Soft gluons and top quark pair production

Li Lin Yang Peking University

Based on: 1804.05218 (with Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang) 1803.07623 (with Wang, Xu, Zhu)

LOOPS AND LEGS IN QUANTUM FIELD THEORY

14th DESY Workshop on Elementary Particle Theory, St. Goar, Germany, April 29 – May 04, 2018

Top quark pair production

A standard candle for the LHC and future colliders

- * Top quark related to many important issues: hierarchy problem, vacuum stability, origin of fermion masses, ...
- * Major background to many searches

NNLO QCD for top pair

A milestone in precision calculations

Total cross section

Differential distributions

Differential distributions

Czakon, Heymes, Mitov: 1511.00549

NNLO with dynamic scale

Czakon, Heymes, Mitov: 1606.03350

The problem here: it's a multiple-scale process with complicated kinematics!

$$\begin{split} \mu_0 &\sim m_t ,\\ \mu_0 &\sim m_T = \sqrt{m_t^2 + p_T^2} ,\\ \mu_0 &\sim H_T = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2} ,\\ \mu_0 &\sim H_T' = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2} + \sum_i p_{T,i} ,\\ \mu_0 &\sim E_T = \sqrt{\sqrt{m_t^2 + p_{T,t}^2} \sqrt{m_t^2 + p_{T,\bar{t}}^2}} ,\\ \mu_0 &\sim H_{T,\text{int}} = \sqrt{(m_t/2)^2 + p_{T,t}^2} + \sqrt{(m_t/2)^2 + p_{T,\bar{t}}^2} ,\\ \mu_0 &\sim m_{t\bar{t}} , \end{split}$$

NNLO with dynamic scale

Czakon, Heymes, Mitov: 1606.03350

The problem here: it's a multiple-scale process with complicated kinematics!

 $\mu_0 \sim m_t$.

$$\begin{split} \mu_{0} &\sim m_{T} = \sqrt{m_{t}^{2} + p_{T}^{2}} ,\\ \mu_{0} &\sim H_{T} = \sqrt{m_{t}^{2} + p_{T,t}^{2}} + \sqrt{m_{t}^{2} + p_{T,\bar{t}}^{2}} ,\\ \mu_{0} &\sim H_{T} = \sqrt{m_{t}^{2} + p_{T,t}^{2}} + \sqrt{m_{t}^{2} + p_{T,\bar{t}}^{2}} + \sum_{i} p_{T,i} ,\\ \mu_{0} &\sim H_{T} = \sqrt{m_{t}^{2} + p_{T,t}^{2}} + \sqrt{m_{t}^{2} + p_{T,\bar{t}}^{2}} + \sum_{i} p_{T,i} ,\\ \mu_{0} &\sim E_{T} = \sqrt{\sqrt{m_{t}^{2} + p_{T,t}^{2}} \sqrt{m_{t}^{2} + p_{T,\bar{t}}^{2}} ,\\ \mu_{0} &\sim H_{T,\text{int}} = \sqrt{(m_{t}/2)^{2} + p_{T,t}^{2}} + \sqrt{(m_{t}/2)^{2} + p_{T,\bar{t}}^{2}} ,\\ \mu_{0} &\sim m_{t\bar{t}} , \end{split}$$

Determine optimal "scale scheme" by minimizing higher order corrections

NNLO with dynamic scale

Czakon, Heymes, Mitov: 1606.03350

6

Vastly different behaviors with different scheme choices (especially in the boosted region)

Boosted top quarks

Sensitive to new physics, interesting in its own right!

Producing boosted tops

Hard extra emissions suppressed

Producing boosted tops

Producing boosted tops

Soft gluon resummation

Hard function

Kidonakis, Sterman: hep-ph/9705234

Ahrens, Ferroglia, Neubert, Pecjak, **LLY**: 1003.5827

Evolving from the scale of hard scatterings

Soft gluon resummation

Hard function

Kidonakis, Sterman: hep-ph/9705234

Ahrens, Ferroglia, Neubert, Pecjak, **LLY**: 1003.5827

Evolving from the scale of hard scatterings

to the scale of soft interactions

Soft function

Soft gluon resummation

Hard function

Kidonakis, Sterman: hep-ph/9705234

Ahrens, Ferroglia, Neubert, Pecjak, **LLY**: 1003.5827

Evolving from the scale of hard scatterings

Governed by IR structure

to the scale of soft interactions

Soft function

IR anomalous dimension

Becher, Neubert: 0904.1021

$$\begin{split} \mathbf{\Gamma} &= \sum_{(i,j)} \frac{T_i \cdot T_j}{2} \gamma_{\mathrm{cusp}}(\alpha_s) \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i(\alpha_s) \\ &- \sum_{(I,J)} \frac{T_I \cdot T_J}{2} \gamma_{\mathrm{cusp}}(\beta_{IJ}, \alpha_s) + \sum_I \gamma^I(\alpha_s) \\ &+ \sum_{I,j} T_I \cdot T_j \gamma_{\mathrm{cusp}}(\alpha_s) \ln \frac{m_I \mu}{-s_{Ij}} \\ &+ \sum_{(I,J,K)} i f^{abc} T_I^a T_J^b T_K^c F_1(\beta_{IJ}, \beta_{JK}, \beta_{KI}) \\ &+ \sum_{(I,J)} \sum_k i f^{abc} T_I^a T_J^b T_K^c f_2 \Big(\beta_{IJ}, \ln \frac{-\sigma_{Jk} v_J \cdot p_k}{-\sigma_{Ik} v_I \cdot p_k} \Big) \\ &+ \sum_{(I,J)} \sum_k i f^{abc} T_I^a T_J^b T_K^c f_2 \Big(\beta_{IJ}, \ln \frac{-\sigma_{Jk} v_J \cdot p_k}{-\sigma_{Ik} v_I \cdot p_k} \Big) \\ &+ \sum_{(I,J)} \sum_k i f^{abc} T_I^a T_J^b T_K^c f_2 \Big(\beta_{IJ}, \ln \frac{-\sigma_{Jk} v_J \cdot p_k}{-\sigma_{Ik} v_I \cdot p_k} \Big) \\ &= \beta \coth \beta, \\ g(\beta) &= \coth \beta. \\ g(\beta) &= \cosh \beta. \\ g(\beta) &=$$

Known at NLO Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827 Known at NNLO in the massless limit (except an off-diagonal 3-parton piece) Ferroglia, Pecjak, LLY: 1207.4798

Known at NLO Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827 Known at NNLO in the massless limit (except an off-diagonal 3-parton piece) Ferroglia, Pecjak, LLY: 1207.4798

Recent calculation at NNLO with massive tops

Wang, Xu, LLY, Zhu: 1804.05218

Known at NLO Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827 Known at NNLO in the massless limit (except an off-diagonal 3-parton piece) Ferroglia, Pecjak, LLY: 1207.4798

Recent calculation at NNLO with massive tops

Wang, Xu, LLY, Zhu: 1804.05218

Known at NLO Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827 Known at NNLO in the massless limit (except an off-diagonal 3-parton piece) Ferroglia, Pecjak, LLY: 1207.4798

Recent calculation at NNLO with massive tops

Wang, Xu, LLY, Zhu: 1804.05218

Standard techniques IBP identities Differential equations Non-trivial: boundary conditions

The boundary conditions

We choose the boundary to be β

$$\beta \equiv \sqrt{1 - \frac{4m_t^2}{M_{t\bar{t}}}} \to 0$$

Some virtual-real integrals develop Coulomb/Glauber-type singularities in this limit

Carefully extract the asymptotic behavior, e.g.

$$g_6^{(4)}(\epsilon,\beta\to 0,y) \approx \frac{\left(e^{-2i\pi\epsilon}-1\right)\beta^{2\epsilon}\Gamma(1-2\epsilon)\Gamma(1+\epsilon)}{4^{1-2\epsilon}\Gamma(1-\epsilon)}$$

Note: virtual integrals available in

Bierenbaum, Czakon, Mitov: 1107.4384 Czakon, Mitov: 1804.02069

- * Off-diagonal purely-imaginary contributions
- * Do not enter the NNLO cross section
- * Not calculated in the massless case

Ferroglia, Pecjak, LLY: 1207.4798

A piece of final result

 $\tilde{s}_{22}^{q\bar{q},(2)}(0,\beta,y)\Big|_{T=N} = \frac{16(7\beta^2 - 126\beta + 127)}{243\beta}G_1 + \frac{8(5\beta^2 + 90\beta + 53)}{81\beta}(G_{-1,-1} - G_{-1,1} - 2G_{0,-1})$ $-\frac{16(7\beta^2+126\beta+127)}{243\beta}G_{-1}+\frac{8(5\beta^2-90\beta+53)}{81\beta}(G_{1,-1}-G_{1,1}+2G_{0,1})$ $+\frac{8(\beta^2+18\beta+1)}{27\beta}\left(-G_{-1,-1,-1}+G_{-1,-1,1}+2G_{-1,0,-1}-2G_{-1,0,1}-G_{-1,1,-1}+G_{-1,1,1}\right)$ $+2G_{0,-1,-1}-2G_{0,-1,1}-4G_{0,0,-1})+\frac{8(\beta^2-18\beta+1)}{27\beta}\left(4G_{0,0,1}+2G_{0,1,-1}-2G_{0,1,1}\right)$ $-G_{1,-1,-1}+G_{1,-1,1}+2G_{1,0,-1}-2G_{1,0,1}-G_{1,1,-1}+G_{1,1,1}$ $+\frac{32}{243}\left[28G_{-1/y}+98G_{1/y}+30\left(2G_{0,-1/y}+G_{-1/y,-1}+G_{-1/y,1}-2G_{-1/y,-1/y}\right)\right]$ $+105(2G_{0,1/y}+G_{1/y,-1}+G_{1/y,1}-2G_{1/y,1/y})+18(4G_{0,0,-1/y}+2G_{0,-1/y,-1}+2G_{0,-1/y,1})$ $-4G_{0,-1/y,-1/y} - G_{-1/y,-1,-1} + G_{-1/y,-1,1} + 2G_{-1/y,0,-1} + 2G_{-1/y,0,1} - 4G_{-1/y,0,-1/y}$ $+G_{-1/y,1,-1} - G_{-1/y,1,1} - 2G_{-1/y,-1/y,-1} - 2G_{-1/y,-1/y,1} + 4G_{-1/y,-1/y,-1/y}$ $+ 63(4G_{0,0,1/y} + 2G_{0,1/y,-1} + 2G_{0,1/y,1} - 4G_{0,1/y,1/y} - G_{1/y,-1,-1} + G_{1/y,-1,1} + 2G_{1/y,0,-1})$ $+2G_{1/y,0,1}-4G_{1/y,0,1/y}+G_{1/y,1,-1}-G_{1/y,1,1}-2G_{1/y,1/y,-1}-2G_{1/y,1/y,1}+4G_{1/y,1/y,1/y})$ $-\frac{332}{3}-\frac{5\pi^2}{2}+6\zeta_3$, (84)

It is remarkable that all the results can be written in terms of multiple polylogarithms

Validation: IR structure

The soft divergence generated from real emissions should be the same as the virtual amplitude! (required by KLN theorem)

3-parton correlations: non-trivial cross-check!

Validation: threshold limit

It is interesting to check the threshold limit where the top quarks are produced at rest

Color singlet: same as Drell-Yan and Higgs production Belitsky: hep-ph/9808389

Color octet Czakon, Fiedler: 1311.2541

Note: singlet-octet mixing terms do NOT vanish in the threshold limit!

Validation: boosted limit

In the limit where the top quarks are highly boosted Factorization Ferroglia, Pecjak, LLY: 1205.3662 $S_{\text{massive}}(s, t, m_t, N) \rightarrow S_{\text{massless}}(s, t, N) S_D^2(m_t/N)$

Validation: boosted limit

In the limit where the top quarks are highly boosted Factorization Ferroglia, Pecjak, LLY: 1205.3662 $S_{\text{massive}}(s, t, m_t, N) \rightarrow S_{\text{massless}}(s, t, N) S_D^2(m_t/N)$ Ferroglia, Pecjak, LLY: 1207.4798 Also obtain the missing 3-parton piece for free

Validation: boosted limit

In the limit where the top quarks are highly boosted Factorization Ferroglia, Pecjak, LLY: 1205.3662 $S_{\text{massive}}(s, t, m_t, N) \rightarrow S_{\text{massless}}(s, t, N) S_D^2(m_t/N)$ Ferroglia, Pecjak, LLY: 1207.4798 Also obtain the missing 3-parton piece for free

Allows to extract the soft fragmentation function

Soft and small-mass factorization

Ferroglia, Pecjak, LLY: 1205.3662

In Mellin space: $Q \sim \sqrt{s}, \sqrt{-t} \gg Q/N \gg m_t \gg m_t/N$ $\hat{\sigma}(N,\mu_f) \sim \operatorname{Tr} \left[\boldsymbol{H}(L_h,\mu_f) \, \boldsymbol{S}(L_s,\mu_f) \right] C_D^2(L_c,\mu_f) \, S_D^2(L_{sc},\mu_f)$

In Mellin space: $Q \sim \sqrt{s}, \sqrt{-t} \gg Q/N \gg m_t \gg m_t/N$ $\hat{\sigma}(N, \mu_f) \sim \text{Tr} \left[\mathbf{H}(L_h, \mu_f) \, \mathbf{S}(L_s, \mu_f) \right] C_D^2(L_c, \mu_f) \, S_D^2(L_{sc}, \mu_f)$ $\ln \frac{Q^2}{\mu_f^2}$

hard log

In Mellin space: $Q \sim \sqrt{s}, \sqrt{-t} \gg Q/N \gg m_t \gg m_t/N$ $\hat{\sigma}(N,\mu_f) \sim \operatorname{Tr} \left[\boldsymbol{H}(L_h,\mu_f) \, \boldsymbol{S}(L_s,\mu_f) \right] C_D^2(L_c,\mu_f) \, S_D^2(L_{sc},\mu_f)$ $\ln \frac{Q^2}{\mu_f^2}$ ln $\ln \frac{m_t^2}{dt}$ hard log soft log collinear log (small-mass)

In Mellin space: $Q \sim \sqrt{s}, \sqrt{-t} \gg Q/N \gg m_t \gg m_t/N$ $\hat{\sigma}(N,\mu_f) \sim \operatorname{Tr} \left[\boldsymbol{H}(L_h,\mu_f) \, \boldsymbol{S}(L_s,\mu_f) \right] C_D^2(L_c,\mu_f) \, S_D^2(L_{sc},\mu_f)$ $\ln \frac{Q^2}{\mu_f^2}$ $\ln \frac{m_t^2}{\bar{N}^2 \mu_f^2}$ ln $\ln \frac{m_t^2}{t}$ hard log soft log soft-collinear log collinear log (emergent)

(small-mass)

There exist 3 factorization formulas involving C_D an S_D

There exist 3 factorization formulas involving C_D an S_D $H_{\text{massive}}(s, t, m_t) \rightarrow H_{\text{massless}}(s, t) C_D^2(m_t)$

Mitov, Moch: hep-ph/0612149

There exist 3 factorization formulas involving C_D an S_D $H_{\text{massive}}(s, t, m_t) \rightarrow H_{\text{massless}}(s, t) C_D^2(m_t)$ Mitov, Moch: hep-ph/0612149

 $S_{\text{massive}}(s, t, m_t, N) \rightarrow S_{\text{massless}}(s, t, N) S_D^2(m_t/N)$

Ferroglia, Pecjak, **LLY**: 1205.3662 Wang, Xu, **LLY**, Zhu: 1804.05218

There exist 3 factorization formulas involving C_D an S_D $H_{\text{massive}}(s, t, m_t) \rightarrow H_{\text{massless}}(s, t) C_D^2(m_t)$ Mitov, Moch: hep-ph/0612149

$$S_{\text{massive}}(s,t,m_t,N) \to S_{\text{massless}}(s,t,N) S_D^2(m_t/N)$$

Ferroglia, Pecjak, **LLY**: 1205.3662 Wang, Xu, **LLY**, Zhu: 1804.05218

$$D_{t/t}(m_t, N) \to C_D(m_t) S_D(m_t/N)$$

Fragmentation function

Korchemsky, Marchesini: hep-ph/9210281 Cacciari, Catani: hep-ph/0107138 Gardi: hep-ph/0501257 Neubert: 0706.2136

There exist 3 factorization formulas involving C_D an S_D $H_{\text{massive}}(s, t, m_t) \rightarrow H_{\text{massless}}(s, t) C_D^2(m_t)$ Mitov, Moch: hep-ph/0612149

$$S_{\text{massive}}(s, t, m_t, N) \to S_{\text{massless}}(s, t, N) S_D^2(m_t/N)$$

Ferroglia, Pecjak, **LLY**: 1205.3662 Wang, Xu, **LLY**, Zhu: 1804.05218

$$D_{t/t}(m_t, N) \to C_D(m_t) S_D(m_t/N)$$

Fragmentation function

All consistent at NNLO!

Korchemsky, Marchesini: hep-ph/9210281 Cacciari, Catani: hep-ph/0107138 Gardi: hep-ph/0501257 Neubert: 0706.2136

Soft and small-mass resummation

All ingredients known at NNLO (for NNLL' resummation)

Pecjak, Scott, Wang, LLY: 1601.07020

A joint effort of the NNLO group and the resummation group

Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, **LLY**: 1803.07623

$$d\sigma^{(N)NLO+NNLL'} = d\sigma^{NNLL'_{b+m}} + \left(d\sigma^{(N)NLO} - d\sigma^{NNLL'_{b+m}} \Big|_{\substack{(N)NLO\\expansion}} \right)$$

A joint effort of the NNLO group and the resummation group Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, LLY: 1803.07623

$$d\sigma^{(N)NLO+NNLL'} = d\sigma^{NNLL'_{b+m}} + \left(d\sigma^{(N)NLO} - d\sigma^{NNLL'_{b+m}} \Big|_{(N)NLO} \right)$$
$$d\sigma^{NNLL'_{b}} + \left(d\sigma^{NNLL_{m}} - d\sigma^{NNLL_{m}} \Big|_{m_{t} \to 0} \right)$$
soft & small mass resummation match to soft resummation

Scale choices

$$-t_1\Big|_{m_t \to 0} \approx \frac{M_{t\bar{t}}^2}{2}(1 - \cos\theta) + m_t^2 \cos\theta \xrightarrow{\cos\theta \to 1} p_T^2 + m_t^2 \equiv m_T^2 = H_T^2/4,$$
$$-u_1\Big|_{m_t \to 0} \approx \frac{M_{t\bar{t}}^2}{2}(1 + \cos\theta) - m_t^2 \cos\theta \xrightarrow{\cos\theta \to -1} m_T^2 = H_T^2/4.$$

$$\frac{\mathcal{H}_{gg}^{\text{NLO}}(\mu_h)}{\mathcal{H}_{gg}^{\text{LO}}(\mu_h)}\Big|_{t_1 \to 0} = 1 + \frac{\alpha_s(\mu_h)}{36\pi} \left[-78\ln^2\left(\frac{-t_1}{\mu_h^2}\right) + 24\ln\left(\frac{-t_1}{\mu_h^2}\right) (3 + 2\ln x_t) + 37\pi^2 - 168 \right]$$

Support the findings of Czakon, Heymes, Mitov: 1606.03350

Matched result insensitive to scale scheme choices

Summary and outlook

- * Soft gluons are important in top quark pair production
- * We have studied their impacts at NNLO and beyond
 - * Two-loop IR divergences
 - * NNLO soft real emissions
 - * Resummation of soft logarithms (+small-mass logarithms)
- ***** Future prospects
 - * Numerical results for rapidity distributions
 - * From on-shell top quarks to top jets

Thank you!