Multi-Loop Numerical Unitarity

A Framework for Computing Two-Loop MEs

Fernando Febres Cordero Department of Physics, University of Freiburg

Loops & Legs, St. Goar, May 2018

References

Samuel Abreu, FFC, Harald Ita, Matthieu Jaquier and Ben Page (Freiburg) arXiv:1703.05255

Samuel Abreu, FFC, Harald Ita, Matthieu Jaquier, Ben Page (Freiburg) and Mao Zeng (UCLA) <u>arXiv:1703.05273</u>

Samuel Abreu, FFC, Harald Ita, Ben Page (Freiburg) and Mao Zeng (UCLA)

arXiv:1712.03946

CHALLENGES FOR QCD PRECISION

TWO-LOOP NUMERICAL UNITARITY

RESULTS AND OUTLOOK

The *atto*barn Era

Few % Frontier at the LHC

- ▶ p_T^{ll} in Drell-Yan, an impressive example of precise differential measurements by ATLAS (8 TeV)
- By normalizing to inclusive Z cross section, improvement in uncertainties
- ► Total uncertainties below 1% for $p_{ll}^{ll} < 200 \text{ GeV}$

Few % Frontier in Theory

- p_T^{ll'}, an impressive example of precise differential predictions
- Uncertainty estimates from NNLO QCD, NLO EW including higher orders Sudakov logs and PDF uncertainties

Lindert, Pozzorini, Boughezal, Campbell, Denner, Dittmaier, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Kallweit, Maierhöfer, Mangano, Morgan, Mück, Petriello, Salam, Schönherr, Williams

Parametric Dependence of QCD Predictions

In order to compute quantum QCD corrections two fundamental inputs are required: the strong coupling α_s and the Parton Distribution Functions

- Perturbative calculations are also required for the partonic cross sections associated to the signal studied
- ▶ Naively at the LHC ($\alpha_s \sim 0.1$) one is to expect NLO QCD corrections to be of order $\sim 10\%$ and NNLO QCD at $\sim 1\%$

Perturbative Improvements for Predictions

- The smallness of α_s and α allows systematic improvements for SM predictions
- In particular hard-processes can be described ever more precisely by systematic additions of higher-order QCD corrections
- As an example Higgs production up to N3LO QCD

- But computations at NNLO QCD and beyond are challenging in particular for processes with many scales and colored partons
- Inherent need for automation to tackle these problems, even though judicious choices for studies will be mandatory (computationally intensive calculations)

When to push for higher orders...

A Higgs Boson Background

- A key irreducible background to $H(\rightarrow b\bar{b})W$ measurement are QCD production of $Wb\bar{b}$ +jets
- This signature gives access to y_b
- NLO+ a exclusive sum: adds NLO corrections to hard contributions
- From NLO++ and $\sim 10\% \ p_T^{\rm veto}$ sensitivity deduce need for NNLO QCD

Anger, FFC, Ita, Sotnikov arXiv:1712.05721 [hep-ph]

NNLO QCD for Multi-Scale processes

- ► Great advances over the last few years on NNLO QCD studies for 2 → 2 processes, with up to four scales (notice VBF studies by a scheme that exploits DIS calculations, see Cruz-Martinez's talk)
- ► Physics cases make precision studies for more complex processes necessary, like H + 2j, V + 2j, 3j, tt̄ + j, VV'j, among other (more than five scales!)
- ► About a decade ago, 2 → 3 was the frontier for NLO QCD (one-loop) calculations, and the work beyond relied mainly on efficient numerical algorithms (now available through many powerful tools, e.g. BlackHat, GoSam, HELAC-1Loop/CutTools, Madgraph, NJet, OpenLoops, Recola, ...)

- Strategy to handle and cancel IR divergences
- Two-loop matrix elements

Regarding IR structure

- Strategy to handle and cancel IR divergences
- Two-loop matrix elements

- \rightarrow real *hard*
- \rightarrow virtual *easy*
- From L. Magnea's talk

- Strategy to handle and cancel IR divergences
- Two-loop matrix elements

- Full $\mathcal{O}(\epsilon^0)$ structure
- \rightarrow real hard
- \rightarrow virtual *hard*

- Strategy to handle and cancel IR divergences
- Two-loop matrix elements
- ► Many recent advances and complete calculations (e.g. tt̄, 2j, VV', Vj, HH, etc)
- Several well-developed approaches
 - Antenna subtraction
 - ColorfulNNLO
 - Nested soft-collinear subtractions
 - N-Jettiness slicing
 - Projection to born
 - q_T slicing
 - ► SecToR Improved Phase sPacE for real Radiation
 - • •
- Different degrees of automation, we might have public tools in the near future

- Strategy to handle and cancel IR divergences
- Two-loop matrix elements
- Great steps towards understanding mechanisms to compute multi-scale master Feynman integrals, including insights into functional forms over the last few years (see many talks on the topic during this workshop)
- Also new efficient tools developed for multi-loop integral reduction
- Integrand reduction techniques have shown a lot of power to tackle complicated amplitudes (see Badger and Torres-Bobadilla's talks and also related work by Boels et al). Here we focus on the numerical unitarity method (see Ben Page's talk)

CHALLENGES FOR QCD PRECISION

TWO-LOOP NUMERICAL UNITARITY

RESULTS AND OUTLOOK

The 'BH2' Project

A Two-Loop Numerical Unitarity Framework

Freiburg: Samuel Abreu, Jerry Dormans, FFC, Harald Ita, Matthieu Jaquier, Ben Page, Evgenij Pascual, Vasily Sotnikov

UCLA: Mao Zeng

Write down A in terms of *master* integrals:

$$\mathcal{A} = \int \prod_{j} \left[\frac{d\ell_{j}}{(2\pi)^{d}} \right] \sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} = \sum_{i} c_{i} \int \prod_{j} \left[\frac{d\ell_{j}}{(2\pi)^{d}} \right] \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}}$$

Write down \mathcal{A} in terms of *master* integrals:

$$\mathcal{A} = \int \prod_{j} \left[\frac{d\ell_{j}}{(2\pi)^{d}} \right] \sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} = \sum_{i} c_{i} \int \prod_{j} \left[\frac{d\ell_{j}}{(2\pi)^{d}} \right] \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}}$$

Drop the integral symbol, by constructing sets of *surface* terms:

$$\sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} = \sum_{i} c_{i} \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} + \sum_{j} c_{j} \frac{m_{j}^{\text{surface}}(\ell)}{\rho_{1} \cdots \rho_{n_{j}}}$$

Write down A in terms of *master* integrals:

$$\mathcal{A} = \int \prod_{j} \left[\frac{d\ell_{j}}{(2\pi)^{d}} \right] \sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} = \sum_{i} c_{i} \int \prod_{j} \left[\frac{d\ell_{j}}{(2\pi)^{d}} \right] \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}}$$

Drop the integral symbol, by constructing sets of *surface* terms:

$$\sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} = \sum_{i} c_{i} \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} + \sum_{j} c_{j} \frac{m_{j}^{\text{surface}}(\ell)}{\rho_{1} \cdots \rho_{n_{j}}}$$

Factorization gives towards the on-shell surfaces $\{\rho_1, \cdots, \rho_{n_l}\} = 0$:

Write down A in terms of *master* integrals:

$$\mathcal{A} = \int \prod_{j} \left[\frac{d\ell_{j}}{(2\pi)^{d}} \right] \sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} = \sum_{i} c_{i} \int \prod_{j} \left[\frac{d\ell_{j}}{(2\pi)^{d}} \right] \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}}$$

Drop the integral symbol, by constructing sets of *surface* terms:

$$\sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} = \sum_{i} c_{i} \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} + \sum_{j} c_{j} \frac{m_{j}^{\text{surface}}(\ell)}{\rho_{1} \cdots \rho_{n_{j}}}$$

Factorization gives towards the on-shell surfaces $\{\rho_1, \cdots, \rho_{n_l}\} = 0$:

And so we get access to the set of (maximal) cut equations, like:

$$N(\Gamma, \ell_{\Gamma}) \equiv \sum_{k} c_{k} m_{k} (\Gamma, \ell_{\Gamma}) = \prod_{k=1}^{k} \sum_{l=1}^{k} R(\Gamma, \ell_{\Gamma})$$

/ 24

Challenges in Multi-Loop Numerical Unitarity

See Ben Page's talk for more details!

- Efficient algorithm to color decompose the amplitude's integrand [Ochirov, Page '16]
- Systematic master/surface decomposition of all propagator structures [Ita '15], [Abreu et al. (FFC) 17']
- On-the-fly reconstruction of functional dependence on regulators [Giele, Kunszt, Melnikov '08], [Peraro '16]
- ► Algorithm to handle subleading poles over on-shell phase spaces [Abreu et al. (FFC) 17']
- Fast implementation of multi-dimensional cuts and on-shell parameterizations (through Berends-Giele off-shell recursions, and van Neerven-Vermaseren basis and [Ita '15])
- Ensure numerical stability of calculation (through high-precision arithmetics and exploiting exact kinematics [von Manteuffel, Schabinger '14], [Peraro '16])
- Availability of master integrals (analytic expressions, for 5-pt examples see [Papadopoulos, Tommasini, Wever '15], [Gehrmann, Henn, lo Presti '15], or employing numerical tools like SecDec and Fiesta)

Modular Library

We are constructing a C++ framework for D-dimensional multi-loop numerical unitarity, with a highly modular structure

- Hierarchical relations between propagator structures
- Decompositions of numerator functions into master/surface terms
- Color handling with interaction to algebraic libraries
- Automated construction of cut equations handling subleading poles
- Engine to solve off-shell recursions to compute trees and multi-loop cuts
- Toolkit to handle kinematic structures using high-precision and exact arithmetics
- D-dimensional on-shell phase spaces generator
- Machinery for univariate functional reconstruction
- Integral library

Some dependencies like Givaro, GMP, Lapack, MPACK, QD

The Planar two-loop four-point Hierarchy

The full hierarchy of diagrams for the planar 2-loop 4-gluon amplitudes

The Planar two-loop four-point Hierarchy

The Planar two-loop four-point Hierarchy

The set of subleading pole diagrams

The Two-Loop Five Gluon Amplitudes

The full hierarchy of diagrams for the planar 2-loop 5-gluon amplitudes

The Two-Loop Five Gluon Amplitudes

The master integrals

The Two-Loop Five Gluon Amplitudes

The set of subleading pole diagrams

CHALLENGES FOR QCD PRECISION

TWO-LOOP NUMERICAL UNITARITY

RESULTS AND OUTLOOK

Four- and Five-Gluon Amplitudes

- We have computed 4-gluon and 5-gluon planar amplitudes
- Floating point 4-pt calculation shows large cancellations
- Univariate reconstruction exploited to extract (known) analytic results
- Exact coefficient results extracted for 5-pt amps

$\mathcal{A}^{(2)}/\mathcal{A}^{(0)}$	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$(1^-, 2^-, 3^+, 4^+, 5^+)$	12.5000000	25.46246919	-1152.843107	-4072.938337	-3637.249566
$(1^-, 2^+, 3^-, 4^+, 5^+)$	12.5000000	25.46246919	-6.121629624	-90.22184214	-115.7836685

See Ben Page's talk 22/24

Scaling Properties of Gluon Amplitudes

- Polynomial complexity to compute color-ordered amplitudes
- Asymptotic regime only for very large n at 1 and 2 loops
- Initial benchmarking for two-loop five-point amplitudes promising

Scaling Properties of Gluon Amplitudes

- Polynomial complexity to compute color-ordered amplitudes
- Asymptotic regime only for very large n at 1 and 2 loops
- Initial benchmarking for two-loop five-point amplitudes promising

Scaling Properties of Gluon Amplitudes

- Polynomial complexity to compute color-ordered amplitudes
- Asymptotic regime only for very large n at 1 and 2 loops
- Initial benchmarking for two-loop five-point amplitudes promising

Outlook

- Exploiting the physics potential of the LHC's experiments will require very precise predictions from the SM
- Important advances in IR subtraction, integral and full-amplitude computations open the path to multi-scale NNLO QCD predictions
- Multi-loop numerical unitarity appears as a robust method to tackle two-loop calculations relevant for phenomenology and formal studies
- ► We expect an initial release in the near future

Outlook

- Exploiting the physics potential of the LHC's experiments will require very precise predictions from the SM
- Important advances in IR subtraction, integral and full-amplitude computations open the path to multi-scale NNLO QCD predictions
- Multi-loop numerical unitarity appears as a robust method to tackle two-loop calculations relevant for phenomenology and formal studies
- ► We expect an initial release in the near future

HP2 2018 in Freiburg

7th International Workshop on

High Precision for Hard Processes

FREIBURG

at the LHC (HP² 2018)

1-3 October 2018

Physikalisches Institut

Albert-Ludwigs-Universität Freiburg

LOCAL ORGANISING COMMITTEE

- Samuel Abreu
- Stefan Dittmaier
- · Fernando Febres Cordero
- Harald Ita
- Philipp Maierhöfer

INTERNATIONAL ADVISORY COMMITTEE

- · Charalampos Anastasiou [Zürich, ETH]
- Stefano Catani [Firenze, INEN]
- · Daniel de Florian [Buenos Aires, ICAS-UNSAM]
- Thomas Gehrmann [Zürich, UZH]
- Massimiliano Grazzini (Zürich, UZH)
- Zoltan Kunszt [Zürich, ETH]

TOPICS

- Precise predictions for Standard Model and Beyond the Standard Model phenomenology
- · New mathematical techniques for amplitude calculations
- Automated tools for multi-leg amplitudes
- · Status reports and implications of current LHC results

http://hp2-2018.physik.uni-freiburg.de