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The attobarn Era
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Few % Frontier at the LHC

arXiv:1512.02192 [hep-ex]
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Few % Frontier in Theory

Vijet @ 13 TeV

T — T T
1000 X Y+ iet
AN

N

104 B

100 Xx WH(£Hv)+

-

do/dpry [pb/GeV]

L

Z(CH )+ jet
10x W{£77)+ jet

=== NLO QCD ® nNLO EW

—— NNLO QCD @ nNLO EW

> PDF Uncertanties (LUXqed)

> 10

10 1 | M

T T T

g 1

g 1.05

g '.

T 09

T 085 Z(0H07)+ jet

o8 [ N :
100 200 500 1000 3000
prv [GeV]

> pljl,', an impressive example of precise
differential predictions

» Uncertainty estimates from NNLO
QCD, NLO EW including higher
orders Sudakov logs and PDF
uncertainties
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Parametric Dependence of QCD Predictions

In order to compute quantum QCD corrections two fundamental inputs
are required: the strong coupling a5 and the Parton Distribution
Functions

quark-gluon luminosity uncertainty
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From G. Salam

» Perturbative calculations are also required for the partonic
cross sections associated to the signal studied

> Naively at the LHC (s ~ 0.1) one is to expect NLO QCD
corrections to be of order ~ 10% and NNLO QCD at ~ 1%
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Perturbative Improvements for Predictions

B. Mistlberger, arXiv:1802.00833 [hep-ph]
» The smallness of o, and « allows

systematic improvements for SM ~

predictions a0 T

» In particular hard-processes can be

o [pb]

described ever more precisely by

systematic additions of

higher-order QCD corrections 1 LHC 13 Te
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» As an example Higgs production
up to N3LO QCD HIGeV]

» But computations at NNLO QCD and beyond are challenging in
particular for processes with many scales and colored partons

» Inherent need for automation to tackle these problems, even though
judicious choices for studies will be mandatory (computationally
intensive calculations)
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A Higgs Boson Background
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NNLO QCD for Multi-Scale processes

» Great advances over the last few years on NNLO QCD studies
for 2 — 2 processes, with up to four scales (notice VBF
studies by a scheme that exploits DIS calculations,
see Cruz-Martinez's talk)

» Physics cases make precision studies for more complex
processes necessary, like H +2j, V + 25, 35, tt + j, VV'j,
among other (more than five scales!)

» About a decade ago, 2 — 3 was the frontier for NLO QCD
(one-loop) calculations, and the work beyond relied mainly on
efficient numerical algorithms (now available through many
powerful tools, e.g. BlackHat, GoSam,
HELAC-1Loop/CutTools, Madgraph, NJet, OpenLoops,
Recola, - - )
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Key Building Blocks for NNLO QCD Corrections

» Strategy to handle and
cancel IR divergences

» Two-loop matrix elements
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Key Building Blocks for NNLO QCD Corrections

» Strategy to handle and
cancel IR divergences

» Two-loop matrix elements

Regarding IR structure
— real hard
— virtual easy

From L. Magnea's talk
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Key Building Blocks for NNLO QCD Corrections

Full O(e%) structure

» Strategy to handle and — real hard

cancel IR divergences s virtual hard

» Two-loop matrix elements
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Key Building Blocks for NNLO QCD Corrections

v

Strategy to handle and cancel IR divergences

» Two-loop matrix elements

» Many recent advances and complete calculations (e.g. tt, 27,
VV', Vj, HH, etc)
Several well-developed approaches
» Antenna subtraction
ColorfulNNLO
Nested soft-collinear subtractions
N-Jettiness slicing
Projection to born
qr slicing
SecToR Improved Phase sPacE for real Radiation
> ...

v

vV vy vy VY VvYYy

» Different degrees of automation, we might have public tools in

the near future
13/24



Key Building Blocks for NNLO QCD Corrections

v

>

Strategy to handle and cancel IR divergences

Two-loop matrix elements

Great steps towards understanding mechanisms to compute
multi-scale master Feynman integrals, including insights into
functional forms over the last few years (see many talks on
the topic during this workshop)

Also new efficient tools developed for multi-loop integral
reduction

Integrand reduction techniques have shown a lot of power to
tackle complicated amplitudes (see Badger and

Torres-Bobadilla's talks and also related work by Boels et al).

Here we focus on the numerical unitarity method (see Ben
Page’s talk)
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The ‘BH2' Project

A Two-Loop Numerical Unitarity Framework

Freiburg: Samuel Abreu, Jerry Dormans, FFC, Harald Ita,
Matthieu Jaquier, Ben Page, Evgenij Pascual, Vasily Sotnikov

UCLA: Mao Zeng

15 /24



Amplitudes through Generalized Unitarity

Write down A in terms of master integrals:

A= [ 5 = e T ]
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Amplitudes through Generalized Unitarity

Write down A in terms of master integrals:

LICIEE R

Drop the integral symbol, by constructlng sets of surface terms:

master surfacc (é)

D L +Za

Pn;
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Amplitudes through Generalized Unitarity

Write down A in terms of master integrals:

- TR - [T 5

Drop the integral symbol, by constructlng sets of surface terms:

M (ﬁ) mmaﬁtﬂ surtacc (é)
= +
zi: PLe P zz: Z “ P
Factorization gives towards the on-shell surfaces {p1,- -, pn, } = 0:
DA B r
pl e pnl """"""
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Amplitudes through Generalized Unitarity

Write down A in terms of master integrals:

- TR - [T 5

Drop the integral symbol, by constructlng sets of surface terms:

M (ﬁ) mmaﬁtﬂ surtacc (é)
= +
zi: PLe P 2; Z “ P
Factorization gives towards the on-shell surfaces {p1,- -, pn, } = 0:
— p1- - pnl : i :
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Challenges in Multi-Loop Numerical Unitarity

See Ben Page's talk for more details!

» Efficient algorithm to color decompose the amplitude’s integrand

» Systematic master/surface decomposition of all propagator
structures
» On-the-fly reconstruction of functional dependence on regulators

» Algorithm to handle subleading poles over on-shell phase spaces

» Fast implementation of multi-dimensional cuts and on-shell

parameterizations (through off-shell recursions, and
basis and )

» Ensure numerical stability of calculation (through high-precision

arithmetics and exploiting exact kinematics
)

> Availability of master integrals (analytic expressions, for 5-pt

examples see
, or employing numerical tools like and )

17 /24



Modular Library

We are constructing a C++ framework for D-dimensional
multi-loop numerical unitarity, with a highly modular structure
Hierarchical relations between propagator structures
Decompositions of numerator functions into master/surface terms
Color handling with interaction to algebraic libraries

Automated construction of cut equations handling subleading poles

vV V. v v Y

Engine to solve off-shell recursions to compute trees and multi-loop
cuts

» Toolkit to handle kinematic structures using high-precision and
exact arithmetics

» D-dimensional on-shell phase spaces generator
» Machinery for univariate functional reconstruction

» Integral library

Some dependencies like

18 /24



The Planar two-loop four-point Hierarchy

HON X
N =
PN =P
<o L[

The full hierarchy of diagrams for the planar 2-loop 4-gluon amplitudes
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The Planar two-loop four-point Hierarchy
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The Two-Loop Five Gluon Amplitudes
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The Two-Loop Five Gluon Amplitudes
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The Two-Loop Five Gluon Amplitudes
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We have computed
4-gluon and 5-gluon
planar amplitudes

Floating point 4-pt
calculation shows large
cancellations

Univariate
reconstruction exploited
to extract (known)
analytic results

Exact coefficient results
extracted for 5-pt amps

Four- and Five-Gluon Amplitudes
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Scaling Properties of Gluon Amplitudes

» Polynomial
complexity to

I ] compute
10 E =10
E E color-ordered
T 1, amplitudes
100 =10
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T 410" regime only for
E o ] very large n at 1
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promising
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Scaling Properties of Gluon Amplitudes

» Polynomial
complexity to
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Scaling Properties of Gluon Amplitudes

107 Tree amplitude (~n*)

degree 4 polynomial

One loop amplitude ( ~ nX)

degree 6 polynomial

102 Two loop amplitude (FF) ( ~ n' )
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compute
color-ordered
amplitudes
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regime only for
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amplitudes
promising
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Outlook

» Exploiting the physics potential of the LHC's experiments
will require very precise predictions from the SM

» Important advances in IR subtraction, integral and
full-amplitude computations open the path to multi-scale
NNLO QCD predictions

» Multi-loop numerical unitarity appears as a robust method
to tackle two-loop calculations relevant for
phenomenology and formal studies

» We expect an initial release in the near future
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Outlook

» Exploiting the physics potential of the LHC's experiments
will require very precise predictions from the SM

» Important advances in IR subtraction, integral and
full-amplitude computations open the path to multi-scale
NNLO QCD predictions

» Multi-loop numerical unitarity appears as a robust method
to tackle two-loop calculations relevant for
phenomenology and formal studies

» We expect an initial release in the near future

Thanks!
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HP2 2018 in Freiburg

7th International Workshop on

High Precision for
Hard Processes

at the LHC (HP* 2018)

1-3 October 2018

Physikalisches Institut

Universitit Freiburg

LOCAL ORGANISING COMMITTEE
+ Samuel Abreu

Stefan Dittmaier

Fernando Febres Cordero

Harald Ita

Philipp Maierhéfer

INTERNATIONAL ADVISORY COMMITTEE
Charalampos Anastasiou [Ziirich, ETH]
Stefano Catani [Firenze, INFN]
Daniel de Florian [Buenos Aires, ICAS-UNSAM]
Thomas Gehrmann [Zrich, UZH]
Massimiliano Grazzini (Zirich, UZH]
Zoltan Kunszt [Ziirich, ETH]

TOPICS
+ Precise predictions for Standard Model and
Beyond the Standard Model phenomenology
+ New mathematical techniques for amplitude calculations
+ Automated tools for multi-leg amplitudes
+ Status reports and implications of current LHC results

http:/lhp2-2018.physik.uni-freiburg.de

UNI
FREIBURG
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