

Two-loop integrals for µe-scattering

Amedeo Primo

St.Goar, 1st May 2018 - Loops&Legs in Quantum Field Theory

- Motivation: the muon (g-2) in the Standard Model
- Leading hadronic contribution from µe-scattering
- Status of µe-scattering at NNLO in QED: virtual amplitude
- Outline and Conclusions

References: <u>arXiv:1709.07435</u>

In collaboration with: S. Di Vita, S.Laporta, P.Mastrolia, M.Passera, U.Schubert and W.J.Torres Bobadilla

The muon g-2

Muon anomalous magnetic moment

$$\vec{m}=2(1+a_{\mu})\frac{Qe}{2m_{\mu}}\vec{s}$$

• Contributions from quantum effects, $a_{\mu} = F_2(0)$

$$\bar{u}(p')\Gamma_{\alpha}u(p) = \bar{u}(p')\left[\gamma_{\alpha}\,F_1(q^2) + \frac{i\sigma_{\alpha\beta}q^{\beta}}{2m_{\mu}^2}\,F_2(q^2) + \dots\right]u(p)$$

Experimental measure by BNL-E821, 0.5ppm accuracy

 $\label{eq:approx_prod} \begin{aligned} a_{\mu}^{exp} = 116\,592\,089\,(63)\times10^{-11} \\ \text{[E821 06]} \end{aligned}$

- Upcoming validation with higher precision
 - FNAL-E989 aims at $\pm 16 \times 10^{-11}$ (0.14ppm)
 - Iater confirmation from J-Parc E34

р

q

SM vs experiment

(g-2) in the Standard Model

$$a_{\mu}=a_{\mu}^{QED}+a_{\mu}^{Weak}+a_{\mu}^{Had}$$

- theory prediction at 0.48 ppm accuracy
- Longest standing deviation from the SM

$a_{\mu}^{SM}\times 10^{11}$	$\Delta a_{\mu} \times 10^{11}$	σ
116591761(57)	330 (85)	3.9
116591818(51)	273 (81)	3.4
116591841(58)	250 (86)	2.9

[Jegerlehner 15, Davier 16, Hagiwara et al 11]

- > new measurements can push σ above 5
- theoretical error will dominate

Electro-weak contributions

- EW sector is under complete control
- $a_{\mu}^{QED} = 116\,584\,718.944(21)(77)\times 10^{-11}$
 - > 99.99% of the total
 - known up to five loops
 - uncertainty far below Δa_{μ}

- $a_u^{Weak} = (153.6 \pm 1) \times 10^{-11}$
 - contributes to 1.5 ppm
 - known up to two loops
 - uncertainty from hadronic loop

[Schwinger 48,Sommerfield; Petermann; Suura andWichmann 57 Elend 66, Kinoshita and Lindquist 81, Kinoshita et al. 90, Remiddi, Laporta, Barbieri et al; Czarnecki and Skrzypek,Passera 04 Friot, Greynat and de Rafael 05, Mohr, Kinoshita & Nio 04–05, Aoyama, Hayakawa, Kinoshita et al 07, Taylor and Newell 12, Kinoshita et al. 12–15, Steinhauser et a 13–15–16, Yelkhovsky, Milstein, Starshenko, Laporta, Aoyama Shyakawa, Qdidoshita Micel2–15, Jabodta 17,...]

[Jackiv, Weinberg; Bars, Yoshimura; Altarelli, Cabibbo, Maiani; Bardeen, Gastmans, Lautrup; Fujikawa, Lee, Sanda 71, Kukhto et al. 92, Czarnecki, Krause, Marciano 95, Knecht, Peris, Pewotkt, de Rafgel 02, Czarnecki, Marciano and Vainshtein 02, Degrassi and Giudice 98; Heinemeyer, Stockinger, Weiglein (04), Gribouk and Czarnecki 05, Vainshtein 03, Gnendiger, Stockinger, Stockinger-Kim 13,...]

Hadronic contribution

- Hadronic contribution: 60 ppm of the total value
 - non-perturbative, large uncertainties

[Knecht, Nyffeler 02, Melnikov, Vainshtein 03...., Jegerlehner 15]

Dispersive approach to a_{μ}^{HLO}

aµ^{HLO} computed from dispersion relations

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi^2} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} \int_0^1 dx \frac{x^2(1-x)}{x^2 + (1-x)s/m^2} \, Im\Pi(s)_{Had}$$

• Unitarity relates $Im \Pi_{had}(s)$ to $e^+e^- \rightarrow Had$ cross-section

• Extract a_{μ}^{HLO} from experimental data

$$a^{HLO}_{\mu} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \int_0^1 dx \frac{x^2(1-x)}{x^2 + (1-x)s/m^2} \, \sigma_{e^+e^- \to Had}(s)$$

[Bouchiat, Michiel 61, Durand 62, Gourdin, de Rafael 69,...]

- enhanced region s $\lesssim 2 \text{ GeV}$
- Improve accuracy to 0.22 ppm requires 0.4% error on $\sigma_{e^+e^- \to \, \text{Had}}$

[Jegerlehner 15]

F (GeV

R"

e'e' -> hadrons

▲ PLUTO ◆ BESII

× MD-

aµHLO from muon-electron scattering

Alternatively, compute a_{μ}^{HLO} from space-like data 10 $a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_0^1 dx \left(1-x\right) \Delta \alpha_{Had}[t(x)] \quad t(x) = \frac{x^2 m^2}{x-1} \leq 0$ $\Delta lpha_{
m had} \Big(rac{x^2 m_{\mu}^2}{x-1} \Big) imes 10^4$ -1[Lautrup, Peterman, de Rafael 72] 0.1Extract $\Delta \alpha_{Had}[t(\mathbf{x})] = -\overline{\Pi}_{Had}[t(\mathbf{x})]$ from μe scattering 0.01 0.10.20.30.40.50.60.7 $e(p_2)$ $e(p_3)$ e(p₃) |t| (10⁻³ GeV²) GeV^2) 0.552.9835.72.9810.535.70 0.5510.5 $= \frac{\alpha_{Had}(t)}{\alpha(0)}$ ∞ ∞ Hadron $(1-x) \cdot \Delta lpha_{ ext{had}} \Big(rac{x^2 m_\mu^2}{x-1} \Big) imes 10^5$ $\mu(p_1)$ $\mu(p_4)$ $\mu(p_1)$ $\mu(p_4)$ 10^4 MUonE proposal: 150 GeV p-beam on atomic e ~1 m (a) i = hadmodule n ≞ lep μ 0 target n +1 0.20.20.40.6 0.80 0.40.60.8target n x

[Carloni Calame, Passera et al 15, Abbiendi, Carloni Calame, Marconi et al 16]

aµHLO from muon-electron scattering

- $\begin{aligned} \frac{d\sigma^{HLO}}{dt} &= \left|\frac{\alpha_{Had}(t)}{\alpha(0)}\right|^2 \frac{d\sigma^{LO}}{dt} \\ \bullet \text{ LO contribution from QED} \\ \frac{d\sigma_{LO}}{dt} &= 4\pi\alpha^2 \frac{(m^2 + m_e^2) su t^2/s}{t^2\lambda(s, m^2, m_e^2)} \\ \bullet \text{ Kinematics } s &= (p_1 + p_2)^2, \quad t = (p_2 p_3)^2, \quad u = 2m^2 + 2m_e^2 s t \\ \lambda(x, y, z) &= x^2 + y^2 + z^2 2xy 2xz 2yz \end{aligned}$
- Measure the cross section, subtract everything but the hadronic vac. pol.
 - > 20×10^{-11} estimated statistical uncertainty on a_{μ}^{HLO} (0.3%)
 - systematics (exp. and th.) must be below 10 ppm
- Theory goal: Monte Carlo for QED µe at NNLO

Running coupling from µe-scattering

 $e(p_3)$

 $\mu(p_4)$

 $e(p_2)$

µe-scattering at NNLO

Needed fixed order corrections to µe-scattering

$$\sigma_{NLO} = \int dLIPS_2 \left(2Re\mathcal{M}^{(0)}*\mathcal{M}^{(1)} \right) + \int dLIPS_3 |\mathcal{M}_{Y}^{(0)}|^2 \quad \text{[Nikishov 61, Eriksson 61, ...]}$$

$$\sigma_{\text{NNLO}} = \int d\text{LIPS}_2 \Big(2\text{Re}\,\mathcal{M}^{(0)*}\mathcal{M}^{(2)} + |\mathcal{M}^{(1)}|^2 \Big) + \int d\text{LIPS}_3 2\text{Re}\,\mathcal{M}^{(0)*}_{Y}\mathcal{M}^{(1)}_{Y} + \int d\text{LIPS}_4 |\mathcal{M}^{(0)}_{YY}|^2$$

$$\frac{1}{\text{Double Virtual}} \qquad \text{Double Real}$$

- $\mathcal{M}^{(2)}(m_e^2, m^2)$ unknown (out of reach?)
 - $\blacktriangleright~given~m_e^2/m^2\approx 2\cdot 10^{-5}$, consider massless e
 - $\mathcal{M}^{(2)}(0, m^2)$ can be computed, log-dependence on m_e^2 to be retrieved

Workflow

Workflow

Amplitude generation

Algebraic decomposition

Renormalisation, subtractions, ps-integration

- 69 diagrams + 1 Loop renormalisation
- $\label{eq:constraint} \mathcal{M}^{(2)}(e\mu \rightarrow e\mu) = \sum_k c_k(s,t,m^2,\epsilon) I_k^{(2)}(s,t,m^2,\epsilon)$
 - work at the integrand-level [Ossola, Papadopoulos, Pittau 06]

 $\begin{array}{c} \begin{array}{c} & & \\ p_1 & & \\ p_1 & & \\ p_1 & & \\ p_1 & & \\ p_2 & & \\ p_2 & & \\ \end{array} \begin{array}{c} & & \\ D_k & & \\ \end{array} \end{array} = \frac{N_{i_1 \cdots i_k \cdots i_m}(q_j)}{D_1 \cdots D_k \ldots D_m} \\ \end{array}$

- adaptive integrand decomposition [Mastrolia, Peraro, AP 16]
- Torres' talk this afternoon
- reduction to master integrals via integration-by-parts

[Chetyrkin, Tkachov 81, ..., Laporta 01]

Master integrals for µe-scattering

► Four-point topologies for µe-scattering at two loops:

- Most planar integrals known analytically from different processes
 - tī production in QCD [Gehrmann Remiddi 01, Bonciani Mastrolia Remiddi 04, ...]
 - BhaBha scattering in QED [Bonciani, Ferroglia 08, Asatrian, Greub, Pecjak 08, ...]
 - heavy-to-light quark decay in QCD [Bonciani, Ferroglia, Gehrmann 08, ...]
- Unknown integrals with more massive lines

Differential equations method

• Master integrals $\vec{I} = (I_1, I_2, \dots, I_N)$ fulfil coupled 1st order PDEs in the kinematics

$$\frac{\partial}{\partial x_i} \vec{l}(\vec{x}, \epsilon) = \mathbf{A}_i(\vec{x}, \epsilon) \vec{l}(\vec{x}, \epsilon)$$

[Kotikov 91, Remiddi 97, Gehrmann, Remiddi 00, ...]

- Computation of the master integrals: solve PDEs + boundary conditions
 - $\mathbf{A}_i(\vec{x}, \epsilon)$ are block-triangular
 - $\blacktriangleright {\bf A}_i(\vec{x},\epsilon)$ are rational in \vec{x} and ϵ

Master integrals determined by series expansion for $\epsilon \approx 0$

$$\vec{I}(\vec{x},\epsilon) = \sum_{k=0}^{\infty} I^{(k)}(\vec{x})\epsilon^k$$

> PDEs for Taylor coefficients $\vec{I}^{(k)}(\vec{x})$ (mostly) triangular

Canonical differential equations

- Systems of PDEs are not unique
 - change of variables: $\vec{x} \rightarrow \vec{y}(\vec{x})$
 - change of basis: $\vec{I}(\vec{x}, \epsilon) = \mathbf{B}(\vec{x}, \epsilon) \vec{J}(\vec{x}, \epsilon)$

$$\frac{\partial}{\partial \mathbf{y}_{i}} \vec{\mathbf{I}} = \left[\frac{\partial \mathbf{x}_{j}}{\partial \mathbf{y}_{i}} \mathbf{A}_{j}(\vec{\mathbf{y}}, \mathbf{\epsilon}) \right] \vec{\mathbf{I}}$$

$$\frac{\partial}{\partial x_i} \vec{J} = \mathbf{B}^{-1} \left[\mathbf{A}_i \mathbf{B} - \frac{\partial}{\partial x_i} \mathbf{B} \right] \vec{J}$$

Cast PDEs to canonical (=simplest) form

$$d\vec{l}(\vec{x},\epsilon) = \epsilon \left[\sum_{i=1}^{m} \mathbf{M}_{i} dlog \eta_{i}(\vec{x}) \right] \vec{l}(\vec{x},\epsilon) \quad \text{[Henn 13]}$$

order-by-order decoupling

$$d\vec{I}^{(k)}(\vec{x}) = \sum_{i=1}^{m} dlog\eta_{i}(\vec{x}) \vec{I}^{(k-1)}(\vec{x})$$

known classes of iterated integrals

Canonical differential equations

Algorithmic solution in canonical form

$$\vec{I}(\vec{x},\epsilon) = \left[1 + \sum_{k=1}^{\infty} \int_{Y} d\mathbf{A} \dots d\mathbf{A}\right] \vec{I}(\vec{x}_{0},\epsilon)$$

- algebraic $\eta_i(\vec{x})$: Chen iterated integrals [Chen 77]
- rational $\eta_i(\vec{x})$: Generalised polylogarithms (GPLs)

$$\begin{split} A_i(\vec{x}) &= \sum_{j=1}^m \frac{\mathbf{M}_j}{x_i - \omega_j} \\ G(\vec{0}_n; x) &= \frac{1}{n!} dlog^n \, x \qquad G(\vec{\omega}_n; x) = \int_0^x \frac{dt}{t - \omega_1} G(\vec{\omega}_{n-1}; t) \end{split}$$

[Goncharov 98, Remiddi, Vermaseren 99, Gehrmann, Remiddi 00, ...]

Y1

 (x_0, y_0)

canonical form: easy to solve but hard to find

Х

 (\mathbf{x}, \mathbf{y})

Finding the canonical form

- Many strategies
 - unit leading singularity [Henn 13]
 - magnus exponential [Argeri, Di Vita, Mastrolia et al 14]
 - rational Ansätze for basis change [Gehrmann, Von Manteuffel, Tancredi et al 14,...]
 - reduction to fuchsian form and eigenvalue normalisation [Lee 15, Lee, Smirnov 16]
 - factorisation of the Picard–Fuchs operator [Adams, Chaubery, Weinzierl 17]
- Some public tools: Canonica, Fuchsia, Epsilon
- Go-condition: at $\epsilon = 0$ decoupled 1st PDEs with algebraic homogeneous solutions
- Beyond one-loop: irreducible higher order PDEs
 - transcendental homogeneous solutions
 - iterated integrals over elliptic curves (many talks during L&L!)

Magnus method

- For the second second
 - Ansatz: ε-linear PDEs

$$\frac{\partial}{\partial x_i} \vec{I} = \left[\mathbf{A}_i^{(0)}(\vec{x}) + \epsilon \, \mathbf{A}_i^{(1)}(\vec{x}) \right] \vec{I}$$

solve PDEs for $\epsilon = 0$

$$\frac{\partial}{\partial x_i} \mathbf{B}(\vec{x}) = \mathbf{A}_i^{(0)} \mathbf{B}(\vec{x})$$

• rotate to canonical form $\vec{I} = B\vec{J}$

$$\frac{\partial}{\partial x_{i}}\vec{J} = \boldsymbol{\epsilon} \left[\mathbf{B}^{-1}\mathbf{A}_{i}^{(1)}\mathbf{B} \right] \vec{J}$$

Formal solution of matrix differential equation by the Magnus exponential

[Magnus 54]

Amed	eo	Primo	

Magnus exponential

One-variable case

$$\frac{d}{dx}\mathbf{B}(x) = \mathbf{A}^{(0)}(x)\mathbf{B}(x)$$

Magnus exponential

$$\mathbf{B}(x) = exp\left(\sum_{k=1}^{\infty} \Omega_k[\mathbf{A}^{(0)}](x)\right)$$

$$\Omega_k[\mathbf{A}](t) = \begin{cases} \Omega_1[\mathbf{A}](t) = & \int dt_1 \mathbf{A}(t_1) \\ \Omega_2[\mathbf{A}](t) = & \int dt_1 dt_2[\mathbf{A}(t_1), \mathbf{A}(t_2)] \\ \Omega_3[\mathbf{A}](t) = & \int dt_1 dt_2 dt_3[\mathbf{A}(t_1), [\mathbf{A}(t_2), \mathbf{A}(t_3)]]_{(1,3)} \\ & \dots \end{cases}$$

For Feynman integrals expressible in GPLs

$$\Omega_k[\mathbf{A}_i^{(0)}](\vec{x}) = 0 \qquad \quad k > k_{max}$$

analytic change of basis from Magnus exponential

[Argeri, Di Vita, Mastrolia et al 14]

Magnus exponential

Multivariate generalisation:

$$\frac{\partial}{\partial x_i} \mathbf{B}(\vec{x}) = \mathbf{A}_i^{(0)} \mathbf{B}(\vec{x}) \qquad i=1,\ldots,n$$

chained Magnus rotations

$$\mathbf{B}(\vec{x}) = e^{\Omega[\hat{A}_{n}^{(0)}]}.e^{\Omega[\hat{A}_{n-1}^{(0)}]}.\dots e^{\Omega[A_{1}^{(0)}]}$$

- Method applied to several multiscale problems
 - two-loop QED form factor [Argeri, Di Vita, Mastrolia et al 14]
 - three-loop H+j [Di Vita, Mastrolia, Schubert, Yundin 14]
 - mixed EW-QCD corrections to Drell-Yan [Bonciani, Di Vita, Mastrolia, Schubert 16]
 - mixed EW-QCD corrections to WWH, WWZ(γ*) [Di Vita, Mastrolia, AP, Schubert 17]
- ► Used to compute µe-scattering integrals [Mastrolia, Passera, AP, Schubert 17]

Planar integrals for µe-scattering

65 distinct master integrals identified with Reduze

Canonical form

 \blacktriangleright ϵ -linear PDEs in two variables s/m^2 , t/m^2

$$\frac{\partial}{\partial x_i} \vec{I} = \begin{bmatrix} \mathbf{A}_i^{(0)}(\vec{x}) + \epsilon \, \mathbf{A}_i^{(1)}(\vec{x}) \end{bmatrix} \vec{I} \qquad i = 1, 2$$

Magnus exponential:

$$\mathbf{B}(\vec{\mathbf{x}}) = \exp\left(\sum_{k} \Omega_{k}[\hat{A}_{2}^{(0)}](\vec{\mathbf{x}})\right) \cdot \exp\left(\sum_{j} \Omega_{j}[A_{1}^{(0)}](\vec{\mathbf{x}})\right)$$

- change of basis: $\vec{I} = B\vec{J}$
- change of variables: $s = -m^2 x$ $t = -m^2 \frac{(1-y)^2}{y}$

• Canonical form: $d\vec{J}(x, y, \epsilon) = \epsilon \left[\sum_{i=1}^{9} \mathbf{M}_{i} dlog \eta_{i}(x, y) \right| \vec{J}(x, y, \epsilon)$

$$\begin{array}{ll} \eta_1 = x & \eta_4 = y & \eta_7 = x + y \\ \eta_2 = 1 + x & \eta_5 = 1 + y & \eta_8 = 1 + xy \\ \eta_3 = 1 - x & \eta_6 = 1 - y & \eta_9 = 1 - y(1 - x - y) \end{array}$$

Solution in terms of GPLs

Boundary conditions

- Boundary conditions from physical information
 - external input
 - > regularity at pseudo-thresholds η_k of the PDEs

$$\lim_{\eta_k \to 0} \mathbf{M}_k \, \vec{I}(\vec{x}, \epsilon) = 0$$

kinematic limits from auxiliary integrals

• Uniform combinations of constant GPLs fitted to ζ_k

$$-59\zeta_{4} = \pi^{2} \left(G_{-1}^{2} - 2 G_{0,-(-1)^{\frac{1}{3}}} - 2 G_{0,(-1)^{\frac{2}{3}}} \right) - 21 \zeta_{3} G_{-1} - G_{-1}^{4} - 18 G_{0,0,0,-(-1)^{\frac{1}{3}}} - 18 G_{0,0,0,(-1)^{\frac{2}{3}}} + 12 G_{0,0,0,-(-1)^{\frac{1}{3}},-1} + 12 G_{0,0,0,-(-1)^{\frac{1}{3}},-1} + 12 G_{0,0,-(-1)^{\frac{1}{3}},-1,-1} + 12 G_{0,0,-(-1)^{\frac{1}{3}},-1,-1} + 12 G_{0,0,-(-1)^{\frac{1}{3}},-1,-1} + 24 G_{0,0,0,-(-1)^{\frac{1}{3}}} + 24 G_{0,0,-(-1)^{\frac{1}{3}}} + 24 G_{0,-(-1)^{\frac{1}{3}}} + 24 G_{0,-(-1)$$

Planar integrals

Numerical evaluation (GiNac) validated against SecDec

Non-planar integrals for µe-scattering

[Di Vita, Laporta, Mastrolia, AP, Schubert in progress]

Canonical form

Magnus exponential:

$$\mathbf{B}(\vec{x}) = exp\left(\sum_{k} \Omega_{k}[\hat{A}_{2}^{(0)}](\vec{x})\right) \cdot exp\left(\sum_{j} \Omega_{j}[A_{1}^{(0)}](\vec{x})\right)$$

t

- change of basis: $\vec{I} = B\vec{J}$
- change of variables:

$$= -m^2 \frac{(1-w)^2}{w} \qquad s = m^2 \left(1 + \frac{(1-w)^2}{w-z^2} \right)$$

Canonical form:

$$d\vec{J}(w, z, \epsilon) = \epsilon \left[\sum_{i=1}^{14} \mathbf{M}_i dlog \eta_i(w, z) \right] \vec{J}(w, z, \epsilon)$$

Solution in terms of GPLs

Outlook and conclusions

- Experimental results for a_µ will improve soon
 - Theory prediction of a_{μ}^{Had} main source of uncertainty
 - Proposal for independent determination from µe-scattering
- Unknown QED prediction at NNLO are required
 - Virtual amplitude decomposed to master integrals
 - All planar master integrals are now available in the $m_e = 0$ limit
 - Non-planar integrals are on the way
 - $|\mathcal{M}_{Y}^{(1)}|^{2}$ can be computed with available tools
- Still a lot work need to get a NNLO generator

Outlook and conclusions

Padova, 4th-5th September 2017

µe scattering: Theory kickoff workshop

https://agenda.infn.it/conferenceDisplay.py?confld=13774

Mainz, 19th-23th February 2018

The Evaluation of the Leading Hadronic Contribution to the Muon Anomalous Magnetic Moment

- https://indico.mitp.uni-mainz.de/event/128/
- Next: **Zürich** February 2019

