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Top pair production: the status of QCD calculations

I A single complete NNLO result
for total and differential cross
section obtained with STRIP-
PER methodology [Czakon, Fie-

dler, Mitov ‘13; Czakon, Heymes, Mi-

tov ‘16]

I Flavour off-diagonal channels at
NNLO from qT subtraction [Bon-

ciani, Catani, Grazzini, Sargsyan, Tor-

re ‘15]

I Approximate NNLO [Broggio, Pa-

panastasiou, Signer ‘14] and N3LO
[Kidonakis ‘14]

I Soft and small-mass resumma-
tion at NNLL [Czakon, Ferroglia,

Heymes, Mitov, Pecjak, Scott, Wang,

Yang ‘18]

I Small-qT resummation at NNLL
[Li, Li, Shao, Yang, Zhu ‘13; Catani,

Grazzini, Torre ‘14]
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The qT slicing method
[Catani, Grazzini ‘07, ‘15]

p + p → F (qT ) + X

σFNmLO =

∫ qT,cut

0
dqT
dσFNmLO

dqT
+

∫ ∞
qT,cut

dqT
dσFNmLO

dqT

=

∫ qT,cut

0
dqT
dσFNmLO

dqT
+

∫ ∞
qT,cut

dqT
dσF+jet

Nm−1LO

dqT

enough to know in
small-qT approximation

known
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Soft Collinear Effective Theory (SCET)

SCET ' QCD
∣∣∣
IR limit

I Hard degrees of freedom are integrated out into Wilson coefficients,
which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft
components:

φ(x) = φc(x) + φc̄(x) + φs(x)

The new fields decouple in the Lagrangian

LSCET = Lc + Lc̄ + Ls

I The separation of fields in the Lagrangian into collinear, anti-collinear
and soft sectors, facilitates proofs of factorization theorems
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Small-qT factorization in SCET

where F = H,Z ,W ,ZZ ,WW , tt̄, . . .

dσF

dΦ
= B1 ⊗ B2 ⊗H⊗ S +O

(
q2
T

q2

)
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Small-qT factorization in SCET
Gluons’ momenta in light-cone coordinates

kµi =
(
k+
i , k

−
i ,k

⊥
i

)
where k± = k0 ± k3

Expansion parameter

λ =
q2
T

q2 � 1

Regions

collinear kµi ∼ (1, λ2, λ)Q2 B1

anti-collinear kµi ∼ (λ2, 1, λ)Q2 B2

hard kµi ∼ (1, 1, 1)Q2 H

soft kµi ∼ (λ, λ, λ)Q2 S
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Top pair production at small-qT through NNLO

dσNNLO

dqT dy dM d cos θ
=
∑
i ,̄i

Bi/N1 ⊗ Bī/N2
⊗ Tr [Hi ī ⊗ Si ī ]

where

qT , y , M : transverse momentum, rapidity, mass of top quark pair
θ : scattering angle of the top quark in tt̄ rest frame

B - known up to NNLO [Gehrmann, Lübbert, Yang ’12, ’14]

H - known up to NNLO [Czakon ‘08; Baernreuther, Czakon, Fiedler ‘13]

S - known up to NLO in small-qT limit [Li, Li, Shao, Yan, Zhu ‘13;

Catani, Grazzini, Torre ‘14] (and up to NNLO in the threshold limit

[Wang, Xu, Yang and Zhu ‘18])

Calculating the missing NNLO correction to the soft function
in the small-qT limit, S, is the aim of this phase of our work.
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Rapidity divergences and analytic regulator

Modification of the measure [Becher, Bell ‘12]∫
ddk δ+(k2)→

∫
ddk

(
ν

k+

)α
δ+(k2)

I The regulator is necessary at intermediate steps of the calculation.
I Rapidity divergences do not appear in QCD, hence, the complete

SCET result has to stay finite in the limit α→ 0.
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Kinematics and notation
I Partonic process

q(p1) + q̄(p2) → t(p3) + t̄(p4) +
∑
ig(ki )

I Invariants
ŝ = (p1 + p2)2 M2 = (p3 + p4)2

t1 = (p1 − p3)2 −m2
t u1 = (p1 − p4)−m2

t

I Small-qT limit

ŝ,M2, |t1|, |u1|,m2
t � q2

T = (p3 + p4)2
T � Λ2

QCD

I Momenta
n = (1, 0, 0, 1) , n̄ = (1, 0, 0,−1)

kµi = (n·ki )
n̄µ

2
+ (n̄·ki )

nµ

2
+ kµi⊥

pµ1 = mtn , pµ2 = mt n̄ , pµ3,4 = mtv
µ
3,4 + λµ3,4
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Soft function
I Represents corrections coming from exchanges of real, soft gluons,

whose transverse momenta sum up to a fixed value qT .

Sbare(qT , v3, v4) ∝
∑

δ (qT − |
∑
i ki⊥|)

∏
i δ

+(k2
i )

I external momenta → Wilson Lines (Born kinematics)

I eikonal Feynman rules

S i ī =
∑∞
n=0 S

(n)
i ī

(
αs
4π

)n
S(n)
i ī

=
∑
{j}w

i ī
{j}I{j}

colour matrices
phase space
integrals
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Renormalization

dσ
dΦ

= B(bare)
1 ⊗ B(bare)

2 ⊗ Tr
[
H(bare) ⊗ S(bare)

]

= ZBB(bare)
1 ⊗ ZBB(bare)

2 ⊗ Tr
[
Z †HH

(bare)ZH ⊗ Z †SS
(bare)ZS

]
= B1(µ)⊗ B2(µ)⊗ Tr [H(µ)⊗ S(µ)]

finite

separately divergent

separately finite

d
dµ
dσ
dΦ

= 0 → Renormalization Group Equations for B,H and S
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Renormalization
I RG equation

d
d lnµ

S i ī (µ) = −γs†
i ī
S i ī (µ)− S i ī (µ)γsi ī

I Soft anomalous dimension

γs = −Z−1
s
dZ s
d lnµ

Specifically, at the order α2
s , we get

S(2)︸︷︷︸
finite part only

=

pole part only︷ ︸︸ ︷
Z †(2)
s S̃

(0)

bare + S̃
(0)

bareZ
(2)
s + Z †(1)

s S̃
(0)

bareZ
(1)
s

+ Z †(1)
s S̃

(1)

bare + S̃
(1)

bareZ
(1)
s + S̃

(2)

bare −
β0

ε
S̃

(1)

bare︸ ︷︷ ︸
finite + pole part

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 12/30



Renormalization
I RG equation

d
d lnµ
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Soft function at NLO

I Known in analytic form
[Li, Li, Shao, Yan, Zhu ‘13; Catani, Grazzini, Torre ‘13]

S(1)

i ī
= 4L⊥

(
2w 13
i ī ln

−t1
mtM

+ 2w 23
i ī ln

−u1

mtM
+w 33

i ī

)
− 4

(
w 13
i ī +w 23

i ī

)
Li2

(
1− t1u1

m2
tM2

)
+ 4w 33

i ī ln
t1u1

m2
tM2

− 2w 34
i ī

1 + β2
t

βt

[
L⊥ ln xs − Li2

(
−xs tg2 θ

2

)
+ Li2

(
− 1
xs

tg2 θ

2

)
+ 4 ln xs ln cos

θ

2

]
, where L⊥ = ln

x2
Tµ

2

4e−2γE
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= 4L⊥

(
2w 13
i ī ln
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Soft function at NNLO
Three distinct groups of diagrams:

I Bubble

I Single-cut

I Double-cut
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Double-cut NNLO integrals
Example:

Ĩ3gv ,ij =

∫
ddk1 ddk2 δ+(k2

1 ) δ+(k2
2 ) δ((k1 + k2)2

T − q2
T )

(n · k1)α (n · k2)α (ni · k1) (nj · (k1 + k2)) (k1 + k2)2

I divergent in the limits ε→ 0 and α→ 0

I a range of overlapping singularities

I complication introduced by δ((k1 + k2)2
T − q2

T ) which additionally
couples gluon’s momenta

To disentangle overlapping singularities and calculate regularized integrals
we use the method of sector decomposition [Binoth, Heinrich, ‘00; Borowka,

Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke ‘17].

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 15/30



Double-cut NNLO integrals
Example:

Ĩ3gv ,ij =

∫
ddk1 ddk2 δ+(k2

1 ) δ+(k2
2 ) δ((k1 + k2)2

T − q2
T )

(n · k1)α (n · k2)α (ni · k1) (nj · (k1 + k2)) (k1 + k2)2

I divergent in the limits ε→ 0 and α→ 0

I a range of overlapping singularities

I complication introduced by δ((k1 + k2)2
T − q2

T ) which additionally
couples gluon’s momenta

To disentangle overlapping singularities and calculate regularized integrals
we use the method of sector decomposition [Binoth, Heinrich, ‘00; Borowka,

Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke ‘17].

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 15/30



Double-cut NNLO integrals
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Sector decomposition

Two types of singularities

I Endpoint, e.g. soft: (
k+

1 , k
−
1 , k

⊥
1

)
→ 0

I Manifold, e.g. collinear

k1 · k2 → 0

0

20

40

k+

0

20

40

l+

- 1.0

- 0.5

0.0

0.5

1.0

yT

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 16/30



Sector decomposition

Two types of singularities

I Endpoint, e.g. soft: (
k+

1 , k
−
1 , k

⊥
1

)
→ 0

I Manifold, e.g. collinear

k1 · k2 → 0

0

20

40

k+

0

20

40

l+

- 1.0

- 0.5

0.0

0.5

1.0

yT

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 16/30



The strategy

Given the integral:

boundary integral encodes all α, ε→ 0 singularities

finite weightI Analytically integrate 3 out of
2d dimensions

I Map the remaining variables to a
unit hypercube (split the original
integral into a sum if necessary)

I Apply sector decomposition to
disentangle overlapping singula-
rities

I Expand the result in Laurent
series in ε and α

I Numerically integrate series
coefficients

IG =

∫
ddk1ddk2 IG ×WG

=
∑
j

∫ 1

0

∏2d−3
i=1 dxi (IG ×WG )j

=
∑
j

∑
k∈sectors

∫ 1

0

∏2d−3
i=1 dxi (IG ×WG )jk

=
∑
j,m,n

∑
k∈sectors

(∫ 1

0
amn ×WG

)
αmεn

=
∑
j,m,n

∑
k∈sectors

c jkmn α
mεn
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Results

bubble mostly analytic (DE), used for validation of SD

single-cut numeric integration of one-loop soft current

double-cut mostly numeric (SD), some pieces analytic (DE)

I Calculation of the pole parts of the soft function (real and
imaginary) and comparison to results from Renormalization Group.

I Direct demonstration of the validity of small-qT SCET factorization
for top pair production at NNLO.

I Complete, small-qT soft function for top pair production at NNLO.
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Bubble

I Solvable analytically: direct cross check of our sector
decomposition-based implementation

I Non-trivial tensor structure → challenging numerators

I Laboratory to stress-test sector decomposition-based methodology

I Comparable with nf part of Renormalization Group prediction

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 19/30



Bubble

I Solvable analytically: direct cross check of our sector
decomposition-based implementation

I Non-trivial tensor structure → challenging numerators

I Laboratory to stress-test sector decomposition-based methodology

I Comparable with nf part of Renormalization Group prediction

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 19/30



Bubble part of the soft function from differential equations

∝
∫ ddq δ(qT−1) θ+(q2) nµi n

ν
j

q4 (ni ·q) (nj ·q)

( )
µν

where( )
µν

=

∫
ddk Nµν δ+(k2) δ+((q − k)2)

(n·k)α (n·(q−k))αk2(q − k)2

= T00 gµ,ν + Tqq qµqν + Tnn nµnν + Tqn (nµqν + qµnν)

I Topology:∫
ddk

(n·k)a1+2α (n̄·k)a2 (v3 ·k)a3 (v4 ·k)a4 (k2−m2)a5 ((n·k) (n̄·k)−m2−1)a6

I IBPs → reduction → DE → solutions →
∫
dm2 → Ijk(β, θ)

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 20/30



Bubble part of the soft function from differential equations

∝
∫ ddq δ(qT−1) θ+(q2) nµi n

ν
j

q4 (ni ·q) (nj ·q)

( )
µν

where( )
µν

=

∫
ddk Nµν δ+(k2) δ+((q − k)2)

(n·k)α (n·(q−k))αk2(q − k)2

= T00 gµ,ν + Tqq qµqν + Tnn nµnν + Tqn (nµqν + qµnν)

I Topology:∫
ddk

(n·k)a1+2α (n̄·k)a2 (v3 ·k)a3 (v4 ·k)a4 (k2−m2)a5 ((n·k) (n̄·k)−m2−1)a6

I IBPs → reduction → DE → solutions →
∫
dm2 → Ijk(β, θ)

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 20/30



Bubble part of the soft function from differential equations

∝
∫ ddq δ(qT−1) θ+(q2) nµi n

ν
j

q4 (ni ·q) (nj ·q)

( )
µν

where( )
µν

=

∫
ddk Nµν δ+(k2) δ+((q − k)2)

(n·k)α (n·(q−k))αk2(q − k)2

= T00 gµ,ν + Tqq qµqν + Tnn nµnν + Tqn (nµqν + qµnν)

I Topology:∫
ddk

(n·k)a1+2α (n̄·k)a2 (v3 ·k)a3 (v4 ·k)a4 (k2−m2)a5 ((n·k) (n̄·k)−m2−1)a6

I IBPs → reduction → DE → solutions →
∫
dm2 → Ijk(β, θ)

Sebastian Sapeta (IFJ PAN Kraków) Top pair production at NNLO 20/30



Validation with the bubble: agreement with analytic result

−G 13 + 1
2G

33
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Single-cut (real-virtual)

S (2)
1-cut =

∑
ijk

∫
dd l

δ+(l2) δ(lT − qT )

lα+ nk · l
nµkT

a
k J

µ
ij,a(l)

I The soft current Jµij,a(l) is known up to NLO [Bierenbaum, Czakon,

Mitov ‘12; Czakon, Mitov ‘18].

I S (2)
1-cut can be obtained by a relatively simple integration over lµ.

I Single-cut piece of the soft function exhibits both real and imaginary
part. The latter when i 6= j 6= k, the former, otherwise.
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Complete Soft Function at NNLO: structure of the result

I In momentum space

S (2,bare)(qT , β, θ) =
1
qpT

[
S (2)

bubble(β, θ, ε)+S (2)
1-cut(β, θ, ε)+S (2)

2-cut(β, θ, ε)

]

I

Fourier Transform
In position space

S (2,bare)(L⊥, β, θ) =

[
1
ε

+ L⊥ + L2
⊥ + . . .

]

×
[
S (2)

bubble(β, θ, ε) + S (2)
1-cut(β, θ, ε) + S (2)

2-cut(β, θ, ε)

]

↪→ Momentum-space soft function has to be calculated up to order ε.
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Complete Soft Function at NNLO: structure of the result

S (2,bare)(L⊥, β, θ) =

[
1
ε

+ L⊥ + L2
⊥ + . . .

]

×
[
S (2)

bubble(β, θ, ε) + S (2)
1-cut(β, θ, ε) + S (2)

2-cut(β, θ, ε)

]

=
1
ε2 S

(2,−2)(L⊥) +
1
ε
S (2,−1)(L⊥) + S (2,0)(L⊥)

can be cross-checked against RG; fixes all L⊥-dependent terms in S(2,0)(L⊥)

I The only term that has to be obtained through direct calculation is
the L⊥-independent part of S (2,0)(L⊥).

I However, we calculate all terms and use the redundant ones for cross
checks against Renormalization Group prediction.
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Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most
1
ε2 singularity,

higher order poles appear in individual contributions.

I All α poles, including
ε

α
, as well as

1
ε4 pole cancel within each

colour structure, for example

1
ε4

I
1
ε3 pole cancels between 1-cut and 2-cut contributions

1
ε3

† We used β = 0.4, θ = 0.5.
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Comparison with Renormalization Group

I Double pole[
S (2,−2)

direct + S (2,−2)
RGE

]
β=0.4,θ=0.5

=

I Single pole[
S (2,−1)

direct + S (2,−1)
RGE

]
β=0.4,θ=0.5

=
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Small-qT factorization

Through direct calculation of the bare soft function at NNLO, we have
shown that:

I It has no α poles and no ε higher than
1
ε2 .

I The results for
1
ε2 and

1
ε

poles, for both the real and the imaginary

part, agree perfectly with the prediction from Renormalization Group.

Hence, all poles can be removed by the renormalization procedure. And
that proves small-qT factorization for top pair production up to NNLO

dσNNLO
pp→tt̄

dΦ
= B1 ⊗ B2 ⊗H⊗ S +O

(
q2
T

q2

)
.
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Complete Soft Function at NNLO

S (2,bare)(L⊥, β, θ) = S (2,0)
bubble(β, θ) + S (2,0)

1-cut(β, θ) + S (2,0)
2-cut(β, θ) + pole part

S (2,0)
bubble(β, θ) mostly analytic

S (2,0)
1-cut(β, θ) numeric, high accuracy

S (2,0)
2-cut(β, θ) analytic + numeric

S (2,0)
2-cut, numeric part(β = 0.4, θ = 0.5) =
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Conclusions
I Our goal: Use small-qT factorization and qT slicing to perform inde-

pendent calculation of top pair production at NNLO

I The only missing component: the NNLO soft function

I We have constructed a sector decomposition-based framework and
used it to complete the calculation of the the small-qT soft function
for top pair production at NNLO

I The framework has been extensively validated and cross-checked:
1. Cancellation of α poles, including ε/α, and ε poles beyond 1/ε2

2. Perfect agreement with analytic calculation for bubble graphs

3. RG result for the complete NNLO soft function recovered: real and
imaginary part

→ direct demonstration of validity of the small-qT
factorization for top pair production at NNLO

I The soft function can now be used to obtain full tt̄ cross section at
NNLO as well for resummation up to NNLL’
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