆ {1, 2} represented by 1 2
∅ ⊆ {1, 2} represented by 1 2
∅ ⊂ ∅ represented by ∗

Multiplication is free, and the coaction is defined by

∆(S ⊆ T ) =
∑

S⊆X⊆T

(S ⊆ X )⊗ (X ⊆ T ).

The counit is

ε(S ⊆ T ) =

{
1 , if S = T ,
0 , otherwise .

e.g. ε(2) = 0, ε(1 2) = 0, ε(2) = 1, ε(∗) = 1
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Illustration of axioms

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2 + 2⊗ 1 2 + ∗ ⊗ 1 2

∆(2) = 2⊗ 2 + ∗ ⊗ 2

∆(2) = 2⊗ 2

∆(∗) = ∗ ⊗ ∗

Coassociativity of the coaction, (∆⊗ id)∆ = (id⊗∆)∆

(∆⊗ id)∆(2) = ∆(2)⊗ 2 + ∆(∗)⊗ 2

= 2⊗ 2⊗ 2 + ∗ ⊗ 2⊗ 2 + ∗ ⊗ ∗ ⊗ 2

= 2⊗∆(2) + ∗ ⊗∆(2)

= (id⊗∆)∆(2)

Counit, (ε⊗ id)∆ = (id⊗ ε)∆ = id

ε(2)⊗ 2 + ε(∗)⊗ 2 = 2⊗ ε(2) + ∗ ⊗ ε(2) = 2



Hopf algebras

A Hopf algebra is a bialgebra H with an antipode map S : H → H that satisfies

H ⊗ H
S⊗id // H ⊗ H

µ

��
H

∆

FF

∆

��

ε // K
η // H

H ⊗ H
id⊗S

// H ⊗ H

µ

FF

(Here µ, η denote multiplication and inclusion, respectively.)

The incidence bialgebra becomes a Hopf algebra if we adjoin inverse elements
(S ⊆ S)−1.



Example of the incidence algebra: edges of graphs

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2 + 2⊗ 1 2 + ∗ ⊗ 1 2

For graphs, set ∗ = (∅ ⊆ ∅) = 0.

Pinch and cut complementary subsets of edges:



Example of the incidence algebra: edges of graphs

∆(1 2 3) = 1 2 3⊗ 1 2 3 + 1 2⊗ 1 2 3 + 2 3⊗ 1 2 3 + 1 3⊗ 1 2 3

+1⊗ 1 2 3 + 2⊗ 1 2 3 + 3⊗ 1 2 3 + ∗ ⊗ 1 2 3

Pinch and cut complementary subsets of edges:



Example of the incidence algebra: edges of graphs

Can also start with a cut diagram.

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2

∆(1 2) = 1 2⊗ 1 2



Multiple polylogarithms (MPL)

A large class of iterated integrals are described by multiple polylogarithms:

G(a1, . . . , an; z) =

∫ z

0

dt

t − a1
G(a2, . . . , an; t)

Examples:

G(0; z) = log z , G(a; z) = log
(

1− z

a

)
G(~an; z) =

1

n!
logn

(
1− z

a

)
, G(~0n−1, a; z) = −Lin

(z
a

)
Harmonic polylog if all ai ∈ {−1, 0, 1}.
n is the transcendental weight.

Many Feynman integrals can be written in terms of polylogs in the Laurent
expansion of dimensional regularization.



Hopf algebra of MPL [Goncharov; Duhr]

Closure under multiplication via the shuffle product:

G(~a1; z)G(~a2; z) =
∑

~a∈~a1 qq~a2

G(~a; z) ,

where ~a1qq ~a2 are the permutations preserving the relative orderings of ~a1 and
~a2.

There is a coaction on MPLs. It is graded by weight, and thus breaks MPLs
into simpler functions (lower weight).

∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log x log y) = 1⊗ (log x log y) + log x ⊗ log y + log y ⊗ log x + (log x log y)⊗ 1

∆(Li2(z)) = 1⊗ Li2(z) + Li2(z)⊗ 1 + Li1(z)⊗ log z



Contour integrals

The coaction is a pairing of contours and integrands. Recalls the incidence
algebra.

∆MPL(G(~a; z)) =
∑
~b⊆~a

G(~b; z)⊗ G~b(~a; z)

0 z

a4

a3

a2

a1

(a)

0 z

a4

a3

a2

a1

(b)

γb⃗

Contour (b) takes a subset of residues in a given order.



Feynman integrals

A useful basis for all 1-loop integrals:

Jn =
ieγE ε

πDn/2

∫
dDnk

n∏
j=1

1

(k − qj)2 −m2
j

k is the loop momentum

qj are sums of external momenta, mj are internal masses

Dimensions:

Dn =

{
n − 2ε , for n even ,
n + 1− 2ε , for n odd .

e.g. tadpoles and bubbles in 2− 2ε dimensions,
triangles and boxes in 4− 2ε dimensions, etc.

Each Jn has uniform transcendental weight and satisfies nice differential
equations.



2 equivalent Hopf algebras

The combinatorial algebra agrees with the Hopf algebra on the MPL of
evaluated diagrams!

The graph with n edges is interpreted as Jn, i.e. in Dn dimensions, no
numerator.

Need to insert extra terms in the diagrammatic equation:

Isomorphic to the more basic construction. (For any value of 1/2.)

[related work: Brown; Bloch and Kreimer]



The master formula for 1-loop integrals

∆

 e1

e2

 =

e1

e2

⊗
e1

e2

+ e1 ⊗

 e1

e2

+
1

2

e1

e2


+ e2 ⊗

 e1

e2

+
1

2

e1

e2



∆

(∫
Γ∅

ω12

)
=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
ω1 ⊗

(∫
Γ1

ω12 +
1

2

∫
Γ12

ω12

)
+ · · ·

=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
Γ∅

ω1 ⊗
∫
− 1

2
Γ1∞

ω12 +

∫
Γ∅

ω2 ⊗
∫
− 1

2
Γ2∞

ω12



The master formula for 1-loop integrals

∆

(∫
Γ∅

ω12

)
=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
ω1 ⊗

(∫
Γ1

ω12 +
1

2

∫
Γ12

ω12

)
+ · · ·

=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
Γ∅

ω1 ⊗
∫
− 1

2
Γ1∞

ω12 +

∫
Γ∅

ω2 ⊗
∫
− 1

2
Γ2∞

ω12

Basis of integrands and corresponding contours:

e1

e2

e1 e2

ωj : ω12 ω1 ω2

γj : Γ12 − 1
2
Γ1∞ − 1

2
Γ2∞

C12 C1 + 1
2
C12 C2 + 1

2
C12

They satisfy ∫
γi

ωj ∼ δij after dropping logs

Odd number of cut propagators → pick up residue at infinity. Understood
through homology theory.



More examples of the graphical conjecture

Terms with 1/2 are always present in principle, but vanished here due to
massless propagators.



More examples of the graphical conjecture

∆


e2

e1

1

e3

 =

e2

e1

1

e3
⊗

e2

e1

1

e3
.



Statement of the graphical conjecture

The coaction on 1-loop graphs defined by pinching and cutting subsets of
propagators,

when evaluated by Feynman rules,
if expanded order by order in ε,

is consistent with the coaction on MPLs!



Evidence for the graphical conjecture

all tadpoles and bubbles

triangles and boxes with several combinations of internal and external
masses

consistency checks for more complicated boxes, 0m pentagon, 0m hexagon

diagrammatic groupings emerging in 2-loop integrals

Checked to at least several orders in ε, or for closed forms with hypergeometric
functions.



Motivation for the diagrammatic coaction

Second entries are discontinuities; first entries have discontinuities.

Motivated by the identity

∆ Disc = (Disc⊗1) ∆.

The companion relation
∆ ∂ = (1⊗ ∂) ∆

produces differential equations.
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Application: cuts and discontinuities

∆ Disc = (Disc⊗1) ∆

∆ (Disc In) = (Disc⊗1) (∆In)

Since ∆ (Disc In) = 1⊗ (Disc In) + · · · , it is enough to look at the terms
∆1,w−1In.

The basis integrals of weight 1 are precisely the tadpoles and bubbles. The
corresponding cut diagrams have 1 or 2 propagators cut.

Therefore: the discontinuities are precisely the unitarity cut diagrams
(momentum discontinuities) and the single-cut diagrams (mass discontinuities).

Generalized cuts can be interpreted as well.



Application: differential equations

∆ ∂ = (1⊗ ∂) ∆

Likewise, we get differential equations by focusing on nearly-maximal cuts in
the second factor:

d

  =
∑
(ijk)

j

i

k d

 i

k
j

+
1

2

∑
l

i

k
j

l


ε0

+
∑
(ijkl)

i

j

k

l

d

 i

k
j

l


ε0

+ ε d

 
ε1

This same relation shows that generalized cuts are related to symbol alphabet
letters.



The master formula for the 2F1 family

Consider the diagrammatic coaction

∆


e2

e1

e3
1

 = e1 ⊗

 e1
e3

1

e2

+
1

2

e2

e1
e3

1



+

e1

e2

1 1 ⊗

e2

e1
e3

1

There is a coaction on 2F1 that gives

∆2F1 (1, 1 + ε, 2− ε, x) = 2F1 (1, ε, 1− ε, x)⊗ 2F1 (1, 1 + ε, 2− ε, x)

+2F1 (1, 1 + ε, 2− ε, x)⊗ 2F1

(
1, ε, 1− ε, 1

x

)
without expanding in ε!



Master formula for Hopf algebra on integrals

Coaction of the form

∆

(∫
γ

ω

)
=
∑
i

∫
γ

ωi ⊗
∫
γi

ω

with a duality condition

Pss

∫
γi

ωj = δij .

Pss is semi-simple projection (“drop logarithms but not π”).

To be precise, Pss projects onto the space of semi-simple numbers x satisfying
∆(x) = x ⊗ 1.



The master formula for the 2F1 family

Consider the family of integrands

ω(α1, α2, α3) = xα1 (1− x)α2 (1− zx)α3 dx

where αi = ni + εi and ni ∈ Z.

∫ 1

0

ω(α1, α2, α3) =
Γ(α1)Γ(α2 − α1)

Γ(α2)
2F1(−α3, α1 + 1;α2 + α1 + 2; z)

Basis of master integrands:∫ 1

0

ω = c0

∫ 1

0

ω0 + c1

∫ 1

0

ω1

where

ω0 = xε1 (1− x)−1+ε2 (1− zx)ε3

ω1 = xε1 (1− x)ε2 (1− zx)−1+ε3

With the two contours γ0 = [0, 1] and γ1 = [0, 1/z], we have Pss

∫
γi
ωj ∼ δij .



Master formula for Appell F1

Family of integrands for F1.

ω(α1, α2, α3, α4) = xα1 (1− x)α2 (1− z1x)α3 (1− z2x)α4 dx

where αi = ni + εi and ni ∈ Z.

∫ 1

0

ω(α1, α2, α3, α4) =
Γ(α1)Γ(α2 − α1)

Γ(α2)
F1(α1, α3, α4, α2; z1, z2)

Master integrands:

ω0 = xε1 (1− x)−1+ε2 (1− z1x)ε3 (1− z2x)ε4

ω1 = xε1 (1− x)ε2 (1− z1x)−1+ε3 (1− z2x)ε4

ω2 = xε1 (1− x)ε2 (1− z1x)ε3 (1− z2x)−1+ε4

Master contours: γ0 = [0, 1], γ1 = [0, z−1
1 ], γ2 = [0, z−1

2 ].



Diagrammatic example with F1

∆


e1

e2

e3

 = e1 ⊗


e1

e2

e3
+

1

2
e1

e2

e3



+ e2 ⊗


e1

e2

e3
+

1

2
e1

e2

e3



+

e1

e2

⊗

e1

e2

e3

+

e1

e2

e3
⊗

e1

e2

e3



Master formula for p+1Fp

Family of integrands for 3F2.

ω(α1, α2, α3, α4, α5) = xα1 (1− x)α2yα3 (1− y)α4 (1− zxy)α5 dx dy

where αi = ni + εi and ni ∈ Z.
Then ∫ 1

0

ω(α1, α2, α3, α4, α5) =

Γ()Γ()Γ()Γ()

Γ()Γ()
3F2(α1 + 1, α3 + 1,−α5; 2 + α1 + α2, 2 + α3 + α4; z)

Basis of master integrands:

ω0 = xε1 (1− x)−1+ε2y ε3 (1− y)−1+ε4 (1− zxy)ε5

ω1 = xε1 (1− x)−1+ε2y ε3 (1− y)ε4 (1− zxy)−1+ε5

ω2 = xε1 (1− x)ε2y ε3 (1− y)−1+ε4 (1− zxy)−1+ε5

With the master contours γ0 =
∫ 1

0
dx
∫ 1

0
dy , γ1 =

∫ 1

0
dx
∫ 1/zx

0
dy ,

γ1 =
∫ 1

0
dy
∫ 1/zy

0
dx , we find that Pss

∫
γi
ωj ∼ δij



Diagrammatic example with 3F2

∆


1 2

 =

1 2

⊗
1 2

+ 1 ⊗
1 2

+ 2 ⊗
1 2

+ 1

2

⊗
1 2

+ 2

1

⊗
1 2

+ 1 2 ⊗
1 2

(with various prefactors and dimension shifts inserted to produce pure integrals)



Features of diagrammatic coaction at two loops

Matrix of integrands and contours for each topology.

Example: sunrise with one internal mass. 2 master integrands in top topology.

=

∫
Γ∅

ω111 ∼ 2F1

(
1 + 2ε, 1 + ε, 1− ε, p2/m2

)
=

∫
Γ∅

ω121 ∼ 2F1

(
2 + 2ε, 1 + ε, 1− ε, p2/m2

)
For each, only two of the generalized cuts are linearly independent!

Thus 2 independent integration contours, e.g. Γ∅ and Γ123.

Diagonalize the matrix:
∫
γi
ωj ∼ δij with

ω1 = aε2ω111, ω2 = bεω111 + cεω121

γ1 = Γ∅, γ2 = − 1

6ε
Γ123 +

2

3
Γ∅

Coaction ∆
(∫

γ
ω
)

=
∑

i

∫
γ
ωi ⊗

∫
γi
ω is expressible in terms of diagrams.



Summary & Outlook

We observe a Hopf algebra structure on Feynman diagrams, related to
pinch and cut operations.

Corresponds to Goncharov’s Hopf algebra on MPLs, with prospects for
extensions to hypergeometric integrals and beyond.

The master formula is a Hopf algebra on integrals, based on matched pairs
of integrands and contours

Deep connections to discontinuities and differential equations, which are
tools for computation.

To explore further: systematic description beyond 1 loop, full range of
hypergeometric functions, applications to integral and amplitude
computations.





Coproduct and coaction

If H is a Hopf algebra, then a H (right-) comodule is a vector space A with a
map ρ : A→ A⊗ H such that

(ρ⊗ id)ρ = (id⊗∆)ρ and (id⊗ ε)ρ = id .

Here ∆ is a coproduct on H. ρ is a coaction on A.

MPLs modulo iπ form a Hopf algebra H. For the full space of MPLs, we need
the comodule Q[iπ]⊗ H, with a coaction ∆ where ∆(iπ) = iπ ⊗ 1.

[Goncharov, Duhr, Brown]


