Higher order and top quark mass effects in Higgs boson pair production within and beyond the SM

Gudrun Heinrich Max Planck Institute for Physics, Munich

Loops & Legs in Quantum Field Theory St. Goar, May 4, 2018

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

TIMELINE BEYOND RUN2

TIMELINE BEYOND RUN2

Exploring the Higgs sector

can be measured e.g. in Higgs boson pair production

current best limit $\sigma_{HH} \leq 19 \sigma_{HH}^{SM}$ ($b\bar{b}\gamma\gamma$ channel) theoretical constraints on λ_{3h} rather model dependent

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Higgs boson pair production channels

Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro '14; Maltoni, Vryonidou, Zaro '14

NNLO in $m_t \rightarrow \infty$ limit: **+20%**

• total xs NNLO De Florian, Mazzitelli '13

- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL Shao, Li, Li, Wang '13; De Florian, Mazzitelli '15
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

NLO calculation with full top mass dependence

Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16 all integrals calculated numerically with **SecDec**

NNLO in $m_t \rightarrow \infty$ limit: **+20%**

• total xs NNLO De Florian, Mazzitelli '13

- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL Shao, Li, Li, Wang '13; De Florian, Mazzitelli '15
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

NLO calculation with full top mass dependence

Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16 all integrals calculated numerically with **SecDec** → talks of S.Jahn, M.Kerner

NNLO in $m_t \rightarrow \infty$ limit: **+20%**

- total xs NNLO De Florian, Mazzitelli '13
- including all matching coefficients Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL Shao, Li, Li, Wang '13; De Florian, Mazzitelli '15
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

NLO calculation with full top mass dependence

Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16 all integrals calculated numerically with **SecDec** —— talks of S.Jahn, M.Kerner

- q_T resummation NLL+NLO Ferrera, Pires '16
- full NLO + parton shower (Powheg and MG5_aMC@NLO) → this talk GH, Jones, Kerner, Luisoni, Vryonidou '17 (Sherpa) Jones, Kuttimalai '17
- NNLO_approx Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18
 —> this talk
- Expansions+Padé Gröber, Maier, Rauh '17
 High energy limit
- Davies, Mishima, Steinhauser, Wellmann '18

Status of CERN Yellow Report 4 (March 2017)

total cross sections at 14 TeV

uncertainties: $\mu_{R,F} \in [\mu_0/2, 2\mu_0]$ (7-point variation) $\mu_0 = m_{HH}/2$

	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NNLO}[{\rm fb}]$
HEFT	$17.07^{+30.9\%}_{-22.2\%}$	$31.93^{+17.6\%}_{-15.2\%}$	$37.52^{+5.2\%}_{-7.6\%}$
B-i. HEFT	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	
$\mathrm{FT}_{\mathrm{approx}}$	$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$	
full m_t dep.	$19.85^{+27.6\%}_{-20.5\%}$	$32.91^{+13.6\%}_{-12.6\%}$	

used by ATLAS, CMS: $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \, \sigma_{NLO}^{\text{HEFT}} = 39.64^{+4.4\%}_{-6.0\%}$ $\delta_t = (\sigma_{NLO}^{\text{full}} - \sigma_{NLO}^{\text{B-i.HEFT}}) / \sigma_{NLO}^{\text{B-i.HEFT}}$

Status of CERN Yellow Report 4 (March 2017)

total cross sections at 14 TeV

uncertainties: $\mu_{R,F} \in [\mu_0/2, 2\mu_0]$ (7-point variation) $\mu_0 = m_{HH}/2$

	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NNLO}[{\rm fb}]$
HEFT	$17.07^{+30.9\%}_{-22.2\%}$	$31.93^{+17.6\%}_{-15.2\%}$	$37.52^{+5.2\%}_{-7.6\%}$
B-i. HEFT	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	
$\mathrm{FT}_{\mathrm{approx}}$	$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$	stay tuned, will add more here
full m_t dep.	$19.85^{+27.6\%}_{-20.5\%}$	$32.91^{+13.6\%}_{-12.6\%}$	

used by ATLAS, CMS: $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \, \sigma_{NLO}^{\text{HEFT}} = 39.64^{+4.4\%}_{-6.0\%}$ $\delta_t = (\sigma_{NLO}^{\text{full}} - \sigma_{NLO}^{\text{B-i.HEFT}}) / \sigma_{NLO}^{\text{B-i.HEFT}}$

Status of CERN Yellow Report 4 (March 2017)

total cross sections at 14 TeV

uncertainties: $\mu_{R,F} \in [\mu_0/2, 2\mu_0]$ (7-point variation) $\mu_0 = m_{HH}/2$

$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NNLO}[{\rm fb}]$		
$17.07^{+30.9\%}_{-22.2\%}$	$31.93^{+17.6\%}_{-15.2\%}$	$37.52^{+5.2\%}_{-7.6\%}$		
$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$			
$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$	stay tuned, will add more here		
$19.85^{+27.6\%}_{-20.5\%}$	$32.91^{+13.6\%}_{-12.6\%}$			
used by ATLAS, CMS: $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \sigma_{NLO}^{\text{HEFT}} = 39.64^{+4.4\%}_{-6.0\%}$				
	$\sigma_{LO}[fb]$ $17.07^{+30.9\%}_{-22.2\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $\sigma'_{NNLL} = \sigma_{NN}$	$\sigma_{\rm LO}[\rm fb] \qquad \sigma_{\rm NLO}[\rm fb]$ $17.07^{+30.9\%}_{-22.2\%} \qquad 31.93^{+17.6\%}_{-15.2\%}$ $19.85^{+27.6\%}_{-20.5\%} \qquad 38.32^{+18.1\%}_{-14.9\%}$ $19.85^{+27.6\%}_{-20.5\%} \qquad 34.26^{+14.7\%}_{-13.2\%}$ $19.85^{+27.6\%}_{-20.5\%} \qquad 32.91^{+13.6\%}_{-12.6\%}$ $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \sigma_{NLO}^{\rm HEFT} =$		

top mass effects at NLO: energy dependence

\sqrt{s}	LO [fb]	B-i. NLO HEFT [fb]	NLO FT_{approx} [fb]	NLO [fb]
14 TeV 1	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	$34.26^{+14.7\%}_{-13.2\%}$	$32.91^{+13.6\%}_{-12.6\%}$
27 TeV 7	$78.85^{+21.5\%}_{-17.0\%}$	$154.94^{+16.2\%}_{-13.4\%}$	$134.12^{+12.7\%}_{-11.1\%}$	$127.88^{+11.6\%}_{-10.5\%}$
100 TeV 7	$731.3^{+20.9\%}_{-15.9\%}$	$1511^{+16.0\%}_{-13.0\%}$	$1220^{+11.9\%}_{-10.7\%}$	$1149^{+10.8\%}_{-10.0\%}$

relative differences to full NLO:

	$14 { m TeV}$	$27 { m TeV}$	$100 { m TeV}$
$\Delta_{\rm NLO}^{\rm B-i.HEFT}$	16.4%	21.2%	31.5%
$\Delta_{\rm NLO}^{\rm FTapprox}$	4.1%	4.9%	6.2%

 $\Delta_{\rm NLO}^{\rm X} = \frac{\sigma_{\rm NLO}^{\rm X} - \sigma_{\rm NLO}^{\rm full}}{\sigma_{\rm NLO}^{\rm full}}$

Higgs boson pair invariant mass

at 14 TeV:

Born-improved NLO HEFT outside full NLO scale variation band beyond $m_{hh} \sim 450 \text{GeV}$ FTapprox: outside band for $m_{hh} \geq 600 \text{ GeV}$ worse at 100 TeV

top quark loops resolved — HEFT has wrong scaling behaviour at high energies

combination with parton showers

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17

- avoid evaluation of two-loop amplitude for each phase space point
- two-loop amplitude depends only on $\hat{s}, \hat{t} \quad (m_t, m_H \text{ fixed})$

construct 2-dim grid

variable transformation to achieve uniform distribution; interpolation

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})} \right| \quad \beta(\hat{s}) = \sqrt{1 - 4m_{H}^{2}/\hat{s}}$$

combination with POWHEG and MadGraph5_aMC@NLO

POWHEG-BOX-V2: User-Process-V2/ggHH

and Sherpa, S. Jones, S. Kuttimalai '17

combination with parton showers

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17

- avoid evaluation of two-loop amplitude for each phase space point
- two-loop amplitude depends only on $\hat{s}, \hat{t} \quad (m_t, m_H \text{ fixed})$

construct 2-dim grid

variable transformation to achieve uniform distribution; interpolation

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})} \right| \quad \beta(\hat{s}) = \sqrt{1 - 4m_{H}^{2}/\hat{s}}$$

combination with POWHEG and MadGraph5_aMC@NLO

public

POWHEG-BOX-V2: User-Process-V2/ggHH

and Sherpa, S. Jones, S. Kuttimalai '17

combination with parton showers

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17

- avoid evaluation of two-loop amplitude for each phase space point
- two-loop amplitude depends only on $\hat{s}, \hat{t} \quad (m_t, m_H \text{ fixed})$

construct 2-dim grid

variable transformation to achieve uniform distribution; interpolation

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})} \right| \quad \beta(\hat{s}) = \sqrt{1 - 4m_{H}^{2}/\hat{s}}$$

combination with POWHEG and MadGraph5_aMC@NLO

POWHEG-BOX-V2: User-Process-V2/ggHH

and Sherpa, S. Jones, S. Kuttimalai '17

grid also public http://github.com/mppmu/hhgrid

public

NLO + parton shower

NLO + parton shower

mass effects versus parton shower effects

mass effects versus parton shower effects

shower effects large but order(s) of magnitude smaller than difference to Born-improved HEFT

combination with Sherpa

S. Jones, S. Kuttimalai '17

 detailed assessment of parton shower uncertainties

• large p_{\perp}^{HH} region:

MG5_aMC@NLO results within (large) uncertainty bands

Powheg+PY8 with hdamp=250 not within μ_{PS} variation band; vary hdamp to obtain Powheg uncertainty band

combination with NNLO

Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli; 1803.02463

combination with NNLO

three approximations:

NLO-improved NNLO HEFT NNLO_{NLO-i}

bin-by-bin rescaling at observable level by NNLO HEFT K-factor

reweight each NNLO event by the ratio $\mathrm{Born}^{\mathrm{full}}/\mathrm{Born}^{\mathrm{HEFT}}$

different final state multiplicities in single/double real part ---- need projection (not unique) use qT recoil method Catani, De Florian, Ferrera, Grazzini 1507. 06937

"approximate Full Theory" NNLO_{FTapprox}

 $\mathcal{O}(\alpha_s^4)$ part: at n-loops in HEFT, X=2-n extra partons: reweight $\mathcal{A}_{\text{HEFT}}^{(n)}(ij \to HH + X)$ with $\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{Full}}^{(0)}(ij \to HH + X)}$

NNLO approximations

\sqrt{s}	$13 { m TeV}$	$14 { m TeV}$	$27 { m TeV}$	$100 { m TeV}$
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
$\rm NLO_{FTapprox}$ [fb]	$28.91 {}^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1{}^{+12.7\%}_{-11.1\%}$	$1220{}^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337{}^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58 {}^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406{}^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224{}^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$
$\rm NNLO_{FTapprox}/\rm NLO$	1.118	1.116	1.096	1.067

considerable reduction of scale uncertainties

 M_t uncertainties:

half the difference between NNLO_FTapprox and NNLO_NLO-improved

Status now

	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$		$\sigma_{\rm NNLO}[{\rm fb}]$
HEFT	$17.07^{+30.9\%}_{-22.2\%}$	$31.93^{+17.6\%}_{-15.2\%}$		$37.52^{+5.2\%}_{-7.6\%}$
B; HFFT	$10.85 \pm 27.6\%$	28 29+18.1%	NLO-i. HEFT	$38.66^{+5.3\%}_{-7.7\%}$
D-1. 11121 1	19.00-20.5%	30.32-14.9%	Born-proj. HEFT	$39.58^{+1.4\%}_{-4.7\%}$
$\mathrm{FT}_{\mathrm{approx}}$	$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$		$36.69^{+2.1\%}_{-4.9\%}$
full m_t dep.	$19.85^{+27.6\%}_{-20.5\%}$	$32.91^{+13.6\%}_{-12.6\%}$	most adv perturbative	anced prediction

 $\frac{\sigma_{\rm NNLO}^{\rm FTapprox}-\sigma_{\rm NLO}^{\rm full}}{\sigma_{\rm NLO}^{\rm full}}$: 11.5%

remember YR4: $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \sigma_{NLO}^{\text{HEFT}} = 39.64^{+4.4\%}_{-6.0\%}$

$$\frac{\sigma_{\rm NNLL'} - \sigma_{\rm NLO}^{\rm full}}{\sigma_{\rm NLO}^{\rm full}} : 20.5\%$$

NNLO: Mhh distribution

 $\sqrt{s} = 14 \text{ TeV}$

FTapprox:

mostly overlaps with NLO uncertainty band

larger corrections at production threshold

scale uncertainties reduced

pT,hh distribution

NLO is first non-trivial order for pT,hh

→ larger corrections and uncertainties than for Mhh

similar pattern as at NLO: Born-projected has wrong scaling behaviour in the tail

HH in non-linear effective field theory

G. Buchalla, M. Capozi, A. Celis, GH, L. Scyboz

effective Lagrangian "electroweak chiral Lagrangian"

$$\mathcal{L} \supset -m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \bar{t} t - c_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) G^a_{\mu\nu} G^{a,\mu\nu}$$

5 modified couplings;

Higgs field is EW singlet

LO diagrams

HH within EFT

previous higher order calculations based on $m_t
ightarrow \infty$ limit

- effects of dimension 6 operators in NLO Born-improved HEFT Gröber, Mühlleitner, Spira, Streicher '15
- including CP-violating operators Gröber, Mühlleitner, Spira '17

• effects of dimension 6 operators in NNLO rescaled HEFT De Florian, Fabre, Mazzitelli '17: Benchmark c_hhh c_t

in preparation: [Buchalla, Capozi, Celis, GH, Scyboz]

 effects of operators from non-linear effective Lagrangian at NLO QCD with full top mass dependence

using benchmark points characterising "clusters" of BSM scenarios

Carvalho, Dall'Osso, Dorigo, Goertz, Gottardo, Tosi '15; Carvalho, Goertz, Mimasu, Gouzevitch, Aggarwal '17

Benchmark	c_{hhh}	c_t	c_{tt}	c_{ggh}	c_{gghh}
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	$-\frac{1.6}{3}$	-0.2
3	1.0	1.0	-1.5	0.0	$\frac{0.8}{3}$
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	$\frac{1.6}{3}$	$\frac{1.0}{3}$
6	2.4	1.0	0.0	$\frac{0.4}{3}$	$\frac{0.2}{3}$
7	5.0	1.0	0.0	$\frac{0.4}{3}$	$\frac{0.2}{3}$
8a	1.0	1.0	0.5	$\frac{0.8}{3}$	0.0
9	1.0	1.0	1.0	-0.4	-0.2
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	$\frac{2.0}{3}$	$\frac{1.0}{3}$
12	15.0	1.0	1.0	0.0	0.0
SM	1.0	1.0	0.0	0.0	0.0

virtual corrections: example diagrams

real corrections: example diagrams

results: heat maps

BSM effects can be very large

Alejandro Celis

vary c_{hhh}, c_{ggh} fix $c_t = 1, c_{tt} = c_{gghh} = c_{ggh} = 0$

chosen parameter ranges consistent with constraints from EW precision observables

results: heat maps

results: distributions

benchmark 4 $c_{hhh} = -3.5, c_t = 1.5, c_{tt} = -3, c_{ggh} = 0, c_{gghh} = 0$

 $\sigma_{NLO}^{\rm BSM} / \sigma_{NLO}^{\rm SM} \simeq 270$

Matteo Capozi

results: distributions

benchmark 5 $c_{hhh} = 1, c_t = 1, c_{tt} = 0, c_{ggh} = 8/15, c_{gghh} = 1/3$

 $\sigma_{NLO}^{\rm BSM}/\sigma_{NLO}^{\rm SM}\simeq 1.24$ shape very different

Matteo Capozi

Summary

- HH NLO generators with full mass dependence available GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17 POWHEG-BOX, MadGraph5_aMC@NLO Sherpa: S. Jones, S. Kuttimalai '17
- combined NNLO HEFT and full NLO to most advanced perturbative prediction

Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18

- · remaining top mass uncertainty estimated to be at the few percent level
- HH@NLO QCD within non-linear EFT framework G.Buchalla, M.Capozi, A.Celis, GH, L.Scyboz; to appear
 - BSM effects can be very large
 - BSM effects can be small on total cross section but distort mHH distribution substantially

(Werner-Heisenberg-Institu

Summary

- HH NLO generators with full mass dependence available GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17 POWHEG-BOX, MadGraph5_aMC@NLO Sherpa: S. Jones, S. Kuttimalai '17
- combined NNLO HEFT and full NLO to most advanced perturbative prediction

Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18

- · remaining top mass uncertainty estimated to be at the few percent level
- HH@NLO QCD within non-linear EFT framework G.Buchalla, M.Capozi, A.Celis, GH, L.Scyboz; to appear
 - BSM effects can be very large
 - BSM effects can be small on total cross section but distort mHH distribution substantially

There is room for surprises in the Higgs sector!

Max-Planck-Institut für Physik

MAX-PLANCK-GESELLSCHAFT

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

scaling behaviour

leading jet distribution

differences between the approximations more pronounced at 100 TeV

other observables

compare fixed order and showered results

compare Pythia6 and Pythia8

compare POWHEG and MG5_aMC@NLO

new default shower starting scale matches onto NLO fixed order at large pThh

grid validation

Use HEFT to study validity of grid

Full SM compare POWHEG (grid) with our original results

