

The massive three loop form factor in the planar limit

Narayan Rana

DESY, Zeuthen

April 30, 2018

in collaboration with J. Ablinger, J. Blümlein, P. Marquard, C. Schneider

Loops and Legs 2018, St Goar, Germany

Plan of this talk

1. Preliminary

- 2. Computational details
- 3. Renormalization
- 4. Infrared structure
- 5. Results
- 6. Conclusion

The heaviest SM particle

- probes the Higgs sector most
- plays unique role in understanding the EW symmetry breaking
- ✓ New physics potential : perfect place to manifest it

Buttazzo et. al. Jul'13

- ✓ Does not hadronize opportunity to study it as a single particle -Spin properties, Interaction vertices, Precise description of mass
- ✓ High precision will be achieved at the future electron-positron colliders
 In order to match the experimental accuracy, precise predictions are required on the theoretical side as well

- \checkmark The form factors are basic building blocks for many physical quantities
- ✓ They exhibit a universal infrared behavior leads to information on anomalous dimensions
- ✓ The massive cusp anomalous dimension controls the infrared structure of massive form factors - studying the form factors helps in better understanding of the massive cusp
- ✓ Another important motive is to study high energy behavior of the massive form factors

Preliminary

The process

We consider the decay of a color neutral massive particle to a pair of heavy quark of mass m.

The general structure

Vector and Axial Vector

$$V: -i\delta_{ij}v_Q\left(\gamma^{\mu}F_{V,1} + \frac{i}{2m}\sigma^{\mu\nu}q_{\nu}F_{V,2}\right)$$

$$A: -i\delta_{ij}a_Q\left(\gamma^{\mu}\gamma_5 F_{A,1} + \frac{1}{2m}q^{\mu}\gamma_5 F_{A,2}\right)$$

$$\overline{t}$$

The form factors are expanded in the strong coupling constant as

$$F_I = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^n F_I^{(n)}$$

To obtain $F_I^{(n)} \Rightarrow$ appropriate projector on the amplitudes

$$P_{V,i} = \frac{i}{v_Q} \frac{\not{q}_2 - m}{m} \left(\gamma_\mu g_{V,i}^1 + \frac{1}{2m} (q_{2\mu} - q_{1\mu}) g_{V,i}^2 \right) \frac{\not{q}_1 + m}{m} ,$$

$$P_{A,i} = \frac{i}{a_Q} \frac{\not{q}_2 - m}{m} \left(\gamma_\mu \gamma_5 g_{A,i}^1 + \frac{1}{2m} (q_{1\mu} + q_{2\mu}) \gamma_5 g_{A,i}^2 \right) \frac{\not{q}_1 + m}{m} ,$$

$$P_S = \frac{v}{2ms_Q} \frac{\not{q}_2 - m}{m} \left(g_S \right) \frac{\not{q}_1 + m}{m} , P_P = \frac{v}{2mp_Q} \frac{\not{q}_2 - m}{m} \left(i\gamma_5 g_P \right) \frac{\not{q}_1 + m}{m} ,$$

 $g_I \equiv g_I(s, d)$ and are determined by applying the projectors on the generic Lorentz structure.

NLO and beyond NLO

[Arbuzov, Bardin, Leike '92; Djouadi, Lampe, Zerwas '95] [Braaten, Leveille '80; Sakai '80; Drees, Hikasa '90] [Altarelli, Lampe '93; Ravindran, van Neerven '98; Catani, Seymour '99] [Gorishnii *et. al.* '91; Chetyrkin, Kwiatkowski '95; Harlander, Steinhauser '97]

NNLO

NNNLO

$$\begin{split} F_{V,i}^{(3)}|_{\text{large N}} & \text{(talk by M. Steinhauser)} \\ F_{V,i}^{(3)}|_{n_l} \text{ contributions} \\ F_{V,i}^{(4)}|_{partial \ poles \ in \ large \ Q^2} \end{split}$$

[Henn, Smirnov, Smirnov, Steinhauser '16] [Lee, Smirnov, Smirnov, Steinhauser '18] [Ahmed, Henn, Steinhauser '17]

In this talk, we present

- Automatizing the technique to compute the first order factorizable system of differential equations.
- Results for the master integrals which contribute to color-planar diagrams and full light quark dependence.
- Color-planar (N_C^3) and complete light quark (n_l) contributions for $F_{V,i}^{(3)}, F_{A,i}^{(3)}, F_S^{(3)}$ and $F_P^{(3)}$.

J. Ablinger, J. Blümlein, P. Marquard, N. Rana and C. Schneider, Heavy Quark Form Factors at Three Loops in the Planar Limit, arXiv:1804.07313 [hep-ph].

J. Ablinger, J. Blümlein, P. Marquard, N. Rana and C. Schneider, DESY 18-053.

* A parallel computation in arXiv:1804.07310 [hep-ph] (talk by M. Steinhauser)

Computational details

The generic procedure

$$d = 4 - 2\epsilon$$

- Diagrammatic approach -> QGRAF [Nogueira] to generate diagrams
- FORM [Vermaseren] for algebraic manipulation : Lorentz, Dirac and Color [Ritbergen, Schellekens, Vermaseren] algebra
- Decomposition of the dot products to obtain scalar integrals

$$\frac{2l.p}{l^2(l-p)^2} = \frac{l^2 - (l-p)^2 + p^2}{l^2(l-p)^2} = \frac{1}{(l-p)^2} - \frac{1}{l^2} + \frac{p^2}{l^2(l-p)^2}$$

- Identity relations among scalar integrals : *IBPs & SRs*
- Algebraic linear system of equations relating the integrals
 ↓
 Master integrals (MIs)
- Crusher [Marquard, Seidel] for reduction to master integrals
- Computation of MIs : Differential eqns.

Computing the master integrals

A scalar integral can be expressed as

$$J(\nu_1,\ldots,\nu_n) = \left((4\pi)^{2-\epsilon} e^{\epsilon \gamma_E} \right)^3 \int \frac{d^d l_1}{(2\pi)^d} \frac{d^d l_2}{(2\pi)^d} \frac{d^d l_3}{(2\pi)^d} \frac{1}{D_1^{\nu_1} \ldots D_n^{\nu_n}}$$

For example

To evaluate the integral \rightarrow Feynman parametrization, Mellin-Barnes ... We use the method of differential equations!

$$\frac{q^2}{m^2} = -\frac{(1-x)^2}{x}$$

The integral is a function of d, q^2 and m^2 .

$$J({\bf 1},{\bf 1},{\bf 1},{\bf 1},{\bf 1},{\bf 1},{\bf 1},{\bf 1},{\bf 1})\equiv f(d,\,q^2,\,m^2)\equiv f(d,\,x)$$

The idea is to obtain a differential eqn. for the integral w.r.t. x and solve it.

$$\frac{q^2}{m^2} = -\frac{(1-x)^2}{x}$$

The integral is a function of d, q^2 and m^2 .

$$J(1, 1, 1, 1, 1, 1, 1, 1, 1) \equiv f(d, q^2, m^2) \equiv f(d, x)$$

The idea is to obtain a differential eqn. for the integral w.r.t. x and solve it.

$$\frac{d}{dx}J_i = \text{some combinations of integrals}$$
$$\downarrow \text{ IBP identities}$$
$$= \sum_j c_{ij}J_j$$

 c_{ij} 's are rational function of x.

$$\frac{q^2}{m^2} = -\frac{(1-x)^2}{x}$$

The integral is a function of d, q^2 and m^2 .

$$J(1, 1, 1, 1, 1, 1, 1, 1, 1) \equiv f(d, q^2, m^2) \equiv f(d, x)$$

The idea is to obtain a differential eqn. for the integral w.r.t. x and solve it.

$$d_{\mathcal{X}} \begin{pmatrix} J_{1} \\ J_{2} \\ J_{3} \\ J_{4} \\ \vdots \\ J_{n} \end{pmatrix} = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet & \cdots & \bullet \\ \bullet & \bullet & \bullet & \cdots & \bullet \\ \bullet & \bullet & \bullet & \bullet & \cdots & \bullet \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \bullet & \bullet & \bullet & \bullet & \cdots & \bullet \end{bmatrix} \begin{pmatrix} J_{1} \\ J_{2} \\ J_{3} \\ J_{4} \\ \vdots \\ J_{n} \end{pmatrix}$$

To solve such a system, it would be best to organize it in such a way that it diagonalizes, or at least it takes a block-triangular form.

$$d_x \begin{pmatrix} J_1 \\ J_2 \\ J_3 \\ J_4 \\ \vdots \\ J_n \end{pmatrix} = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet & \cdots & \bullet \\ 0 & \bullet & \bullet & \bullet & \cdots & \bullet \\ 0 & \bullet & \bullet & \bullet & \cdots & \bullet \\ 0 & 0 & 0 & \bullet & \cdots & \bullet \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \bullet \end{bmatrix} \begin{pmatrix} J_1 \\ J_2 \\ J_3 \\ J_4 \\ \vdots \\ J_n \end{pmatrix}$$

1	• 0	•	٠	٠	٠	0	0	٠	٠	٠	٠	٠	0	0	0	0	0	0	0	о	0	٠	0	٠	0	0	0	о	0	0	0	٠	٠	٠	٠	•	• (0 0	• د	٠	0	٠	٠	٠	٠	٠	٠
			٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	0	0	0	0	0	٠	٠	٠	0	٠	٠	0	٠	0	0	0	0	٠	٠	٠	•	•			• د				٠	٠	٠	٠	٠
			0	0	o	0	0	٠	٠	٠	٠	٠	0	٠	0	0	0	0	0	٠	٠	0	0	0	٠	0	٠	о	0	0	0	٠	٠	٠	•	•	э (• •			٠		٠	٠	٠	٠	٠
	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o (0 0	0 0	0	0	0	0	0	0	0	0
	0 0	0	0	٠	٠	0	0	٠	٠	٠	٠	٠	0	0	0	0	0	0	0	0	0	٠	0	٠	0	0	0	0	0	0	0	٠	٠	٠	•	•	• •	o 0	•		0		٠	٠	٠	٠	٠
	0 0	0	0	٠	٠	0	0	٠	٠	٠	٠	٠	0	0	0	0	0	0	0	0	0	٠	0	٠	0	0	0	0	0	0	0	٠	٠	٠	•	•	• •	5 0			0		٠	٠	٠	٠	٠
	0.0	ò	ò	0	0	•	•	0	0	0	0	0	ò	ò	ò	ò	ò	ò	ò	ò	ò	0	ò	0	ò	•	ò	ò	ò	ò	ò	0	0	0	0	0	5 0				0		0	0	0	0	٠
	ōċ	ō	ō	ō	õ	÷	÷	õ	õ	ō	õ	ō	ō	ō	õ	ō	õ	õ	õ	ō	ō	õ	•	ō	õ	÷	õ	ō	ō	õ	õ	ō	ō	õ	õ	٥ı	5 0				ō		ō	ō	ō	ō	÷
	ò c	ò	ō	ò	ò	0	0	÷	÷				ò	ò	õ	ò	ò	ō	ò	ò	ò	ò	0	ò	ò	0	ò	ō	ò	ò	ō.	÷	÷	÷	÷		5 0	5 c			ò					÷	
	0.0	0	ō	ō	õ	õ	õ	÷	÷	ō			õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ō	õ	õ	ō	õ	õ	õ	õ	÷	÷	÷			5 6	5 6			ō	ō					÷
	õč	ō	ŏ	õ	õ	õ	õ	÷	õ	ě			õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ		õ	õ		ō,	5 d	5 6	5.		ŏ	ŏ				õ	õ
	õč	0	ŏ	õ	õ	õ	õ	-	÷	-			õ	õ	õ	õ.	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ.	-	õ	õ	÷.	ŏ,	5 6	57	50	0	ŏ					÷.	÷
	00	0	ŏ	õ	õ	õ	ŏ	÷	÷	÷			õ	õ	ŏ	ŏ	õ	õ	õ	ŏ	õ	õ	ŏ	õ	õ	õ	õ	õ	õ	õ	ŏ		ě	ě			5 6	5 6	i.		ŏ						õ
	ŏč	ŏ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ě	ě.	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ě.	õ	õ	õ	õ	õ	õ	õ	õ.	ō .	5.		50	ō	ň	ō					õ
	000	ŏ	ŏ	ŏ	õ	õ	ŏ	õ	õ	õ	ŏ	ŏ	-	-	ŏ	ŏ	õ	ŏ	õ	õ	õ	õ	ŏ	ŏ	ŏ	ŏ	-	õ	ŏ	ŏ	ŏ	ě	õ	ŏ	ŏ.	ŏ	5	2	ŝŏ	Ň	0	ŏ			-	-	õ
	õ õ			õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ě	õ	õ	ě	ŏ	õ	õ	ŏ	õ	õ	õ	õ	õ.	ž	ě.	ě	ě.	õ	õ	õ	õ.	ŏ .	5.7	5.2	ίŏ	Ň		ě	-	-	-	õ	õ
	ŏč	ŏ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	-	ě	ž	-	ě.	õ	õ	õ	õ	õ	ě.	ě.	ě.	-	-	-	-	õ	õ	õ	õ.	ŏ	5.6	5.2	ìõ	Ň						õ	õ
	200		ŏ	õ	č	õ	š	š	č	õ	õ	õ	õ	õ	-	-	-	-	-	š	č	õ	õ	š	-	-	-	-	-	-	-	č	č	č	ŏ.	ŏ	57	52	śŏ	ŏ			-	-	-	õ	č
	200			õ	~	š	š	č	õ	ŏ	ŏ	~	õ	š	1	ŏ.	Ξ			õ	õ	š	ŏ	~	Ξ.		Ξ.	ā.	Ξ.		Ξ.	~	č	ž	ŏ	~ `	22		50				-	-		~	č
	õč	ŏ	ŏ	õ	õ	õ	š	õ	õ	ŏ	ŏ	õ	õ	ŏ	-	š	-	-	-	õ	õ	ŏ	ŏ	õ	-	-	-	-	-	-	-	õ	ŏ	ŏ	õ.	ŏ	Š	52	ŝõ	ŏ			-	-	-	õ	õ
	200		20	~	~	š	š	~	č	č	š	~	š	š	-		ā	-	-	-	-	š	š	~		-	~	-		-	-	~	-	-	-	-									~	-	č
	200			õ	õ	š	š	õ	õ	ŏ	ŏ	~	õ	š	č	~	õ	ž	č	Ξ	1	š	ŏ	~	Ξ.	š	č	č	č	ž	č	~	Ξ.		Ξ.		5		50		ŏ		~	ŏ	š	Ξ.	č
	čč			š	š	š	ž	š	š	š	š	õ	š	š	š	š	č	ž	š	~	ā	ž	š	š	~	ž	š	š	č	ž	š	š							Śŏ	Ň	ŏ		č	č	š		č
	200		20	~	~	š	š	~	~	~	š	~	č	š	š	~	č	č	č	~	~	-	ž	~	č	š	š	~	č	ž	č	~		-	ā.,		- 2				ŏ		~	~	š	-	~
	200	ŏ		õ	õ	š	š	õ	õ	ŏ	ŏ	~	õ	š	š	õ	õ	š	č	õ	õ	š	ā	-	č	š	č	č	č	ž	č	õ	č	ž	ŏ	~ `	52	5.2	1.		ŏ		~	ŏ	š	~	č
	čč		~	š	š	š	ž	š	š	š	š	š	š	š	š	š	č	š	š	š	č	š	š	~	~	ž	š	š	č	ž	š	š	č	ž	ŏ.	č.		: 2	5.0		ŏ		č	č	š	š	č
	200			õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ž	õ	õ	õ	õ	õ	õ	õ	õ	õ.	~ `	57	52	50	ŏ	ŏ		~	~	õ	õ	õ
	200	ŏ		õ	õ	š	š	õ	õ	ŏ	ŏ	õ	õ	š	š	õ	õ	š	č	õ	ŏ	š	ŏ	õ	č	ŏ.	ě	č	č	ž	č	õ	č	ž	õ.	~ `	52	5.2	50	ŏ	ě	ā		ŏ	ě	~	õ
	õč	ŏ	ŏ	ŏ	õ	õ	ŏ	õ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	õ	č	õ	õ	õ	ŏ	ŏ	õ	ŏ	ā	õ	ŏ	ŏ	ŏ.	õ	ŏ	ŏ	ŏ.	ŏ	58	52	ŝõ	Ň		ŏ	0	õ	0	õ	õ
	200			õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ě.	ě	-	õ	õ	õ	õ.	~ `	57	5.2	50	ŏ	ŏ					õ	õ
	200	ŏ		õ	õ	š	š	õ	õ	ŏ	ŏ	õ	õ	š	š	õ	õ	š	š	õ	ŏ	š	ŏ	õ	č	š	č	č	Ξ.	-	Ξ.	õ	č	š	õ.	~ `	52	5.2	ŝõ	ŏ	ŏ		-	-		õ	õ
	õč	ŏ	ŏ	ŏ	õ	õ	ŏ	õ	õ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	õ	õ	õ	õ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	-	ō.	-	ŏ	ŏ	ŏ	ŏ.	ŏ	5 8	52	ŝõ	Ň	ŏ		-	-	-	õ	õ
	200			õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ā	ě.	õ	õ	õ.	~ `		5.2	50	Ň	ŏ			~	-	ě	õ
	ŏč	ŏ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ě.	ě.	ě		5.2	5.2	šŏ	Ň	ŏ		ō	õ	õ		õ
	õč	ŏ	ŏ	ŏ	õ	õ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	õ	õ	õ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ.	ŏ	-	-	-		5 8	52	ŝõ	Ň	ŏ		õ	õ	ŏ	-	õ
	00	0	0	õ	õ	õ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ		-			5 6	5 6	ίõ	0	ŏ		õ	0	õ		õ
	ŏč	ŏ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	-	-			5.2	5.2	šŏ	Ň	ŏ		ŏ	õ	ŏ		õ
	000	ŏ	ŏ	ŏ	õ	õ	ŏ	õ	õ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	õ	õ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	õ	ō.	õ.	ō .	5 8	52	ŝŏ	Ň	ŏ		õ	õ	ŏ	õ	õ
	20			õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ.	ŏ .			ŝŏ	Ň	ŏ	ŏ	õ	~	õ	ě	õ
	ŏč	ŏ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ.	ŏ	5.0		Ň	Ň	ŏ	ŏ	ŏ	õ	õ	õ	ě
	000	ŏ	ŏ	ŏ	õ	õ	ŏ	õ	õ	õ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	õ	õ	õ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	õ	ŏ	õ	õ	ŏ	ŏ.	ŏ	5 8	57			ŏ	ŏ	õ	õ	ŏ	õ	õ
	õ õ			õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ŏ	õ	õ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ.	ŏ .	5.2	5.2			ŏ	ŏ	ŏ	õ	ŏ	õ	ž
	õč	ŏ	ŏ	õ	õ	ŏ	š	õ	õ	ŏ	ŏ	õ	õ	ŏ	š	õ	õ	č	š	õ	õ	ŏ	ŏ	õ	õ	č	ŏ	õ	ŏ	č	č	õ	ŏ	č	õ.	ŏ .	52	52	ŝō		ŏ	ŏ	õ	õ	ŏ	õ	õ
	õč		0	0	õ	õ	õ	õ	õ	0	0	0	õ	õ	õ	õ	õ	õ	õ	0	õ	õ	õ	õ	õ	õ	õ.	õ	õ	õ	õ	õ	õ	õ	õ .	ŏ	5 6	ŝ	ŝõ	ň			0	~	0	0	š
1	õč			~	õ	š	š	š	õ	~	~	~	õ	š	š	~	õ	š	š	š	õ	š	õ	~	š	š	õ	š	õ	š	š	~	š	š	õ	ŏ	52	5.2	50	ŏ	ŏ			~		~	š
1	õ õ		ŏ	õ	š	ŏ	ŏ	š	š	~	õ	õ	š	ŏ	š	õ	š	õ	õ	š	š	ŏ	ŏ	õ	õ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ.	č.	ž	5.6		ň	ŏ	ň		ž	-	õ	š
1	õč		0	0	õ	õ	õ	0	õ	0	0	0	õ	õ	õ	õ	õ	õ	õ	0	õ	~	~	õ	õ	õ	õ.	õ	õ	õ	õ	õ	õ	~	õ .	ŏ	5 6	ŝ	50	ň						0	õ
J	20		č	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	ŏ	š	5.0	50	ň	ŏ	ň	ő	ć	0	õ	õ
1	õč	Ň	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	š	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ.	õ	õ	õ	õ.	ŏ	ñ d	5.2	50	Ň	ŏ	ň	0	0	õ	õ	õ
		~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~			- `				~	-	~	~	~	~

Let's consider the 12^{th} blob from below

$$\frac{d}{dx} \begin{pmatrix} J_1 \\ J_2 \\ J_3 \end{pmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \begin{pmatrix} J_1 \\ J_2 \\ J_3 \end{pmatrix} + \begin{pmatrix} R_1(\epsilon, x) \\ R_2(\epsilon, x) \\ R_3(\epsilon, x) \end{pmatrix},$$

$$\begin{split} c_{11} &= \frac{(7+6x+7x^2-2d(1+x+x^2))}{x(1+x)^2} \ , \\ c_{12} &= \frac{(-4+d)(-10+3d)}{2(-3+d)^2(1+x)^2} \ , \\ c_{13} &= \frac{(d^2(15+8x+15x^2)+8(20+9x+20x^2)-2d(49+24x+49x^2))}{4(-3+d)^2x(1+x)^2} \ , \ldots \end{split}$$

$$\frac{d}{dx} \left(\begin{array}{c} J_1 \\ J_2 \\ J_3 \end{array} \right) = \left[\begin{array}{ccc} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{array} \right] \left(\begin{array}{c} J_1 \\ J_2 \\ J_3 \end{array} \right) + \left(\begin{array}{c} R_1(\epsilon, x) \\ R_2(\epsilon, x) \\ R_3(\epsilon, x) \end{array} \right),$$

$$\begin{split} c_{11} &= \frac{(7+6x+7x^2-2d(1+x+x^2))}{x(1+x)^2} \ , \\ c_{12} &= \frac{(-4+d)(-10+3d)}{2(-3+d)^2(1+x)^2} \ , \\ c_{13} &= \frac{(d^2(15+8x+15x^2)+8(20+9x+20x^2)-2d(49+24x+49x^2))}{4(-3+d)^2x(1+x)^2} \ , \ldots \end{split}$$

For these topologies, the integrals can have, at max, a cubic pole in ϵ .

$$J_{i} = \frac{1}{\epsilon^{3}}J_{i}^{-3} + \frac{1}{\epsilon^{2}}J_{i}^{-2} + \frac{1}{\epsilon}J_{i}^{-1} + J_{i}^{0} + \epsilon J_{i}^{1} + \cdots$$

Series expansion and compare each order of ϵ !

$$\frac{d}{dx} \left(\begin{array}{c} J_1 \\ J_2 \\ J_3 \end{array} \right) = \left[\begin{array}{ccc} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{array} \right] \left(\begin{array}{c} J_1 \\ J_2 \\ J_3 \end{array} \right) + \left(\begin{array}{c} R_1(\epsilon, x) \\ R_2(\epsilon, x) \\ R_3(\epsilon, x) \end{array} \right),$$

$$\begin{split} c_{11} &= \frac{(7+6x+7x^2-2d(1+x+x^2))}{x(1+x)^2} , \\ c_{12} &= \frac{(-4+d)(-10+3d)}{2(-3+d)^2(1+x)^2} , \\ c_{13} &= \frac{(d^2(15+8x+15x^2)+8(20+9x+20x^2)-2d(49+24x+49x^2))}{4(-3+d)^2x(1+x)^2} , \dots \end{split}$$

Each order in ϵ -expansion gives a much simpler form

$$\frac{d}{dx} \left(\begin{array}{c} J_1^{-3} \\ J_2^{-3} \\ J_3^{-3} \end{array} \right) = \left[\begin{array}{ccc} \frac{1}{x} + \frac{2}{1-x} & 0 & \frac{1}{1+x} - \frac{2}{x} - \frac{3}{1-x} \\ -\frac{1}{x} + \frac{2}{1+x} & \frac{1}{1+x} - \frac{1}{x} - \frac{1}{1-x} & \frac{1}{x} - \frac{7}{1-x} \\ \frac{1}{x} + \frac{2}{1-x} & 0 & \frac{1}{1+x} - \frac{2}{x} - \frac{3}{1-x} \end{array} \right] \left(\begin{array}{c} J_1^{-3} \\ J_2^{-3} \\ J_3^{-3} \end{array} \right) + \left(\begin{array}{c} R_1^{-3}(x) \\ R_2^{-3}(x) \\ R_3^{-3}(x) \end{array} \right),$$

Algorithm - I : the homogeneous part

- It boils down to solving a system of linear first order diff. eqns.
- A natural first step is to reduce the system to a higher order equation in a single unknown
 - Note that, the inverse operation is trivial!
- The classical/naive method to achieve this uncoupling is the cyclic vector algorithm
- But, it gives a complicated decoupled equation.
- Few smarter uncoupling algorithms

Zürcher Incomplete Zürcher Abramov and Zima

Implemented in OreSys [Gerhold, Schneider]

The 12^{th} blob from below

Applying one of the algorithms to ϵ^{-3} part

$$\begin{bmatrix} \frac{d^2}{dx^2} - \frac{2}{1-x}\frac{d}{dx} + \left(\frac{2}{x} - \frac{2}{1+x} - \frac{2}{(1+x)^2}\right) \end{bmatrix} I_1^{-3}(x) = r_1^{-3}(x)$$
$$\begin{bmatrix} \frac{d}{dx} - \left(\frac{1}{1-x} + \frac{1}{x} - \frac{1}{1+x}\right) \end{bmatrix} I_2^{-3}(x) = r_2^{-3}(x)$$

Solving for homogeneous part of each diff. eqns.

$$y_1(x) = \frac{x}{1-x^2}, \quad y_2(x) = 1 - \frac{2x}{1-x^2}H(0,x); \qquad \mu(x) = \frac{1}{x} - x;$$

Next, use variation of constant to obtain the solution

$$I_{1}^{-3}(x) = y_{1}(x) \left[C_{1} - \int dx \frac{r_{1}^{-3}(x)y_{2}(x)}{W(y_{1}, y_{2})} \right] + y_{2}(x) \left[C_{2} + \int dx \frac{r_{1}^{-3}(x)y_{1}(x)}{W(y_{1}, y_{2})} \right]$$
$$I_{2}^{-3}(x) = \frac{1}{\mu(x)} \left(C_{3} + \int dx \mu(x)r_{2}^{-3}(x) \right)$$

 $W(y_1, y_2)$ is the Wronskian.

Finally
$$J_i^{-3}(x) = f_i(\{I_1^{-3}(x), I_2^{-3}(x)\})!$$

Algorithm - II : the nonhomogeneous part

- $\cdot\,$ Structure of homogeneous part is same at each order in $\epsilon\text{-expansion}$
- Hence the homogeneous solutions and uncoupling procedure are similar for each order
- + Start with the ϵ^{-3} part
- Find the best uncoupling for the sub-system and solve for the corresponding homogeneous solutions
- Now at each order in $\epsilon,$ find the nonhomogeneous parts keeping the uncoupling structure fixed
- Solve order by order in ϵ using variation of constant

All of this have been automatized using

Sigma [Schneider], OreSys [Gerhold, Schneider] and HarmonicSums [Ablinger, Blümlein, Schneider]

The results are obtained in terms of HPLs and Cyclotomic HPLs.

Boundary conditions are fixed by imposing regularity of the integrals in the limit of vanishing space-like momentum $q^2 \rightarrow 0$ *i.e.* $x \rightarrow 1$.

- In the planar limit, the integrals are regular in y = 1 - x, and hence can be expanded as follows

$$J_i(y) = \sum_{n=0}^{\infty} \sum_{j=-3}^{r} \epsilon^j C_{i,j}(n) y^n$$

- $\cdot \ q^2
 ightarrow$ 0 reduces them to known two-point integrals, providing $C_{i,j}(0)$
- The differential equations now can be solved to obtain $C_{i,j}(n)$ for sufficiently high order (n) in y

Iterated integrals and Harmonic polylogarithms (HPLs)

Given a set of integration kernels $K_i(t)$, one can define

$$\mathcal{I}(i_n,\ldots,i_1,x) = \int_{x_0}^x K_{i_n}(t)\mathcal{I}(i_{n-1},\ldots,i_1,t)dt$$

Classic example is $Li_n(x)$. We have five kernels K_m

$$\left\{0, 1, -1, \{6, 0\}, \{6, 1\}\right\} \equiv \left\{\frac{1}{x}, \frac{1}{1-x}, \frac{1}{1+x}, \frac{1}{1-x+x^2}, \frac{x}{1-x+x^2}\right\}$$

and correspondingly we define the HPLs as

$$H(m_n, \dots, m_1, x) = \int_0^x K_{m_n}(t) H(m_{n-1}, \dots, m_1, t) dt$$

Some important properties :

Shuffle algebra, Scaling invariance and integration-by-parts identities

Iterated integrals and Harmonic polylogarithms (HPLs)

Given a set of integration kernels $K_i(t)$, one can define

$$\mathcal{I}(i_n,\ldots i_1,x) = \int_{x_0}^x K_{i_n}(t) \mathcal{I}(i_{n-1},\ldots i_1,t) dt$$

Classic example is $Li_n(x)$. We have five kernels K_m

$$\left\{0, 1, -1, \{6, 0\}, \{6, 1\}\right\} \equiv \left\{\frac{1}{x}, \frac{1}{1-x}, \frac{1}{1+x}, \frac{1}{1-x+x^2}, \frac{x}{1-x+x^2}\right\}$$

and correspondingly we define the HPLs as

$$H(m_n, \dots, m_1, x) = \int_0^x K_{m_n}(t) H(m_{n-1}, \dots, m_1, t) dt$$

Some important properties :

Shuffle algebra, Scaling invariance and integration-by-parts identities

New!

Renormalization

We consider a hybrid scheme for UV renormalization.

Heavy quark mass and wave function $(Z_{m,OS}, Z_{2,OS})$: On-shell QCD strong coupling constant (Z_{a_s}) : \overline{MS}

The renormalization of F_I for these topologies, is straightforward

$$F_{V,i} = Z_{2,OS} \hat{F}_{V,i} \qquad F_S = Z_{m,OS} Z_{2,OS} \hat{F}_S$$
$$F_{V,i} = Z_{2,OS} \hat{F}_{V,i} \qquad F_P = Z_{m,OS} Z_{2,OS} \hat{F}_P$$

where \hat{F}_I contains the counterterms from mass renormalization.

For Axial-Vector and Pseudo-Scalar currents, for these topologies *i.e.* the non-singlet case, both the γ_5 -matrices appear in the same chain of Dirac matrices, which allows us to use anti-commuting γ_5 in D space-time dimensions.

Infrared structure

The infrared singularities factorize as a multiplicative factor
[Becher, Neubert '09]

$$F_I(\epsilon, x) = Z(\epsilon, x, \mu) F_I^{fin}(x, \mu)$$

 $Z(\epsilon,x,\mu)$ is universal/independent of current $F_I^{fin}(x,\mu)$ is finite as $\epsilon \to 0$

Renormalization group evolution of $Z(\epsilon, x, \mu)$ provides

$$\begin{split} Z(\epsilon, x, \mu) &= 1 + \left(\frac{\alpha_s}{4\pi}\right) \left[\frac{\Gamma_0}{2\epsilon}\right] + \left(\frac{\alpha_s}{4\pi}\right)^2 \left[\frac{1}{\epsilon^2} \left(\frac{\Gamma_0^2}{8} - \frac{\beta_0 \Gamma_0}{4}\right) + \frac{1}{\epsilon} \left(\frac{\Gamma_1}{4}\right)\right] \\ &+ \left(\frac{\alpha_s}{4\pi}\right)^3 \left[\frac{1}{\epsilon^3} \left(\frac{\Gamma_0^3}{48} - \frac{\beta_0 \Gamma_0^2}{8} + \frac{\beta_0^2 \Gamma_0}{6}\right) + \frac{1}{\epsilon^2} \left(\frac{\Gamma_0 \Gamma_1}{8} - \frac{\beta_1 \Gamma_0}{6}\right) + \frac{1}{\epsilon} \left(\frac{\Gamma_2}{6}\right)\right] \end{split}$$

 Γ_n is the n^{th} order massive cusp anomalous dimension.

[Korchemsky, Radyushkin '87, '92; Grozin, Henn, Korchemsky, Marquard '14, '15]

Results

Results & Checks

- We have computed the master integrals to obtain color-planar and full light quark contributions of massive form factors.
- We have obtained corresponding results for aforementioned currents

 $F_{V,1}^{(3)}, F_{V,2}^{(3)}, F_{A,1}^{(3)}, F_{A,2}^{(3)}, F_S^{(3)}, F_P^{(3)}$

- $\checkmark F_{V,i}^{(3)}$ match with the results from Henn $et \, al.$ (color-planar limit)
- \checkmark Complete light quark contributions of $F_{V,i}^{(3)}$ match with the results from Lee *et al.*
- \checkmark We agree the results for all other currents with Lee *et al*.
- \checkmark The results reproduce the universal infrared structure
- $\checkmark~$ Chiral Ward identity is satisfied between $F_{A,i}^{(3)}$ and $F_P^{(3)}$

Form factors at various kinematical regions

Low energy region	$q^2 \ll m^2$	$x \rightarrow 1$
High energy region	$q^2 \gg m^2$	x ightarrow 0

$$N_C = 3, n_l = 5$$

 $\mathcal{O}(\epsilon^0)$ part of $F_{V,1}^{(3)}$

23

$$N_C = 3, n_l = 5$$

 $\mathcal{O}(\epsilon^0)$ part of $F_{V,2}^{(3)}$

24

$$N_C = 3, n_l = 5$$

 $\mathcal{O}(\epsilon^0)$ part of $F_{A,1}^{(3)}$

Х

$$N_C = 3, n_l = 5$$

 $\mathcal{O}(\epsilon^0)$ part of $F_{A,2}^{(3)}$

26

$$N_C = 3, n_l = 5$$

 $\mathcal{O}(\epsilon^0)$ part of $F_S^{(3)}$

$$N_C = 3, n_l = 5$$

 $\mathcal{O}(\epsilon^0)$ part of $F_P^{(3)}$

Conclusion

Summary

- We have computed the master integrals which appear in the three-loop massive form factors in the color-planar limit and for full light quark (n_l) contributions.
- We have solved the first order factorizable system of differential equations by a new method.
- The use of **OreSys** to uncouple the differential equations has made it possible to automatize the procedure.
- The method applies to all first order factorizable systems in any basis.
- The alphabet contains sixth root of unity letters in the real representation.
- Finally, we have obtained the color-planar and complete light quark three-loop contributions to the heavy quark form factors for vector, axial-vector, scalar and pseudo-scalar currents.

Thank You!