Top pair production at NNLO

Sebastian Sapeta

IFJ PAN Kraków

In collaboration with René Ángeles-Martinez and Michał Czakon

Loops and Legs in Quantum Field Theory, St. Goar, Germany, 1 May 2018

Top pair production: the status of QCD calculations

 A single complete NNLO result for total and differential cross section obtained with STRIP-PER methodology [Czakon, Fiedler, Mitov '13; Czakon, Heymes, Mitov '16]

- Flavour off-diagonal channels at NNLO from q_T subtraction [Bonciani, Catani, Grazzini, Sargsyan, Torre '15]
- Approximate NNLO [Broggio, Papanastasiou, Signer '14] and N³LO [Kidonakis '14]
- Soft and small-mass resummation at NNLL [Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang '18]
- Small-q_T resummation at NNLL [Li, Li, Shao, Yang, Zhu '13; Catani, Grazzini, Torre '14]

The q_T slicing method

[Catani, Grazzini '07, '15]

$$p+p
ightarrow F(q_T) + X$$

$$\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}} = \int_{0}^{q_{\mathsf{T},\mathsf{cut}}} dq_{\mathsf{T}} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{\mathsf{T}}} + \int_{q_{\mathsf{T},\mathsf{cut}}}^{\infty} dq_{\mathsf{T}} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{\mathsf{T}}}$$

The q_T slicing method

[Catani, Grazzini '07, '15]

$$p+p
ightarrow F(q_T) + X$$

$$\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}} = \int_{0}^{q_{\mathsf{T},\mathsf{cut}}} dq_{\mathsf{T}} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{\mathsf{T}}} + \int_{q_{\mathsf{T},\mathsf{cut}}}^{\infty} dq_{\mathsf{T}} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{\mathsf{T}}}$$

$$= \int_{0}^{q_{T,cut}} dq_{T} \ \frac{d\sigma_{\mathsf{N}^{m}\mathsf{LO}}^{F}}{dq_{T}} + \int_{q_{T,cut}}^{\infty} dq_{T} \ \frac{d\sigma_{\mathsf{N}^{m-1}\mathsf{LO}}^{F+jet}}{dq_{T}}$$

The q_T slicing method

[Catani, Grazzini '07, '15]

$$p+p \rightarrow F(q_T) + X$$

$$\sigma_{\mathsf{N}^{\mathsf{F}}\mathsf{LO}}^{\mathsf{F}} = \int_{0}^{q_{T,\mathsf{cut}}} dq_{T} \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{T}} + \int_{q_{T,\mathsf{cut}}}^{\infty} dq_{T} \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{T}}$$
$$= \int_{0}^{q_{T,\mathsf{cut}}} dq_{T} \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{T}} + \int_{q_{T,\mathsf{cut}}}^{\infty} dq_{T} \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}+\mathsf{jet}}}{dq_{T}}$$
enough to know in
$$\int_{\mathsf{small}-q_{T}} dq_{T} \operatorname{approximation}} \mathsf{known}$$

Sebastian Sapeta (IFJ PAN Kraków)

Soft Collinear Effective Theory (SCET)

 $\mathsf{SCET}\simeq\mathsf{QCD}\Big|_{\mathsf{IR\ limit}}$

Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

Soft Collinear Effective Theory (SCET)

 $\mathsf{SCET} \simeq \mathsf{QCD}\Big|_{\mathsf{IR\ limit}}$

Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$\phi(x) = \phi_c(x) + \phi_{\bar{c}}(x) + \phi_s(x)$$

Soft Collinear Effective Theory (SCET)

 $\mathsf{SCET} \simeq \mathsf{QCD}\Big|_{\mathsf{IR limit}}$

Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$\phi(x) = \phi_c(x) + \phi_{\bar{c}}(x) + \phi_s(x)$$

The new fields decouple in the Lagrangian

$$\mathcal{L}_{\mathsf{SCET}} = \mathcal{L}_c + \mathcal{L}_{\bar{c}} + \mathcal{L}_s$$

The separation of fields in the Lagrangian into collinear, anti-collinear and soft sectors, facilitates proofs of factorization theorems

Sebastian Sapeta (IFJ PAN Kraków)

Top pair production at NNLO

where $F = H, Z, W, ZZ, WW, t\overline{t}, \ldots$

where $F = H, Z, W, ZZ, WW, t\overline{t}, \ldots$

$$rac{d\sigma^{F}}{d\Phi} = \mathcal{B}_{1}\otimes\mathcal{B}_{2}\otimes\mathcal{H}\otimes\mathcal{S} + \mathcal{O}\left(rac{q_{T}^{2}}{q^{2}}
ight)$$

Sebastian Sapeta (IFJ PAN Kraków)

Gluons' momenta in light-cone coordinates

$$k_i^\mu = \left(k_i^+, k_i^-, \boldsymbol{k}_i^\perp
ight)$$
 where $k^\pm = k^0 \pm k^3$

Expansion parameter

$$\lambda = rac{q_T^2}{q^2} \ll 1$$

Gluons' momenta in light-cone coordinates

$$k_i^\mu = \left(k_i^+, k_i^-, oldsymbol{k}_i^\perp
ight)$$
 where $k^\pm = k^0 \pm k^3$

Expansion parameter

$$\lambda = \frac{q_T^2}{q^2} \ll 1$$

Regions

Top pair production at small- q_T through NNLO

$$\frac{d\sigma^{\text{NNLO}}}{dq_T \, dy \, dM \, d\cos\theta} = \sum_{i,\overline{i}} \mathcal{B}_{i/N_1} \otimes \mathcal{B}_{\overline{i}/N_2} \otimes \text{Tr} \left[\mathcal{H}_{i\overline{i}} \otimes \mathcal{S}_{i\overline{i}} \right]$$

where

 q_T , y, M : transverse momentum, rapidity, mass of top quark pair θ : scattering angle of the top quark in $t\bar{t}$ rest frame

Top pair production at small- q_T through NNLO

$$\frac{d\sigma^{\text{NNLO}}}{dq_T \, dy \, dM \, d\cos\theta} = \sum_{i,\overline{i}} \mathcal{B}_{i/N_1} \otimes \mathcal{B}_{\overline{i}/N_2} \otimes \text{Tr} \left[\mathcal{H}_{i\overline{i}} \otimes \mathcal{S}_{i\overline{i}} \right]$$

where

- q_T , y, M : transverse momentum, rapidity, mass of top quark pair θ : scattering angle of the top quark in $t\bar{t}$ rest frame
- B known up to NNLO [Gehrmann, Lübbert, Yang '12, '14]
- ${\cal H}$ known up to NNLO [Czakon '08; Baernreuther, Czakon, Fiedler '13]
- *S* known up to NLO in small-q_T limit [Li, Li, Shao, Yan, Zhu '13; Catani, Grazzini, Torre '14] (and up to NNLO in the threshold limit [Wang, Xu, Yang and Zhu '18])

Top pair production at small- q_T through NNLO

$$\frac{d\sigma^{\text{NNLO}}}{dq_T \, dy \, dM \, d\cos\theta} = \sum_{i,\overline{i}} \mathcal{B}_{i/N_1} \otimes \mathcal{B}_{\overline{i}/N_2} \otimes \text{Tr} \left[\mathcal{H}_{i\overline{i}} \otimes \mathcal{S}_{i\overline{i}} \right]$$

where

 q_T , y, M : transverse momentum, rapidity, mass of top quark pair θ : scattering angle of the top quark in $t\bar{t}$ rest frame

- B known up to NNLO [Gehrmann, Lübbert, Yang '12, '14]
- ${\cal H}$ known up to NNLO [Czakon '08; Baernreuther, Czakon, Fiedler '13]
- *S* known up to NLO in small-q_T limit [Li, Li, Shao, Yan, Zhu '13; Catani, Grazzini, Torre '14] (and up to NNLO in the threshold limit [Wang, Xu, Yang and Zhu '18])

Calculating the missing NNLO correction to the soft function in the small- q_T limit, S, is the aim of this phase of our work.

Sebastian Sapeta (IFJ PAN Kraków)

Top pair production at NNLO

Rapidity divergences and analytic regulator

Rapidity divergences and analytic regulator

Modification of the measure [Becher, Bell '12]

$$\int d^d k \, \delta^+(k^2) \to \int d^d k \left(rac{
u}{k_+}
ight)^lpha \delta^+(k^2)$$

- The regulator is necessary at intermediate steps of the calculation.
- Rapidity divergences do not appear in QCD, hence, the complete SCET result has to stay finite in the limit α → 0.

Sebastian Sapeta (IFJ PAN Kraków)

Top pair production at NNLO

Partonic process

 $q(p_1) + \overline{q}(p_2) \rightarrow t(p_3) + \overline{t}(p_4) + \sum_i g(k_i)$

► Partonic process

$$q(p_1) + \overline{q}(p_2) \rightarrow t(p_3) + \overline{t}(p_4) + \sum_i g(k_i)$$

Invariants

$$\hat{s} = (p_1 + p_2)^2 \qquad M^2 = (p_3 + p_4)^2 t_1 = (p_1 - p_3)^2 - m_t^2 \qquad u_1 = (p_1 - p_4) - m_t^2$$

Partonic process

$$q(p_1) + \overline{q}(p_2) \rightarrow t(p_3) + \overline{t}(p_4) + \sum_i g(k_i)$$

Invariants

$$\hat{s} = (p_1 + p_2)^2 \qquad M^2 = (p_3 + p_4)^2$$

$$t_1 = (p_1 - p_3)^2 - m_t^2 \qquad u_1 = (p_1 - p_4) - m_t^2$$

▶ Small- q_T limit

$$\hat{s}, M^2, |t_1|, |u_1|, m_t^2 \gg q_T^2 = (p_3 + p_4)_T^2 \gg \Lambda_{ ext{QCD}}^2$$

Partonic process

$$q(p_1) + \overline{q}(p_2) \rightarrow t(p_3) + \overline{t}(p_4) + \sum_i g(k_i)$$

Invariants

$$\hat{s} = (p_1 + p_2)^2$$
 $M^2 = (p_3 + p_4)^2$
 $t_1 = (p_1 - p_3)^2 - m_t^2$ $u_1 = (p_1 - p_4) - m_t^2$

▶ Small- q_T limit

$$\hat{s}, M^2, |t_1|, |u_1|, m_t^2 \gg q_T^2 = (p_3 + p_4)_T^2 \gg \Lambda_{ ext{QCD}}^2$$

Momenta

$$n = (1, 0, 0, 1), \qquad \bar{n} = (1, 0, 0, -1)$$

$$k_i^{\mu} = (n \cdot k_i) \frac{\overline{n}^{\mu}}{2} + (\overline{n} \cdot k_i) \frac{n^{\mu}}{2} + k_{i\perp}^{\mu}$$

$$p_1^{\mu} = m_t n$$
, $p_2^{\mu} = m_t \bar{n}$, $p_{3,4}^{\mu} = m_t v_{3,4}^{\mu} + \lambda_{3,4}^{\mu}$

Sebastian Sapeta (IFJ PAN Kraków)

Soft function

▶ Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_T.

Soft function

▶ Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_T.

- ► external momenta → Wilson Lines (Born kinematics)
- eikonal Feynman rules

Soft function

▶ Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_T.

- ► external momenta → Wilson Lines (Born kinematics)
- eikonal Feynman rules

$$\begin{split} \boldsymbol{S}_{i\bar{i}} &= \sum_{n=0}^{\infty} \boldsymbol{S}_{i\bar{i}}^{(n)} \left(\frac{\alpha_s}{4\pi}\right)^n \qquad \boldsymbol{S}_{i\bar{i}}^{(n)} &= \sum_{\{j\}} \boldsymbol{w}_{\{j\}}^{i\bar{i}} \boldsymbol{I}_{\{j\}} \\ \text{colour matrices} \quad \boldsymbol{\uparrow} \quad \boldsymbol{\uparrow} \quad \text{phase space integrals} \end{split}$$

► RG equation

$$rac{d}{d\ln\mu}m{S}_{iar{i}}(\mu)=-m{\gamma}^{s\dagger}_{iar{i}}\,m{S}_{iar{i}}(\mu)-m{S}_{iar{i}}(\mu)\,m{\gamma}^{s}_{iar{i}}$$

Soft anomalous dimension

$$\gamma^s = -\boldsymbol{Z}_s^{-1} \frac{d\boldsymbol{Z}_s}{d\ln\mu}$$

▶ RG equation

$$rac{d}{d\ln\mu}m{S}_{iar{i}}(\mu)=-\gamma^{s\dagger}_{iar{i}}\,m{S}_{iar{i}}(\mu)-m{S}_{iar{i}}(\mu)\gamma^{s}_{iar{i}}$$

Soft anomalous dimension

$$\gamma^s = -\boldsymbol{Z}_s^{-1} \frac{d\boldsymbol{Z}_s}{d\ln\mu}$$

Specifically, at the order $\alpha_{s}^{2},$ we get

$$\underbrace{\boldsymbol{S}^{(2)}}_{\text{finite part only}} = \underbrace{\boldsymbol{Z}^{\dagger(2)}_{s} \tilde{\boldsymbol{S}}^{(0)}_{\text{bare}} + \tilde{\boldsymbol{S}}^{(0)}_{\text{bare}} \boldsymbol{Z}^{(2)}_{s} + \boldsymbol{Z}^{\dagger(1)}_{s} \tilde{\boldsymbol{S}}^{(0)}_{\text{bare}} \boldsymbol{Z}^{(1)}_{s}}_{\text{bare}} + \underbrace{\boldsymbol{Z}^{\dagger(1)}_{s} \tilde{\boldsymbol{S}}^{(1)}_{\text{bare}} + \tilde{\boldsymbol{S}}^{(1)}_{\text{bare}} \boldsymbol{Z}^{(1)}_{s} + \frac{\tilde{\boldsymbol{S}}^{(2)}_{\text{bare}} - \frac{\beta_{0}}{\epsilon}}{\tilde{\boldsymbol{S}}^{(1)}_{\text{bare}}} \underbrace{\tilde{\boldsymbol{S}}^{(1)}_{\text{bare}} + nole not}_{\text{finite + nole not}}$$

finite + pole part

Soft function at NLO

Soft function at NLO

Known in analytic form
 [Li, Li, Shao, Yan, Zhu '13; Catani, Grazzini, Torre '13]

$$\begin{split} \boldsymbol{S}_{i\bar{i}}^{(1)} &= 4L_{\perp} \left(2\boldsymbol{w}_{i\bar{i}}^{13} \ln \frac{-t_1}{m_t M} + 2\boldsymbol{w}_{i\bar{i}}^{23} \ln \frac{-u_1}{m_t M} + \boldsymbol{w}_{i\bar{i}}^{33} \right) \\ &- 4 \left(\boldsymbol{w}_{i\bar{i}}^{13} + \boldsymbol{w}_{i\bar{i}}^{23} \right) \operatorname{Li}_2 \left(1 - \frac{t_1 u_1}{m_t^2 M^2} \right) + 4\boldsymbol{w}_{i\bar{i}}^{33} \ln \frac{t_1 u_1}{m_t^2 M^2} \\ &- 2\boldsymbol{w}_{i\bar{i}}^{34} \frac{1 + \beta_t^2}{\beta_t} \left[L_{\perp} \ln x_s - \operatorname{Li}_2 \left(-x_s \operatorname{tg}^2 \frac{\theta}{2} \right) + \operatorname{Li}_2 \left(-\frac{1}{x_s} \operatorname{tg}^2 \frac{\theta}{2} \right) \\ &+ 4 \ln x_s \ln \cos \frac{\theta}{2} \right], \quad \text{where} \quad L_{\perp} = \ln \frac{x_T^2 \mu^2}{4e^{-2\gamma_E}} \end{split}$$

Sebastian Sapeta (IFJ PAN Kraków)

Top pair production at NNLO

Soft function at NNLO

Three distinct groups of diagrams:

Soft function at NNLO

Three distinct groups of diagrams:

Soft function at NNLO

Three distinct groups of diagrams:

600R 000
Double-cut NNLO integrals

Example:

$$\tilde{l}_{3gv,ij} = \int \frac{d^d k_1 \, d^d k_2 \, \delta^+(k_1^2) \, \delta^+(k_2^2) \, \delta((k_1 + k_2)_T^2 - q_T^2)}{(n \cdot k_1)^{\alpha} \, (n \cdot k_2)^{\alpha} \, (n_i \cdot k_1) \, (n_j \cdot (k_1 + k_2)) \, (k_1 + k_2)^2}$$

Double-cut NNLO integrals

Example:

$$\tilde{I}_{3gv,ij} = \int \frac{d^d k_1 \, d^d k_2 \, \delta^+(k_1^2) \, \delta^+(k_2^2) \, \delta((k_1 + k_2)_T^2 - q_T^2)}{(n \cdot k_1)^{\alpha} \, (n \cdot k_2)^{\alpha} \, (n_i \cdot k_1) \, (n_j \cdot (k_1 + k_2)) \, (k_1 + k_2)^2}$$

- divergent in the limits $\epsilon \to \mathbf{0}$ and $\alpha \to \mathbf{0}$
- a range of overlapping singularities
- complication introduced by δ((k₁ + k₂)²_T − q²_T) which additionally couples gluon's momenta

Double-cut NNLO integrals

Example:

$$\tilde{I}_{3gv,ij} = \int \frac{d^d k_1 \, d^d k_2 \, \delta^+(k_1^2) \, \delta^+(k_2^2) \, \delta((k_1 + k_2)_T^2 - q_T^2)}{(n \cdot k_1)^{\alpha} \, (n \cdot k_2)^{\alpha} \, (n_i \cdot k_1) \, (n_j \cdot (k_1 + k_2)) \, (k_1 + k_2)^2}$$

- \blacktriangleright divergent in the limits $\epsilon \rightarrow \mathbf{0}$ and $\alpha \rightarrow \mathbf{0}$
- a range of overlapping singularities
- ► complication introduced by $\delta((k_1 + k_2)_T^2 q_T^2)$ which additionally couples gluon's momenta

To disentangle overlapping singularities and calculate regularized integrals we use the method of sector decomposition [Binoth, Heinrich, '00; Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '17].

Sector decomposition

Two types of singularities

► Endpoint, *e.g.* soft:

$$\left(k_1^+, k_1^-, k_1^\perp\right) \to 0$$

Sector decomposition

Two types of singularities

► Endpoint, *e.g.* soft:

$$\left(k_{1}^{+},k_{1}^{-},k_{1}^{\perp}\right) \rightarrow 0$$

► Manifold, *e.g.* collinear

$$I_G = \int d^d k_1 d^d k_2 \ {\cal I}_G imes {\cal W}_G$$

boundary integral encodes all $\alpha, \epsilon \rightarrow 0$ singularities

$$I_G = \int d^d k_1 d^d k_2 \, \mathcal{I}_G \times \mathcal{W}_G$$
finite weight

boundary integral encodes all $\alpha, \epsilon \rightarrow 0$ singularities

- Analytically integrate 3 out of 2d dimensions
- Map the remaining variables to a unit hypercube (split the original integral into a sum if necessary)

$$I_G = \int d^d k_1 d^d k_2 \, \mathcal{I}_G \times \mathcal{W}_G$$
finite weight

$$=\sum_{j}\int_{0}^{1}\prod_{i=1}^{2d-3}dx_{i}\left(\mathcal{I}_{G}\times\mathcal{W}_{G}\right)_{j}$$

boundary integral encodes all $\alpha, \epsilon \rightarrow 0$ singularities

- Analytically integrate 3 out of 2d dimensions
- Map the remaining variables to a unit hypercube (split the original integral into a sum if necessary)
- Apply sector decomposition to disentangle overlapping singularities

$$I_G = \int d^d k_1 d^d k_2 \, \mathcal{I}_G \times \mathcal{W}_G$$
finite weight

$$=\sum_{j}\int_{0}^{1}\prod_{i=1}^{2d-3}dx_{i}\left(\mathcal{I}_{G}\times\mathcal{W}_{G}\right)_{j}$$

$$=\sum_{j}\sum_{k\in\text{sectors}}\int_{0}^{1}\prod_{i=1}^{2d-3}dx_{i}\left(\mathcal{I}_{G}\times\mathcal{W}_{G}\right)_{jk}$$

boundary integral encodes all $\alpha, \epsilon \rightarrow 0$ singularities

- Analytically integrate 3 out of 2d dimensions
- Map the remaining variables to a unit hypercube (split the original integral into a sum if necessary)
- Apply sector decomposition to disentangle overlapping singularities
- Expand the result in Laurent series in ε and α

$$I_G = \int d^d k_1 d^d k_2 \, \mathcal{I}_G \times \mathcal{W}_G$$
finite weight

$$=\sum_{j}\int_{0}^{1}\prod_{i=1}^{2d-3}dx_{i}\left(\mathcal{I}_{G}\times\mathcal{W}_{G}\right)_{j}$$

$$=\sum_{j}\sum_{k\in\text{sectors}}\int_{0}^{1}\prod_{i=1}^{2d-3}dx_{i}\left(\mathcal{I}_{G}\times\mathcal{W}_{G}\right)_{jk}$$

$$= \sum_{j,m,n} \sum_{k \in \text{sectors}} \left(\int_0^1 a_{mn} \times \mathcal{W}_G \right) \, \alpha^m \epsilon^n$$

boundary integral encodes all $\alpha, \epsilon \rightarrow 0$ singularities

Given the integral:

- Analytically integrate 3 out of 2d dimensions
- Map the remaining variables to a unit hypercube (split the original integral into a sum if necessary)
- Apply sector decomposition to disentangle overlapping singularities
- Expand the result in Laurent series in ε and α
- Numerically integrate series coefficients

$$I_G = \int d^d k_1 d^d k_2 \, \mathcal{I}_G \times \mathcal{W}_G$$
finite weight

$$=\sum_{j}\int_{0}^{1}\prod_{i=1}^{2d-3}dx_{i}\left(\mathcal{I}_{G}\times\mathcal{W}_{G}\right)_{j}$$

$$= \sum_{j} \sum_{k \in \text{sectors}} \int_{0}^{1} \prod_{i=1}^{2d-3} dx_{i} \left(\mathcal{I}_{G} \times \mathcal{W}_{G} \right)_{jk}$$

$$= \sum_{j,m,n} \sum_{k \in \text{sectors}} \left(\int_0^1 a_{mn} \times \mathcal{W}_{\mathcal{G}} \right) \, \alpha^m \epsilon^n$$

 $=\sum \sum c_{mn}^{jk} \alpha^m \epsilon^n$ $i.m.n \ k \in \text{sectors}$

Top pair production at NNLO

bubble	mostly analytic (DE), used for validation of SD $$
single-cut	numeric integration of one-loop soft current
double-cut	mostly numeric (SD), some pieces analytic (DE)

bubble	mostly analytic (DE), used for validation of SD $$
single-cut	numeric integration of one-loop soft current
double-cut	mostly numeric (SD), some pieces analytic (DE)

 Calculation of the pole parts of the soft function (real and imaginary) and comparison to results from Renormalization Group.

bubble	mostly analytic (DE), used for validation of SD $$
single-cut	numeric integration of one-loop soft current
double-cut	mostly numeric (SD), some pieces analytic (DE)

- Calculation of the pole parts of the soft function (real and imaginary) and comparison to results from Renormalization Group.
- Direct demonstration of the validity of small-q_T SCET factorization for top pair production at NNLO.

bubble	mostly analytic (DE), used for validation of SD $$
single-cut	numeric integration of one-loop soft current
double-cut	mostly numeric (SD), some pieces analytic (DE)

- Calculation of the pole parts of the soft function (real and imaginary) and comparison to results from Renormalization Group.
- Direct demonstration of the validity of small-q_T SCET factorization for top pair production at NNLO.

• Complete, small- q_T soft function for top pair production at NNLO.

Bubble

Bubble

- Solvable analytically: direct cross check of our sector decomposition-based implementation
- Non-trivial tensor structure \rightarrow challenging numerators
- Laboratory to stress-test sector decomposition-based methodology
- ▶ Comparable with *n_f* part of Renormalization Group prediction

Bubble part of the soft function from differential equations

$$\bigwedge^{i} \bigwedge^{g} \int \frac{d^{d}q \,\delta(q_{T}-1) \,\theta^{+}(q^{2}) \,n_{i}^{\mu} n_{j}^{\nu}}{q^{4} \left(n_{i} \cdot q\right) \left(n_{j} \cdot q\right)} \left(\bigvee_{k}^{q} \bigvee_{j}^{q \cdot k} \right)_{\mu\nu}$$

Bubble part of the soft function from differential equations

$$\int \frac{d^{d}q \,\delta(q_{T}-1) \,\theta^{+}(q^{2}) \,n_{i}^{\mu} n_{j}^{\nu}}{q^{4} \left(n_{i} \cdot q\right) \left(n_{j} \cdot q\right)} \left(\prod_{k}^{q} \prod_{j=1}^{q \cdot k} \prod_{k=1}^{q \cdot k} \prod_{j=1}^{q \cdot k} \prod$$

where

Bubble part of the soft function from differential equations

$$\int \frac{d^{d}q \,\delta(q_{T}-1) \,\theta^{+}(q^{2}) \,n_{i}^{\mu} n_{j}^{\nu}}{q^{4} \left(n_{i} \cdot q\right) \left(n_{j} \cdot q\right)} \left(\prod_{k}^{q} \prod_{j=1}^{q \cdot k} \prod_{k=1}^{q \cdot k} \prod_{j=1}^{q \cdot k} \prod$$

where

$$\begin{pmatrix} q \\ m \\ m \\ m \\ m \end{pmatrix}_{\mu\nu} = \int \frac{d^d k N_{\mu\nu} \,\delta^+(k^2) \,\delta^+((q-k)^2)}{(n \cdot k)^{\alpha} \,(n \cdot (q-k))^{\alpha} k^2 (q-k)^2}$$

= $T_{00} \,g^{\mu,\nu} + T_{qq} \,q^{\mu} q^{\nu} + T_{nn} \,n^{\mu} n^{\nu} + T_{qn} \,(n^{\mu} q^{\nu} + q^{\mu} n^{\nu})$

$$\int \frac{d^{d}k}{(n \cdot k)^{a_{1}+2\alpha} (\bar{n} \cdot k)^{a_{2}} (v_{3} \cdot k)^{a_{3}} (v_{4} \cdot k)^{a_{4}} (k^{2}-m^{2})^{a_{5}} ((n \cdot k) (\bar{n} \cdot k)-m^{2}-1)^{a_{6}}}$$

▶ IBPs → reduction → DE → solutions →
$$\int dm^2 \rightarrow I_{jk}(\beta, \theta)$$

Sebastian Sapeta (IFJ PAN Kraków)

Top pair production at NNLO

Validation with the bubble: agreement with analytic result

 $-G^{13} + \frac{1}{2}G^{33}$

$$S_{1-\text{cut}}^{(2)} = \sum_{ijk} \int d^{d} I \frac{\delta^{+}(l^{2}) \,\delta(l_{T} - q_{T})}{l_{+}^{\alpha} \,n_{k} \cdot l} n_{k}^{\mu} T_{k}^{a} J_{ij,a}^{\mu}(l)$$

$$S_{1-\text{cut}}^{(2)} = \sum_{ijk} \int d^{d} I \frac{\delta^{+}(I^{2})\,\delta(I_{T} - q_{T})}{I_{+}^{\alpha}\,n_{k} \cdot I} n_{k}^{\mu}\,T_{k}^{a}J_{ij,a}^{\mu}(I)$$

The soft current J^µ_{ij,a}(I) is known up to NLO [Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].

$$S_{1-\text{cut}}^{(2)} = \sum_{ijk} \int d^{d}l \frac{\delta^{+}(l^{2})\,\delta(l_{T}-q_{T})}{l_{+}^{\alpha}\,n_{k}\cdot l} n_{k}^{\mu}\,T_{k}^{a}J_{ij,a}^{\mu}(l)$$

The soft current J^µ_{ij,a}(I) is known up to NLO [Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].

• $S_{1-\text{cut}}^{(2)}$ can be obtained by a relatively simple integration over I^{μ} .

Sebastian Sapeta (IFJ PAN Kraków)

$$S_{1-\text{cut}}^{(2)} = \sum_{ijk} \int d^d I \frac{\delta^+(I^2)\,\delta(I_T - q_T)}{I_+^{\alpha}\,n_k \cdot I} n_k^{\mu}\,T_k^{a}J_{ij,a}^{\mu}(I)$$

The soft current J^µ_{ij,a}(I) is known up to NLO [Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].

• $S_{1-\text{cut}}^{(2)}$ can be obtained by a relatively simple integration over l^{μ} .

Single-cut piece of the soft function exhibits both real and imaginary part. The latter when i ≠ j ≠ k, the former, otherwise.

In momentum space

$$S^{(2,\mathsf{bare})}(q_{\mathcal{T}},\beta,\theta) = \frac{1}{q_{\mathcal{T}}^{p}} \left[S^{(2)}_{\mathsf{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\mathsf{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\mathsf{cut}}(\beta,\theta,\epsilon) \right]$$

► In momentum space

$$S^{(2,\text{bare})}(q_{T},\beta,\theta) = \frac{1}{q_{T}^{\rho}} \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon) \right]$$

$$= \text{In position space} \qquad \left\{ \begin{array}{l} \text{Fourier Transform} \\ S^{(2,\text{bare})}(L_{\perp},\beta,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \dots \right] \\ \times \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon) \right] \end{array} \right\}$$

In momentum space

$$S^{(2,\text{bare})}(q_{T},\beta,\theta) = \frac{1}{q_{T}^{\rho}} \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon) \right]$$

Fourier Transform

$$S^{(2,\text{bare})}(L_{\perp},\beta,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \dots \right]$$

$$\times \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon) \right]$$

$\,\hookrightarrow\,$ Momentum-space soft function has to be calculated up to order $\epsilon.$

$$S^{(2,\text{bare})}(L_{\perp},\beta,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \ldots\right] \\ \times \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon)\right]$$

$$S^{(2,\text{bare})}(L_{\perp},\beta,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \ldots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon)\right]$$
$$= \frac{1}{\epsilon^{2}}S^{(2,-2)}(L_{\perp}) + \frac{1}{\epsilon}S^{(2,-1)}(L_{\perp}) + S^{(2,0)}(L_{\perp})$$

$$S^{(2,\text{bare})}(L_{\perp},\beta,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \ldots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon)\right]$$
$$= \underbrace{\frac{1}{\epsilon^{2}}S^{(2,-2)}(L_{\perp}) + \frac{1}{\epsilon}S^{(2,-1)}(L_{\perp})}_{\epsilon} + S^{(2,0)}(L_{\perp})$$

can be cross-checked against RG; fixes all L_{\perp} -dependent terms in $S^{(2,0)}(L_{\perp})$

$$S^{(2,\text{bare})}(L_{\perp},\beta,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \ldots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon)\right]$$
$$= \underbrace{\frac{1}{\epsilon^{2}}S^{(2,-2)}(L_{\perp}) + \frac{1}{\epsilon}S^{(2,-1)}(L_{\perp})}_{\epsilon} + S^{(2,0)}(L_{\perp})$$

can be cross-checked against RG; fixes all L_{\perp} -dependent terms in $S^{(2,0)}(L_{\perp})$

► The only term that has to be obtained through direct calculation is the L_⊥-independent part of S^(2,0)(L_⊥).

$$S^{(2,\text{bare})}(L_{\perp},\beta,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \ldots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta,\theta,\epsilon)\right]$$
$$= \underbrace{\frac{1}{\epsilon^{2}}S^{(2,-2)}(L_{\perp}) + \frac{1}{\epsilon}S^{(2,-1)}(L_{\perp}) + S^{(2,0)}(L_{\perp})}_{\underline{\epsilon}}$$

can be cross-checked against RG; fixes all L_{\perp} -dependent terms in $S^{(2,0)}(L_{\perp})$

- ► The only term that has to be obtained through direct calculation is the L_⊥-independent part of S^(2,0)(L_⊥).
- However, we calculate all terms and use the redundant ones for cross checks against Renormalization Group prediction.

Sebastian Sapeta (IFJ PAN Kraków)

Top pair production at NNLO

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^2}$ singularity, higher order poles appear in individual contributions.

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^2}$ singularity, higher order poles appear in individual contributions.

► All α poles, including $\frac{\epsilon}{\alpha}$, as well as $\frac{1}{\epsilon^4}$ pole cancel within each colour structure, for example

 $\frac{1}{\epsilon^4} \begin{pmatrix} 0.00009 N_c^{-1} - 0.00009 N_c & -0.00002 N_c^2 - 0.00009 N_c^{-2} + 0.0001 \\ -0.00002 N_c^2 - 0.00009 N_c^{-2} + 0.0001 & 0.00008 N_c^3 - 0.00006 N_c + 0.00007 N_c^{-3} - 0.00009 N_c^{-1} \end{pmatrix}$
Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^2}$ singularity, higher order poles appear in individual contributions.

• All α poles, including $\frac{\epsilon}{\alpha}$, as well as $\frac{1}{\epsilon^4}$ pole cancel within each colour structure, for example

 $\frac{1}{\epsilon^4} \begin{pmatrix} 0.00009 \, N_c^{-1} - 0.00009 \, N_c & -0.00002 \, N_c^2 - 0.00009 \, N_c^{-2} + 0.0001 \\ -0.00002 \, N_c^2 - 0.00009 \, N_c^{-2} + 0.0001 & 0.00008 \, N_c^3 - 0.00006 \, N_c + 0.00007 \, N_c^{-3} - 0.00009 \, N_c^{-1} \end{pmatrix}$

 $\frac{1}{\epsilon^3} \text{ pole cancels between 1-cut and 2-cut contributions}$ $\frac{1}{\epsilon^3} \begin{pmatrix} 0.0004 N_c^3 - 0.0007 N_c + 0.0004 N_c^{-1} & 0.0004 N_c^2 - 0.0004 N_c^{-2} - 7. \times 10^{-6} \\ 0.0004 N_c^2 - 0.0004 N_c^{-2} - 7. \times 10^{-6} & -0.0004 N_c^3 - 0.00001 N_c + 0.0003 N_c^{-3} + 0.0002 N_c^{-1} \end{pmatrix}$

Sebastian Sapeta (IFJ PAN Kraków)

Top pair production at NNLO

[†] We used $\beta = 0.4$, $\theta = 0.5$.

Comparison with Renormalization Group

Double pole

$$\left[S_{ ext{direct}}^{(2,-2)} + S_{ ext{RGE}}^{(2,-2)}
ight]_{eta=0.4, heta=0.5} =$$

$$\begin{pmatrix} -0.0003 N_c^3 - 0.003 N_c + 0.003 N_c^{-1} & -0.001 N_c^2 - 0.004 N_c^{-2} + 0.005 \\ -0.001 N_c^2 - 0.004 N_c^{-2} + 0.005 & -0.0009 N_c^3 + 0.002 N_c + 0.003 N_c^{-3} - 0.005 N_c^{-1} \end{pmatrix}$$

Comparison with Renormalization Group

Double pole

$$\left[S_{
m direct}^{(2,-2)}+S_{
m RGE}^{(2,-2)}
ight]_{eta=0.4, heta=0.5}=$$

$$\begin{pmatrix} -0.0003 N_c^3 - 0.003 N_c + 0.003 N_c^{-1} & -0.001 N_c^2 - 0.004 N_c^{-2} + 0.005 \\ -0.001 N_c^2 - 0.004 N_c^{-2} + 0.005 & -0.0009 N_c^3 + 0.002 N_c + 0.003 N_c^{-3} - 0.005 N_c^{-1} \end{pmatrix}$$

Single pole

$$\begin{bmatrix} S_{\text{direct}}^{(2,-1)} + S_{\text{RGE}}^{(2,-1)} \end{bmatrix}_{\beta=0.4,\theta=0.5} = \\ \begin{pmatrix} -0.0009 N_c^3 - 0.0004 N_c + 0.001 N_c^{-1} & -0.0005 N_c^2 - 0.001 N_c^{-2} + 0.002 \\ -0.0005 N_c^2 - 0.001 N_c^{-2} + 0.002 & (1. \times 10^{-6}) N_c^3 + 0.001 N_c + 0.001 N_c^{-3} - 0.002 N_c^{-1} \end{bmatrix}$$

Sebastian Sapeta (IFJ PAN Kraków)

Through direct calculation of the bare soft function at NNLO, we have shown that:

Through direct calculation of the bare soft function at NNLO, we have shown that:

• It has no
$$\alpha$$
 poles and no ϵ higher than $\frac{1}{\epsilon^2}$.

Through direct calculation of the bare soft function at NNLO, we have shown that:

- It has no α poles and no ϵ higher than $\frac{1}{\epsilon^2}$.
- ▶ The results for $\frac{1}{\epsilon^2}$ and $\frac{1}{\epsilon}$ poles, for both the real and the imaginary part, agree perfectly with the prediction from Renormalization Group.

Through direct calculation of the bare soft function at NNLO, we have shown that:

• It has no α poles and no ϵ higher than $\frac{1}{\epsilon^2}$.

▶ The results for $\frac{1}{\epsilon^2}$ and $\frac{1}{\epsilon}$ poles, for both the real and the imaginary part, agree perfectly with the prediction from Renormalization Group.

Hence, all poles can be removed by the renormalization procedure. And that proves small- q_T factorization for top pair production up to NNLO

$$rac{d\sigma_{pp
ightarrow t ar{t}}^{
m NNLO}}{d\Phi} = \mathcal{B}_1 \otimes \mathcal{B}_2 \otimes \mathcal{H} \otimes \mathcal{S} + \mathcal{O}\left(rac{q_T^2}{q^2}
ight).$$

 $S^{(2,\mathsf{bare})}(L_{\perp},\beta,\theta) = S^{(2,0)}_{\mathsf{bubble}}(\beta,\theta) + S^{(2,0)}_{1-\mathsf{cut}}(\beta,\theta) + S^{(2,0)}_{2-\mathsf{cut}}(\beta,\theta) + \mathsf{pole} \text{ part}$

$$S^{(2,\mathsf{bare})}(L_{\perp},\beta,\theta) = S^{(2,0)}_{\mathsf{bubble}}(\beta,\theta) + S^{(2,0)}_{1-\mathsf{cut}}(\beta,\theta) + S^{(2,0)}_{2-\mathsf{cut}}(\beta,\theta) + \mathsf{pole} \ \mathsf{part}$$

$$S_{\text{bubble}}^{(2,0)}(\beta,\theta)$$
 mostly analytic

$$S^{(2,\mathsf{bare})}(L_{\perp},\beta,\theta) = S^{(2,0)}_{\mathsf{bubble}}(\beta,\theta) + S^{(2,0)}_{1-\mathsf{cut}}(\beta,\theta) + S^{(2,0)}_{2-\mathsf{cut}}(\beta,\theta) + \mathsf{pole} \text{ part}$$

$$S_{\text{bubble}}^{(2,0)}(\beta,\theta)$$
 mostly analytic
 $S_{1-\text{cut}}^{(2,0)}(\beta,\theta)$ numeric, high accuracy

$$S^{(2,\mathsf{bare})}(L_{\perp},\beta,\theta) = S^{(2,0)}_{\mathsf{bubble}}(\beta,\theta) + S^{(2,0)}_{1-\mathsf{cut}}(\beta,\theta) + S^{(2,0)}_{2-\mathsf{cut}}(\beta,\theta) + \mathsf{pole} \text{ part}$$

$$S_{\text{bubble}}^{(2,0)}(\beta,\theta)$$
 mostly analytic
 $S_{1-\text{cut}}^{(2,0)}(\beta,\theta)$ numeric, high accuracy
 $S_{2-\text{cut}}^{(2,0)}(\beta,\theta)$ analytic + numeric

$$S^{(2,\mathsf{bare})}(L_{\perp},\beta,\theta) = S^{(2,0)}_{\mathsf{bubble}}(\beta,\theta) + S^{(2,0)}_{1-\mathsf{cut}}(\beta,\theta) + S^{(2,0)}_{2-\mathsf{cut}}(\beta,\theta) + \mathsf{pole part}$$

$$S_{\text{bubble}}^{(2,0)}(eta, heta)$$
 mostly analytic
 $S_{1-\text{cut}}^{(2,0)}(eta, heta)$ numeric, high accuracy
 $S_{2-\text{cut}}^{(2,0)}(eta, heta)$ analytic + numeric

$$S_{2\text{-cut, numeric part}}^{(2,0)}(\beta = 0.4, \theta = 0.5) = \\ \begin{pmatrix} 16.4 N_c^3 - 9.48 N_c - 6.95 N_c^{-1} & -7.65 N_c^2 + 6.07 N_c^{-2} + 1.58 \\ -7.65 N_c^2 + 6.07 N_c^{-2} + 1.58 & 1.13 N_c^3 + 0.228 N_c - 4.34 N_c^{-3} + 2.98 N_c^{-1} \end{pmatrix}$$

Sebastian Sapeta (IFJ PAN Kraków)

$$S^{(2,\mathsf{bare})}(L_{\perp},\beta,\theta) = S^{(2,0)}_{\mathsf{bubble}}(\beta,\theta) + S^{(2,0)}_{1\mathsf{-cut}}(\beta,\theta) + S^{(2,0)}_{2\mathsf{-cut}}(\beta,\theta) + \mathsf{pole part}$$

$$S_{\text{bubble}}^{(2,0)}(\beta,\theta) \mod \text{mostly analytic}$$

$$S_{1-\text{cut}}^{(2,0)}(\beta,\theta) \mod \text{numeric, high accuracy}$$

$$S_{2-\text{cut}}^{(2,0)}(\beta,\theta) \pmod {N_c^{(2,0)}}$$

$$S_{2-\text{cut, numeric part}}^{(2,0)}(\beta=0.4,\theta=0.5) = PRELIMINARY$$

$$\left(\frac{16.4 N_c^3 - 9.48 N_c - 6.95 N_c^{-1}}{-7.65 N_c^2 + 6.07 N_c^{-2} + 1.58} + 1.13 N_c^3 + 0.228 N_c - 4.34 N_c^{-3} + 2.98 N_c^{-1}\right)$$

► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- ► The only missing component: the NNLO soft function

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- ► The only missing component: the NNLO soft function
- ► We have constructed a sector decomposition-based framework and used it to complete the calculation of the the small-q_T soft function for top pair production at NNLO

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- ► We have constructed a sector decomposition-based framework and used it to complete the calculation of the the small-q_T soft function for top pair production at NNLO
- > The framework has been extensively validated and cross-checked:
 - 1. Cancellation of α poles, including ϵ/α , and ϵ poles beyond $1/\epsilon^2$
 - 2. Perfect agreement with analytic calculation for bubble graphs
 - 3. RG result for the complete NNLO soft function recovered: real and imaginary part

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- ► We have constructed a sector decomposition-based framework and used it to complete the calculation of the the small-q_T soft function for top pair production at NNLO
- > The framework has been extensively validated and cross-checked:
 - 1. Cancellation of α poles, including ϵ/α , and ϵ poles beyond $1/\epsilon^2$
 - 2. Perfect agreement with analytic calculation for bubble graphs
 - 3. RG result for the complete NNLO soft function recovered: real and imaginary part \rightarrow direct demonstration of validity of the small- q_T factorization for top pair production at NNLO

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- ▶ We have constructed a sector decomposition-based framework and used it to complete the calculation of the the small-q_T soft function for top pair production at NNLO
- > The framework has been extensively validated and cross-checked:
 - 1. Cancellation of α poles, including $\epsilon/\alpha,$ and ϵ poles beyond $1/\epsilon^2$
 - 2. Perfect agreement with analytic calculation for bubble graphs
 - 3. RG result for the complete NNLO soft function recovered: real and imaginary part \rightarrow direct demonstration of validity of the small- q_T factorization for top pair production at NNLO
- The soft function can now be used to obtain full tt cross section at NNLO as well for resummation up to NNLL'

Sebastian Sapeta (IFJ PAN Kraków)

Acknowledgements

The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement NO. 665778.

