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The ‘top’ sector

✓

The heaviest SM particle
- probes the Higgs sector most
- plays unique role in understanding
- the EW symmetry breaking
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107

109

1010

1012

115 120 125 130 135
165

170

175

180

Higgs mass Mh in GeV

Po
le

to
p

m
as

s
M

t
in

G
eV

1,2,3 Σ

Instability
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Meta-stability

✓ New physics potential : Buttazzo et. al. Jul’13
perfect place to manifest it

✓ Does not hadronize - opportunity to study it as a single particle -
Spin properties, Interaction vertices, Precise description of mass

✓ High precision will be achieved at the future electron-positron colliders
– In order to match the experimental accuracy, precise predictions are
required on the theoretical side as well
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Form factors

✓ The form factors are basic building blocks for many physical quantities

✓ They exhibit a universal infrared behavior - leads to information on
anomalous dimensions

✓ The massive cusp anomalous dimension controls the infrared structure
of massive form factors - studying the form factors helps in better
understanding of the massive cusp

✓ Another important motive is to study high energy behavior of the
massive form factors
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Preliminary



The process
We consider the decay of a color neutral massive particle to a pair
of heavy quark of mass m.

X

t

t̄

Notation

X(q) → t(q1) + t̄(q2)

X = V,A, S, P

s =
q2

m2 = − (1− x)2

x
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The general structure

Vector and Axial Vector
V: −iδijvQ

(
γµ FV,1 +

i
2mσµνqν FV,2

)
A: −iδijaQ

(
γµγ5 FA,1 +

1
2mqµγ5 FA,2

)
t

t̄

t

t̄

Scalar and Pseudo Scalar
−m

v δij

[
sQFS + ipQγ5FP

]
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The form factors are expanded in the strong coupling constant as

FI =

∞∑
n=0

(αs

4π

)n

F
(n)
I

To obtain F
(n)
I ⇒ appropriate projector on the amplitudes

PV,i =
i

vQ

/q2 −m

m

(
γµg

1
V,i +

1
2m

(q2µ − q1µ)g
2
V,i

)/q1 +m

m
,

PA,i =
i

aQ

/q2 −m

m

(
γµγ5g

1
A,i +

1
2m

(q1µ + q2µ)γ5g
2
A,i

)/q1 +m

m
,

PS =
v

2msQ

/q2 −m

m

(
gS

)/q1 +m

m
, PP =

v

2mpQ

/q2 −m

m

(
iγ5gP

)/q1 +m

m
,

gI ≡ gI(s, d) and are determined by applying the projectors on the generic
Lorentz structure.
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A study in literature

NLO and beyond NLO
F

(1)
V,i, F

(1)
A,i [Arbuzov, Bardin, Leike ’92; Djouadi, Lampe, Zerwas ’95]

F
(1)
S , F

(1)
P [Braaten, Leveille ’80; Sakai ’80; Drees, Hikasa ’90]

F
(2)
V,i , F

(2)
A,i [Altarelli, Lampe ’93; Ravindran, van Neerven ’98; Catani, Seymour ’99]

F
(2)
S , F

(2)
P [Gorishnii et. al. ’91; Chetyrkin, Kwiatkowski ’95; Harlander, Steinhauser ’97]

NNLO
F

(2)
I [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi ’04,’05]

F
(2)
V,i(O(ϵ)) [Gluza, Mitov, Moch, Riemann ’09]

F
(2)
I (O(ϵ2)) [Ablinger, Behring, Blümlein, Falcioni, Freitas, Marquard, Rana, Schneider ’17]

NNNLO
F

(3)
V,i |largeN (talk by M. Steinhauser) [Henn, Smirnov, Smirnov, Steinhauser ’16]

F
(3)
V,i |nl contributions [Lee, Smirnov, Smirnov, Steinhauser ’18]

F
(4)
V,i |partial poles in largeQ2 [Ahmed, Henn, Steinhauser ’17]
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Goal

In this talk, we present
• Automatizing the technique to compute the first order factorizable
system of differential equations.

• Results for the master integrals which contribute to color-planar
diagrams and full light quark dependence.

• Color-planar (N 3
C ) and complete light quark (nl) contributions for

F
(3)
V,i , F

(3)
A,i, F

(3)
S and F

(3)
P .

J. Ablinger, J. Blümlein, P. Marquard, N. Rana and C. Schneider,
Heavy Quark Form Factors at Three Loops in the Planar Limit,
arXiv:1804.07313 [hep-ph].

J. Ablinger, J. Blümlein, P. Marquard, N. Rana and C. Schneider,
DESY 18-053.

* A parallel computation in arXiv:1804.07310 [hep-ph] (talk by M. Steinhauser)

8



Computational details



The generic procedure
d = 4− 2ϵ

• Diagrammatic approach -> QGRAF [Nogueira] to generate diagrams
• FORM [Vermaseren] for algebraic manipulation :

Lorentz, Dirac and Color [Ritbergen, Schellekens, Vermaseren] algebra

• Decomposition of the dot products to obtain scalar integrals

2l.p
l2(l − p)2

=
l2 − (l − p)2 + p2

l2(l − p)2
=

1
(l − p)2

− 1
l2

+
p2

l2(l − p)2

• Identity relations among scalar integrals : IBPs & SRs

• Algebraic linear system of equations relating the integrals
⇓

Master integrals (MIs)

• Crusher [Marquard, Seidel] for reduction to master integrals
• Computation of MIs : Differential eqns.
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Computing the master integrals

A scalar integral can be expressed as

J(ν1, . . . , νn) =
(
(4π)2−ϵeϵγE

)3 ∫ ddl1
(2π)d

ddl2
(2π)d

ddl3
(2π)d

1
Dν1
1 . . . Dνn

n

For example

q

q1

q2

l21 − m2, (l1 − q)2 − m2, (l1 − l2)
2,

l22 − m2, (l2 − q)2 − m2, (l2 − l3)
2,

l23 − m2, (l3 − q)2 − m2, (l1 − q1)
2

To evaluate the integral→ Feynman parametrization, Mellin-Barnes …
We use the method of differential equations!
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Using differential equations

The integral is a function of d, q2 and m2.
q2

m2 = − (1−x)2

x

J(1, 1, 1, 1, 1, 1, 1, 1, 1) ≡ f(d, q2, m2) ≡ f(d, x)

The idea is to obtain a differential eqn. for the integral w.r.t. x and solve it.
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Using differential equations

The integral is a function of d, q2 and m2.
q2

m2 = − (1−x)2

x

J(1, 1, 1, 1, 1, 1, 1, 1, 1) ≡ f(d, q2, m2) ≡ f(d, x)

The idea is to obtain a differential eqn. for the integral w.r.t. x and solve it.

d

dx
Ji = some combinations of integrals

⇓ IBP identities

=
∑
j

cijJj

cij ’s are rational function of x.
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Using differential equations

dx
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To solve such a system, it would be best to organize it in such a way that it
diagonalizes, or at least it takes a block-triangular form.

dx



J1
J2
J3
J4
.
.
.
Jn


=



• • • • · · · •
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0 • • • · · · •
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.
.

.

.

.
.
.
.

.

.

.
. . .
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.
0 0 0 0 · · · •
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Let’s consider the 12th blob from below

d

dx

 J1
J2
J3

 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33


 J1

J2
J3

 +

 R1(ϵ, x)

R2(ϵ, x)

R3(ϵ, x)

 ,

c11 =

(
7 + 6x + 7x2 − 2d

(
1 + x + x2

))
x(1 + x)2

,

c12 =
(−4 + d)(−10 + 3d)

2(−3 + d)2(1 + x)2
,

c13 =

(
d2

(
15 + 8x + 15x2

)
+ 8

(
20 + 9x + 20x2

)
− 2d

(
49 + 24x + 49x2

))
4(−3 + d)2x(1 + x)2

, . . .
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Let’s consider the 12th blob from below

d

dx

 J1
J2
J3

 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33


 J1

J2
J3

 +

 R1(ϵ, x)

R2(ϵ, x)

R3(ϵ, x)

 ,

c11 =

(
7 + 6x + 7x2 − 2d

(
1 + x + x2

))
x(1 + x)2

,

c12 =
(−4 + d)(−10 + 3d)

2(−3 + d)2(1 + x)2
,

c13 =

(
d2

(
15 + 8x + 15x2

)
+ 8

(
20 + 9x + 20x2

)
− 2d

(
49 + 24x + 49x2

))
4(−3 + d)2x(1 + x)2

, . . .

For these topologies, the integrals can have, at max, a cubic pole in ϵ.

Ji =
1
ϵ3
J−3
i +

1
ϵ2
J−2
i +

1
ϵ
J−1
i + J0i + ϵJ 1i + · · ·

Series expansion and compare each order of ϵ!
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Let’s consider the 12th blob from below

d

dx

 J1
J2
J3

 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33


 J1

J2
J3

 +

 R1(ϵ, x)

R2(ϵ, x)

R3(ϵ, x)

 ,

c11 =

(
7 + 6x + 7x2 − 2d

(
1 + x + x2

))
x(1 + x)2

,

c12 =
(−4 + d)(−10 + 3d)

2(−3 + d)2(1 + x)2
,

c13 =

(
d2

(
15 + 8x + 15x2

)
+ 8

(
20 + 9x + 20x2

)
− 2d

(
49 + 24x + 49x2

))
4(−3 + d)2x(1 + x)2

, . . .

Each order in ϵ-expansion gives a much simpler form

d

dx


J
−3
1

J
−3
2

J
−3
3

 =


1
x

+ 2
1−x

0 1
1+x

− 2
x

− 3
1−x

− 1
x

+ 2
1+x

1
1+x

− 1
x

− 1
1−x

1
x

− 2
1+x

1
x

+ 2
1−x

0 1
1+x

− 2
x

− 3
1−x




J
−3
1

J
−3
2

J
−3
3

 +


R

−3
1 (x)

R
−3
2 (x)

R
−3
3 (x)

 ,
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Algorithm - I : the homogeneous part

• It boils down to solving a system of linear first order diff. eqns.

• A natural first step is to reduce the system to a higher order equation
in a single unknown
Note that, the inverse operation is trivial!

• The classical/naive method to achieve this uncoupling is the cyclic
vector algorithm

• But, it gives a complicated decoupled equation.

• Few smarter uncoupling algorithms

Zürcher
Incomplete Zürcher
Abramov and Zima

Implemented in OreSys [Gerhold, Schneider]
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The 12th blob from below

Applying one of the algorithms to ϵ−3 part[
d2

dx2
−

2
1− x

d

dx
+

( 2
x

−
2

1+ x
−

2
(1+ x)2

)]
I
−3
1 (x) = r

−3
1 (x)[

d

dx
−

( 1
1− x

+
1
x

−
1

1+ x

)]
I
−3
2 (x) = r

−3
2 (x)

Solving for homogeneous part of each diff. eqns.

y1(x) =
x

1− x2
, y2(x) = 1− 2x

1− x2
H(0, x) ; µ(x) =

1
x
− x ;

Next, use variation of constant to obtain the solution

I
−3
1 (x) = y1(x)

[
C1 −

∫
dx

r−3
1 (x)y2(x)

W (y1, y2)

]
+ y2(x)

[
C2 +

∫
dx

r−3
1 (x)y1(x)

W (y1, y2)

]
I
−3
2 (x) =

1
µ(x)

(
C3 +

∫
dxµ(x)r

−3
2 (x)

)
W (y1, y2) is the Wronskian.

Finally J−3
i (x) = fi({I−3

1 (x), I−3
2 (x)})!
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Algorithm - II : the nonhomogeneous part

• Structure of homogeneous part is same at each order in ϵ-expansion
• Hence the homogeneous solutions and uncoupling procedure are
similar for each order

• Start with the ϵ−3 part
• Find the best uncoupling for the sub-system and solve for the
corresponding homogeneous solutions

• Now at each order in ϵ, find the nonhomogeneous parts keeping the
uncoupling structure fixed

• Solve order by order in ϵ using variation of constant

All of this have been automatized using

Sigma [Schneider] , OreSys [Gerhold, Schneider]
and HarmonicSums [Ablinger, Blümlein, Schneider]

The results are obtained in terms of HPLs and Cyclotomic HPLs.
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Boundary conditions

Boundary conditions are fixed by imposing regularity of the integrals in the
limit of vanishing space-like momentum q2 → 0 i.e. x → 1.

• In the planar limit, the integrals are regular in y = 1− x, and hence can
be expanded as follows

Ji(y) =

∞∑
n=0

r∑
j=−3

ϵjCi,j(n)y
n

• q2 → 0 reduces them to known two-point integrals, providing Ci,j(0)

• The differential equations now can be solved to obtain Ci,j(n) for
sufficiently high order (n) in y
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Iterated integrals and Harmonic polylogarithms (HPLs)
Given a set of integration kernels Ki(t), one can define

I(in, . . . i1, x) =
∫ x

x0

Kin(t)I(in−1, . . . i1, t)dt

Classic example is Lin(x). We have five kernels Km

New!

{
0, 1,−1, {6, 0}, {6, 1}

}
≡

{ 1
x
,

1
1− x

,
1

1+ x
,

1
1− x+ x2

,
x

1− x+ x2

}
and correspondingly we define the HPLs as

H(mn, . . . ,m1, x) =

∫ x

0
Kmn(t)H(mn−1, . . . ,m1, t)dt

Some important properties :
Shuffle algebra, Scaling invariance and integration-by-parts identities
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Renormalization



We consider a hybrid scheme for UV renormalization.

Heavy quark mass and wave function (Zm,OS, Z2,OS) : On-shell
QCD strong coupling constant (Zas

) : MS

The renormalization of FI for these topologies, is straightforward

FV,i = Z2,OSF̂V,i FS = Zm,OSZ2,OSF̂S

FV,i = Z2,OSF̂V,i FP = Zm,OSZ2,OSF̂P

where F̂I contains the counterterms from mass renormalization.

For Axial-Vector and Pseudo-Scalar currents, for these topologies i.e. the non-singlet
case, both the γ5-matrices appear in the same chain of Dirac matrices, which allows
us to use anti-commuting γ5 in D space-time dimensions.
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Infrared structure



The infrared singularities factorize as a multiplicative factor
[Becher, Neubert ’09]

FI(ϵ, x) = Z(ϵ, x, µ)F fin
I (x, µ)

Z(ϵ, x, µ) is universal/independent of current
F fin
I (x, µ) is finite as ϵ → 0

Renormalization group evolution of Z(ϵ, x, µ) provides

Z(ϵ, x, µ) = 1+
(αs

4π

)[Γ0
2ϵ

]
+
(αs

4π

)2 [ 1
ϵ2

(
Γ20
8

−
β0Γ0
4

)
+
1
ϵ

(
Γ1
4

)]

+
(αs

4π

)3 [ 1
ϵ3

(
Γ30
48

−
β0Γ20
8

+
β20Γ0

6

)
+

1
ϵ2

(
Γ0Γ1
8

−
β1Γ0
6

)
+
1
ϵ

(
Γ2
6

)]
Γn is the nth order massive cusp anomalous dimension.

[Korchemsky, Radyushkin ’87, ’92; Grozin, Henn, Korchemsky, Marquard ’14, ’15]
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Results



Results & Checks

• We have computed the master integrals to obtain color-planar and full
light quark contributions of massive form factors.

• We have obtained corresponding results for aforementioned currents

F
(3)
V,1 , F

(3)
V,2, F

(3)
A,1, F

(3)
A,2, F

(3)
S , F

(3)
P

✓ F
(3)
V,i match with the results from Henn et al. ( color-planar limit )

✓ Complete light quark contributions of F (3)
V,i match with the results from Lee et al.

✓ We agree the results for all other currents with Lee et al.

✓ The results reproduce the universal infrared structure

✓ Chiral Ward identity is satisfied between F
(3)
A,i and F

(3)
P
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Form factors at various kinematical regions

Low energy region q2 ≪ m2 x → 1
High energy region q2 ≫ m2 x → 0
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Dotted : large q, Dashed : small q NC = 3, nl = 5
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Dotted : large q, Dashed : small q NC = 3, nl = 5
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Dotted : large q, Dashed : small q NC = 3, nl = 5
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Dotted : large q, Dashed : small q NC = 3, nl = 5
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Dotted : large q, Dashed : small q NC = 3, nl = 5
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Conclusion



Summary

• We have computed the master integrals which appear in the three-loop
massive form factors in the color-planar limit and for full light quark
(nl) contributions.

• We have solved the first order factorizable system of differential
equations by a new method.

• The use of OreSys to uncouple the differential equations has made it
possible to automatize the procedure.

• The method applies to all first order factorizable systems in any basis.

• The alphabet contains sixth root of unity letters in the real
representation.

• Finally, we have obtained the color-planar and complete light quark
three-loop contributions to the heavy quark form factors for vector,
axial-vector, scalar and pseudo-scalar currents.
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Thank You!
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