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‣ Motivation: the muon (g-2) in the Standard Model

‣ Leading hadronic contribution from μe-scattering

‣ Status of μe-scattering at NNLO in QED: virtual amplitude
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‣ Outline and Conclusions



‣ Muon anomalous magnetic moment

‣ Contributions from quantum effects,
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The muon g-2

�

�m = 2(1+ aμ) Qe2mμ
�s

aμ = F2(0)

ū(p�)Γαu(p) = ū(p�)

�
γα F1(q2) +

iσαβqβ
2m2μ

F2(q2) + . . .

�
u(p)

μ

q
α

μ

p p�

)

aexpμ = 116592089 (63) � 10�11

‣ Experimental measure by BNL-E821, 0.5ppm accuracy

‣ Upcoming validation with higher precision

‣ FNAL-E989 aims at                      (0.14ppm)±16� 10�11

‣ later confirmation from J-Parc E34

 [E821 06]



‣ Longest standing deviation from the SM 
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SM vs experiment

�

aSMμ � 1011 Δaμ � 1011 σ
116591761 (57) 330 (85) 3.9
116591818 (51) 273 (81) 3.4
116591841 (58) 250 (86) 2.9

2

Fig. 1 Comparison between the SM predictions and the experimen-
tal determinations aSM

µ and aExp
µ . DHMZ is Ref. [11], HLMNT is

Ref. [12]; SMXX [13] is the average of the two previous values with
a reduced error as expected by the improvement on the hadronic cross
section measurement; BNL-E821 04 ave. is the current experimental
value of aµ ; New (g-2) exp. is the same central value with a fourfold
improved precision, as planned by the future g-2 experiments at Fer-
milab and J-PARC [1].

tics. New experiments at Fermilab and J-PARC, aiming at
measuring the muon g-2 to a precision of 1.6⇥10�10 (0.14
ppm), are in preparation [9, 10]. Fig. 1, from Ref. [1], shows
the status of the g-2 discrepancy compared with what could
be expected after the new g-2 measurements at Fermilab and
J-PARC, assuming that the central value would remain the
same. Together with a fourfold improved precision on the
experimental side, an improvement on the LO hadronic con-
tribution is highly desirable. Differently from the dispersive
approach, which relies on time-like data from annihilation
cross sections, our proposal is to determine aHLO

µ from a
measurement of the effective electromagnetic coupling in
the space-like region, where the vacuum polarization is a
smooth function of the squared momentum transfer. This
method has been recently proposed [14] by using Bhabha
scattering data. A method to determine the running of a by
using small-angle Bhabha scattering was proposed in [15]
and applied to LEP data in [16]. The hadronic contribution
to the running of a can also be determined unambiguously
through the t-channel µe elastic scattering process, from
which aHLO

µ could be obtained, as detailed in this paper.
The paper is organized as follows. After a short review of

the theoretical framework in Sect. 2, we present our exper-
imental proposal in Sect. 3. Preliminary considerations on
the detector and systematic uncertainties are given in Sect. 4

and Sect. 5, respectively, while our conclusions are drawn in
Sect. 6.

2 Theoretical framework

With the help of dispersion relations and the optical theo-
rem, the LO hadronic contribution to the muon g-2 is given
by the well-known formula [3, 17]

aHLO
µ =

⇣amµ
3p

⌘2 Z •

4m2
p

ds
K̂(s)Rhad(s)

s2 , (1)

where Rhad(s) is the ratio of the total e+e� ! hadrons and
the Born e+e� ! µ+µ� cross sections, K̂(s) is a smooth
function and mµ (mp ) is the muon (pion) mass. We remark
that Rhad(s) in the integrand function of Eq. (1) is highly
fluctuating at low energy due to hadronic resonances and
threshold effects. The dispersive integral in Eq. (1) is usually
calculated by using the experimental value of Rhad(s) up to a
certain value of s [7, 18, 19] and by using perturbative QCD
(pQCD) [20] in the high-energy tail. For the calculation of
aHLO

µ , an alternative formula can also be exploited [14, 21],
namely

aHLO
µ =

a
p

Z 1

0
dx(1� x)Dahad[t(x)] , (2)

where Dahad(t) is the hadronic contribution to the running
of the fine-structure constant, evaluated at

t(x) =
x2m2

µ
x�1

< 0, (3)

the space-like (negative) squared four-momentum transfer.
In contrast with the integrand function of Eq. (1), the inte-
grand in Eq. (2) is smooth and free of resonances.

By measuring the running of a ,

a(t) =
a(0)

1�Da(t)
, (4)

where t = q2 < 0 and a(0) = a is the fine-structure constant
in the Thomson limit, the hadronic contribution Dahad(t)
can be extracted by subtracting from Da(t) the purely lep-
tonic part Dalep(t), which can be calculated order-by-order
in perturbation theory (it is known up to three loops in QED
[22] and up to four loops in specific q2 limits [23]).

Fig. 2 (left) shows Dalep and Dahad as a function of
the variables x and t. The range x 2 (0,1) corresponds to
t 2 (�•,0), with x = 0 for t = 0. The integrand of Eq. (2),
calculated with the routine hadr5n12 [24], which uses time-
like hadroproduction data and perturbative QCD, is plot-
ted in Fig. 2 (right). The peak of the integrand occurs at
xpeak ' 0.914 (corresponding to tpeak ' �0.108 GeV2) and
Dahad(tpeak) ' 7.86⇥10�4 (see Fig. 2 (right)).

 [Blum, Denig, Lovashenko et al 13]

 [Jegerlehner 15, Davier 16, Hagiwara et al 11]

‣ theory prediction at 0.48 ppm accuracy

aμ = aQEDμ + aWeakμ + aHadμ

‣ new measurements can push σ above 5

‣ (g-2) in the Standard Model

‣ theoretical error will dominate



‣ EW sector is under complete control 
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Electro-weak contributions

[Jackiv, Weinberg; Bars, Yoshimura; Altarelli, Cabibbo, Maiani; 
Bardeen, Gastmans, Lautrup; Fujikawa, Lee, Sanda 71,
Kukhto et al. 92, Czarnecki, Krause, Marciano 95, Knecht, Peris,
Perrottet, de Rafael 02, Czarnecki, Marciano and Vainshtein 02,
Degrassi and Giudice 98; Heinemeyer, Stockinger, Weiglein (04),
Gribouk and Czarnecki 05, Vainshtein 03, Gnendiger, Stockinger,
Stockinger-Kim 13,…]

aQEDμ = 116584718.944(21)(77) � 10�11‣

‣ 99.99% of the total
‣ known up to five loops
‣ uncertainty far below Δaμ

‣ aWeakμ = (153.6± 1) � 10�11

‣ contributes to 1.5 ppm
‣ known up to two loops
‣ uncertainty from hadronic loop

[Schwinger 48,Sommerfield; Petermann; Suura andWichmann 57 
Elend 66, Kinoshita and Lindquist 81, Kinoshita et al. 90,  
Remiddi, Laporta, Barbieri et al; Czarnecki and Skrzypek,Passera 04, 
Friot, Greynat and de Rafael 05, Mohr, Kinoshita & Nio 04-05, 
Aoyama, Hayakawa, Kinoshita et al 07, Taylor and Newell 12,
Kinoshita et al. 12-15, Steinhauser et a 13-15-16,
Yelkhovsky, Milstein, Starshenko, Laporta, 
Aoyama, Hayakawa, Kinoshita, Nio 12-15,Laporta 17,…]

Muon g-2

• Largest contribution

• Known up to five loops

• Uncertainty is four orders below the discrepancy �aµ

aSM
µ = aQED

µ + aWeak
µ + aHadr

µ

aQED
µ = 116584718.951(0.009)(0.019)(0.007)(.077)⇥ 10�11

• Only three loop and leading four loop contributions relevant for 
discrepancy

[Aoyama, Hayakawa, Kinoshita, Nio]Muon g-2
aSM
µ = aQED

µ + aWeak
µ + aHadr

µ

f
Z Z

Z

W W

aweak
µ = (153.6± 1)⇥ 10�11

• Smallest contribution

• Known up to two-loops

• Well understood

[Gnendiger, Stoeckinger, 
Stoeckinger-Kim]



Hadronic contribution

�‣ Hadronic contribution: 60 ppm of the total value
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μ

q

μ

α

p p�
Hadrons

Hadrons

α
q

p p�

μ

q

μ

α

p p�
Hadrons

aHLOμ = 6870 (42) � 10�11

aNHLOμ = �98 (1) � 10�11aLBLμ = 102 (39) � 10�11

‣              largest contribution to central valueΠHad(q2)

‣ non-perturbative, large uncertainties

‣ Light-by-Light ‣ Hadronic NLO

 [ Jegerlehner 15, Davier 16, Hagiwara et al 11]

= 6926(33) � 10�11

= 6949(37)(21) � 10�11

 [Krause 96, Alemany et al 98,…, Hagiwara et al 11] [Knecht, Nyffeler 02, Melnikov, Vainshtein 03…., Jegerlehner 15]



Dispersive approach to aμHLO

�
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μ μ
Had
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(4.72)

From
the
point
of
view
of
the
integrand
decom
position,
the
integrals
occurring
in

eq.(4.71)
are
to
be
considered
as
independent.
A
further
IB
P
s
reduction
w
ould
bring

dow
n
to
5
the
finalnum
ber
ofm
aster
integrals.

4.4.1
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(4.73)
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From
the
point
of
view
of
the
integrand
decom
position,
the
integrals
occurring
in

eq.(4.71)
are
to
be
considered
as
independent.
A
further
IB
P
s
reduction
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ould
bring

dow
n
to
5
the
finalnum
ber
ofm
aster
integrals.

4.4.1

A
n
ap
p
lication
:
m
u
on
-electron
scatterin
g

A
s
an
exam
ple
of
the
analytic
integrand-level
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obtained
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he
analytic
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putation
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tw
o-loop
m
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related
to
this
process,w
hich

w
illbe
discussed
in
chapter
8,is
possible,at
the
present
tim
e,only
in
the
lim
it
ofvan-

ishing
electron
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ass.
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herefore,although
the
integrand
reduction
can
be
also
obtained

by
retaining
the
full
dependence
on
the
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asses
of
both
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from
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beginning
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=
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results
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=
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=

0.

F
igure
4.5:
µ
e
scattering
at
tree-levelin
Q
E
D
.

T
he
Q
E
D
crossection
for
µ
e
scattering
is
expanded
in
the
fine
structure
constant

↵
=

e
2 /
4⇡
as

�
=

�
L
O
+

�
N
L
O
+

�
N
N
L
O
+

...

(4.75)

w
here,schem
atically,

�
L
O
=

Z
d

�
2|M

(0
) |2
,

�
N
L
O
=

Z
d

�
2
2R
e
M

(0
)⇤ M
(1
)
+

Z
d

�
3|M

(0
)
�

|2
,

�
N
N
L
O
=

Z
d

�
2✓
2R
e
M

(0
)⇤ M
(2
)
+

|M
(1
)
�

|2⌘
+

Z
d

�
3R
e
M

(0
)⇤
�

M
(1
)
�

+

+

Z
d

�
4|M

(0
)
�

�|2
,

(4.76)

w
ith
d

�
n

being
the
n-body
phase-space.
In
eq.(4.76),M
(
`)
indicates
the
`-loop
virtual

contribution
to
the
µ
e
scattering
am
plitude,w
hich
isO
(↵
`+
1
),w
hereasM

(
`)
�

and
M

(
`)
�

�

μ(
p 1

)
μ(
p 4

)

e(
p 2

)
e(
p 3

)

Hadrons

86
C
hapter

4.
A
daptive

integrand
decom

position

�

1211
1235

=
�

1
6m

2
(
4m

2
+

s
(d

�
2
)
)
,

�

12345
=

4
(s�

2m
2
)
(
4m

2
+

s
(d

�
2
)
)
.

(4.72)

From
the

point
of

view
of

the
integrand

decom
position,

the
integrals

occurring
in

eq.(4.71)
are

to
be

considered
as

independent.
A

further
IB

P
s

reduction
w

ould
bring

dow
n

to
5

the
finalnum

ber
ofm

aster
integrals.

4.4.1
A

n
ap

p
lication

:
m

u
on

-electron
scatterin

g

A
s

an
exam

ple
of

the
analytic

integrand-level
decom

position
obtained

through
A

i
d
a,

w
e

consider
the

N
LO

and
N

N
LO

virtualQ
E

D
corrections

to
the

m
uon-electron

elastic
scattering

µ
�
(p

1
)
+

e �
(p

2
)!

e �
(p

3
)
+

µ
�
(p

4
)
.

(4.73)

T
he

analytic
com

putation
ofthe

tw
o-loop

m
asterintegralsrelated

to
thisprocess,w

hich
w

illbe
discussed

in
chapter

8,is
possible,at

the
present

tim
e,only

in
the

lim
it

ofvan-
ishing

electron
m

ass.
T

herefore,although
the

integrand
reduction

can
be

also
obtained

by
retaining

the
full

dependence
on

the
m

asses
of

both
leptons,

w
e

w
ill

assum
e

from
the

very
beginning

m
2e

=
0,in

order
keep

our
results

m
ore

com
pact.

In
such

lim
it,the

kinem
atics

ofthe
process

is
defined

by

s
=

(p
1
+

p
2
)

2,
t

=
(p

2 �
p
3
)

2,
u

=
�

s�
t
+

2m
2
,

(4.74)

w
ith

p
21

=
p
24

=
m

2
and

p
22

=
p
23

=
0.

Figure
4.5:

µ
e

scattering
at

tree-levelin
Q

E
D

.

T
he

Q
E

D
crossection

for
µ
e

scattering
is

expanded
in

the
fine

structure
constant

↵
=

e
2/

4⇡
as

�
=

�
L
O

+
�

N
L
O

+
�

N
N

L
O

+
...

(4.75)

w
here,schem

atically,

�
L
O

=

Z
d
�
2 |M

(0)| 2
,

�
N

L
O

=

Z
d
�
2
2R

e
M

(0)⇤M
(1)

+

Z
d
�
3 |M

(0)
�

| 2
,

�
N

N
L
O

=

Z
d
�
2 ✓

2R
e

M
(0)⇤M

(2)
+

|M
(1)
�

| 2 ⌘
+

Z
d
�
3 R

e
M

(0)⇤
�

M
(1)
�

+

+

Z
d
�
4 |M

(0)
�
� | 2

,
(4.76)

w
ith

d
�
n

being
the

n-body
phase-space.

In
eq.(4.76),M

(
`)indicates

the
`-loop

virtual
contribution

to
the

µ
e

scattering
am

plitude,w
hich

isO
(↵

`+
1
),w

hereasM
(
`)
�

and
M

(
`)
�
�

86

C
ha
pt
er
4.
A
da
pt
iv
e
in
te
gr
an
d
de
co
m
po
si
tio
n

�

12
11

12
35
=

�
1

6

m
2

(

4

m
2

+

s(
d
�
2

)

)

,

�

12
34
5
=

4

(

s
�
2

m
2

)

(

4

m
2

+

s(
d
�
2

)

)

.

(4
.7
2)

Fr
om
th
e
po
in
t
of
vi
ew
of
th
e
in
te
gr
an
d
de
co
m
po
sit
io
n,
th
e
in
te
gr
al
s
oc
cu
rr
in
g
in

eq
.(
4.
71
)
ar
e
to
be
co
ns
id
er
ed
as
in
de
pe
nd
en
t.
A
fu
rt
he
r
IB
P
s
re
du
ct
io
n
w
ou
ld
br
in
g

do
w
n
to
5
th
e
fin
al
nu
m
be
r
of
m
as
te
r
in
te
gr
al
s.

4.
4.
1

A
n
ap
pl
ic
at
io
n:
m
uo
n-
el
ec
tr
on
sc
at
te
ri
ng

A
s
an
ex
am
pl
e
of
th
e
an
al
yt
ic
in
te
gr
an
d-
le
ve
ld
ec
om
po
sit
io
n
ob
ta
in
ed
th
ro
ug
h
A

i

d

a

,

w
e
co
ns
id
er
th
e
N
LO
an
d
N
N
LO
vi
rt
ua
lQ
E
D
co
rr
ec
tio
ns
to
th
e
m
uo
n-
el
ec
tr
on
el
as
tic

sc
at
te
rin
g

µ
�

(

p1
)

+

e �
(

p2
)

!
e �
(

p3
)

+

µ
�

(

p4
)

.

(4
.7
3)

T
he
an
al
yt
ic
co
m
pu
ta
tio
n
of
th
e
tw
o-
lo
op
m
as
te
ri
nt
eg
ra
ls
re
la
te
d
to
th
is
pr
oc
es
s,
w
hi
ch

w
ill
be
di
sc
us
se
d
in
ch
ap
te
r
8,
is
po
ss
ib
le
,a
t
th
e
pr
es
en
t
tim
e,
on
ly
in
th
e
lim
it
of
va
n-

ish
in
g
el
ec
tr
on
m
as
s.
T
he
re
fo
re
,a
lth
ou
gh
th
e
in
te
gr
an
d
re
du
ct
io
n
ca
n
be
al
so
ob
ta
in
ed

by
re
ta
in
in
g
th
e
fu
ll
de
pe
nd
en
ce
on
th
e
m
as
se
s
of
bo
th
le
pt
on
s,
w
e
w
ill
as
su
m
e
fr
om

th
e
ve
ry
be
gi
nn
in
g
m
2e

=

0

,i
n
or
de
r
ke
ep
ou
r
re
su
lts
m
or
e
co
m
pa
ct
.
In
su
ch
lim
it,
th
e

ki
ne
m
at
ic
s
of
th
e
pr
oc
es
s
is
de
fin
ed
by

s
=

(

p1
+

p2
)

2
,

t
=

(

p2
�
p3
)

2
,

u
=

�
s
�
t
+

2

m
2

,

(4
.7
4)

w
ith
p 21
=

p 24
=

m
2

an
d
p 22
=

p 23
=

0

.

Fi
gu
re
4.
5:
µ
e
sc
at
te
rin
g
at
tr
ee
-le
ve
li
n
Q
E
D
.

T
he
Q
E
D
cr
os
se
ct
io
n
fo
r
µ
e
sc
at
te
rin
g
is
ex
pa
nd
ed
in
th
e
fin
e
st
ru
ct
ur
e
co
ns
ta
nt

↵
=

e 2
/4
⇡
as

�
=

�
L
O
+

�
N
L
O
+

�
N
N
L
O
+

..
.

(4
.7
5)

w
he
re
,s
ch
em
at
ic
al
ly
,

�
L
O
=

Z
d

�
2
|M
(0
)| 2

,

�
N
L
O
=

Z
d

�
2
2

R
e
M
(0
)
⇤M
(1
)

+

Z
d

�
3
|M
(0
)

�

| 2
,

�
N
N
L
O
=

Z
d

�
2

✓
2

R
e
M
(0
)
⇤M
(2
)

+

|M
(1
)

�

| 2 ⌘
+

Z
d

�
3
R
e
M
(0
)
⇤

�

M
(1
)

�

+

+

Z
d

�
4
|M
(0
)

�

�

| 2
,

(4
.7
6)

w
ith
d

�
n

be
in
g
th
e
n
-b
od
y
ph
as
e-
sp
ac
e.
In
eq
.(
4.
76
),
M
(`
)

in
di
ca
te
s
th
e
`-
lo
op
vi
rt
ua
l

co
nt
rib
ut
io
n
to
th
e
µ
e
sc
at
te
rin
g
am
pl
itu
de
,w
hi
ch
is
O
(

↵
`

+
1

)

,
w
he
re
as
M
(`
)

�

an
d
M
(`
)

�

�

86
C
ha

pt
er

4.
A
da

pt
iv

e
in

te
gr

an
d

de
co

m
po

si
tio

n

�

1
2
1
1

1
2
3
5

=
�

1
6
m

2
(
4
m

2
+

s(
d

�
2
)
)
,

�

1
2
3
4
5

=
4
(
s

�
2
m

2
)
(
4
m

2
+

s(
d

�
2
)
)
.

(4
.7

2)

Fr
om

th
e

po
in

t
of

vi
ew

of
th

e
in

te
gr

an
d

de
co

m
po

si
ti

on
,

th
e

in
te

gr
al

s
oc

cu
rr

in
g

in
eq

.(
4.

71
)

ar
e

to
be

co
ns

id
er

ed
as

in
de

pe
nd

en
t.

A
fu

rt
he

r
IB

P
s

re
du

ct
io

n
w

ou
ld

br
in

g
do

w
n

to
5

th
e

fin
al

nu
m

be
r

of
m

as
te

r
in

te
gr

al
s.

4.
4.

1
A

n
ap

p
li
ca

ti
on

:
m

u
on

-e
le

ct
ro

n
sc

at
te

ri
n
g

A
s

an
ex

am
pl

e
of

th
e

an
al

yt
ic

in
te

gr
an

d-
le

ve
l

de
co

m
po

si
ti

on
ob

ta
in

ed
th

ro
ug

h
A

i
d
a
,

w
e

co
ns

id
er

th
e

N
LO

an
d

N
N

LO
vi

rt
ua

lQ
E

D
co

rr
ec

ti
on

s
to

th
e

m
uo

n-
el

ec
tr

on
el

as
ti

c
sc

at
te

ri
ng

µ
�
(
p 1

)
+

e�
(
p 2

)
!

e�
(
p 3

)
+

µ
�
(
p 4

)
.

(4
.7

3)

T
he

an
al

yt
ic

co
m

pu
ta

ti
on

of
th

e
tw

o-
lo

op
m

as
te

ri
nt

eg
ra

ls
re

la
te

d
to

th
is

pr
oc

es
s,

w
hi

ch
w

ill
be

di
sc

us
se

d
in

ch
ap

te
r

8,
is

po
ss

ib
le

,a
t

th
e

pr
es

en
t

ti
m

e,
on

ly
in

th
e

lim
it

of
va

n-
is

hi
ng

el
ec

tr
on

m
as

s.
T

he
re

fo
re

,a
lt

ho
ug

h
th

e
in

te
gr

an
d

re
du

ct
io

n
ca

n
be

al
so

ob
ta

in
ed

by
re

ta
in

in
g

th
e

fu
ll

de
pe

nd
en

ce
on

th
e

m
as

se
s

of
bo

th
le

pt
on

s,
w

e
w

ill
as

su
m

e
fr

om
th

e
ve

ry
be

gi
nn

in
g

m
2 e

=
0
,i

n
or

de
r

ke
ep

ou
r

re
su

lt
s

m
or

e
co

m
pa

ct
.

In
su

ch
lim

it
,t

he
ki

ne
m

at
ic

s
of

th
e

pr
oc

es
s

is
de

fin
ed

by

s
=

(
p 1

+
p 2

)

2
,

t
=

(
p 2

�
p 3

)

2
,

u
=

�
s

�
t
+

2
m

2
,

(4
.7

4)

w
it

h
p2 1

=
p2 4

=
m

2
an

d
p2 2

=
p2 3

=
0
.

Fi
gu

re
4.

5:
µ
e

sc
at

te
ri

ng
at

tr
ee

-le
ve

li
n

Q
E

D
.

T
he

Q
E

D
cr

os
se

ct
io

n
fo

r
µ
e

sc
at

te
ri

ng
is

ex
pa

nd
ed

in
th

e
fin

e
st

ru
ct

ur
e

co
ns

ta
nt

↵
=

e2
/4

⇡
as

�
=

�
L
O

+
�

N
L
O

+
�

N
N

L
O

+
..

.
(4

.7
5)

w
he

re
,s

ch
em

at
ic

al
ly

,

�
L
O

=

Z
d
�
2
|M

(0
) |2

,

�
N

L
O

=

Z
d
�
2
2
R

e
M

(0
)
⇤ M

(1
)

+

Z
d
�
3
|M

(0
)

�

|2
,

�
N

N
L
O

=

Z
d
�
2

✓
2
R

e
M

(0
)
⇤ M

(2
)
+

|M
(1
)

�

|2⌘
+

Z
d
�
3
R

e
M

(0
)
⇤

�

M
(1
)

�

+

+

Z
d
�
4
|M

(0
)

�
�

|2
,

(4
.7

6)

w
it

h
d
�
n

be
in

g
th

e
n
-b

od
y

ph
as

e-
sp

ac
e.

In
eq

.(
4.

76
),

M
(`
)
in

di
ca

te
s

th
e

`-
lo

op
vi

rt
ua

l
co

nt
ri

bu
ti

on
to

th
e

µ
e

sc
at

te
ri

ng
am

pl
it

ud
e,

w
hi

ch
is

O
(
↵
`
+
1
)
,
w

he
re

as
M

(`
)

�

an
d

M
(`
)

�
�86

C
hapter
4.
A
daptive
integrand
decom
position

�

1211

1235
=

�
1

6m
2
(

4m
2
+

s
(d
�
2

)

)

,

�

12345
=

4

(s�
2m

2
)

(

4m
2
+

s
(d
�
2

)

)

.

(4.72)

From
the
point
of
view
of
the
integrand
decom
position,
the
integrals
occurring
in

eq.(4.71)
are
to
be
considered
as
independent.
A
further
IB
P
s
reduction
w
ould
bring

dow
n
to
5
the
finalnum
ber
ofm
aster
integrals.

4.4.1

A
n
application:
m
u
on
-electron
scattering

A
s
an
exam
ple
of
the
analytic
integrand-level
decom
position
obtained
through
A

i

d

a,

w
e
consider
the
N
LO
and
N
N
LO
virtualQ
E
D
corrections
to
the
m
uon-electron
elastic

scattering

µ
�
(p
1
)

+

e�
(p
2
)!
e�
(p
3
)

+

µ
�
(p
4
)

.

(4.73)

T
he
analytic
com
putation
ofthe
tw
o-loop
m
asterintegralsrelated
to
thisprocess,w
hich

w
illbe
discussed
in
chapter
8,is
possible,at
the
present
tim
e,only
in
the
lim
it
ofvan-

ishing
electron
m
ass.
T
herefore,although
the
integrand
reduction
can
be
also
obtained

by
retaining
the
full
dependence
on
the
m
asses
of
both
leptons,
w
e
w
ill
assum
e
from

the
very
beginning
m
2 e

=

0,in
order
keep
our
results
m
ore
com
pact.
In
such
lim
it,the

kinem
atics
ofthe
process
is
defined
by

s
=

(p
1
+

p
2
)2 ,

t
=

(p
2�
p
3
)2 ,

u
=

�
s�
t
+

2m
2
,

(4.74)

w
ith
p
2 1
=

p
2 4
=

m
2
and
p
2 2
=

p
2 3
=

0.

Figure
4.5:
µ
e
scattering
at
tree-levelin
Q
E
D
.

T
he
Q
E
D
crossection
for
µ
e
scattering
is
expanded
in
the
fine
structure
constant

↵
=

e
2 /
4⇡
as

�
=

�
L
O
+

�
N
L
O
+

�
N
N
L
O
+

...

(4.75)

w
here,schem
atically,

�
L
O
=

Z
d

�
2|M

(0) |2
,

�
N
L
O
=

Z
d

�
2
2R
e
M

(0)⇤ M
(1)
+

Z
d

�
3|M

(0)
�

|2
,

�
N
N
L
O
=

Z
d

�
2✓
2R
e
M

(0)⇤ M
(2)
+

|M
(1)
�

|2⌘
+

Z
d

�
3R
e
M

(0)⇤
�

M
(1)
�

+

+

Z
d

�
4|M

(0)
�

�|2
,

(4.76)

w
ith
d

�
n

being
the
n-body
phase-space.
In
eq.(4.76),M
(
`) indicates
the
`-loop
virtual

contribution
to
the
µ
e
scattering
am
plitude,w
hich
isO
(↵
`+
1
),w
hereasM

(
`)
�

and
M

(
`)
�

�

=
s

4πα
�

Had

Had

Im

M. Passera    KIAS Seoul   Nov 10 2017 14

Carloni Calame, MP, Trentadue, Venanzoni, PLB 2015

 smooth integrand

New space-like proposal for HLO (2)

Time-like Space-like
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‣ aμHLO computed from dispersion relations

‣ Unitarity relates                 to                      cross-section ImΠhad(s) e+e� � Had

‣ Extract aμHLO from experimental data

‣ enhanced region s � 2GeV

‣ Improve accuracy to 0.22 ppm requires 0.4% error on  σe+e��Had

aHLOμ =
1
4π3

� �

4m2π

ds
� 1

0
dx x2(1� x)

x2 + (1� x)s/m2 σe+e��Had(s)

aHLOμ =
α
π2

� �

4m2π

ds
s

� 1

0
dx x2(1� x)

x2 + (1� x)s/m2 ImΠ(s)Had

[Bouchiat, Michiel 61, Durand 62, Gourdin, de Rafael 69,…]
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‣ Alternatively, compute aμHLO from space-like data

aHLOμ =
α
π

� 1

0
dx (1� x)ΔαHad[t(x)] t(x) =

x2m2

x� 1 � 0

�
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Muon-electron scattering

  Δαhad(t) can also be measured via the elastic scattering μ e ➞ μ e. 

  We propose to scatter a 150 GeV muon beam, available at CERN’s  
North Area, on a fixed electron target. Modular apparatus, 20 layers 
of  low Z material (Be or C) paired to Si strip planes.

μe

‣ Extract                                       from μe scattering   ΔαHad[t(x)] = �ΠHad[t(x)]
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Fig. 2 Left: Dahad[t(x)] ⇥ 104 (red) and, for comparison, Dalep[t(x)] ⇥ 104 (blue), as a function of x and t (upper scale). Right: the integrand
(1� x)Dahad[t(x)]⇥105 as a function of x and t. The peak value is at xpeak ' 0.914, corresponding to tpeak ' �0.108 GeV2.

3 Experimental proposal

We propose to use Eq. (2) to determine aHLO
µ by measuring

the running of a in the space-like region with a muon beam
of Eµ = 150 GeV on a fixed electron target. The proposed
technique is similar to the one used for the measurement of
the pion form factor, as described in [25]. It is very appealing
for the following reasons:

(i) It is a t-channel process, making the dependence on t
of the differential cross section proportional to |a(t)/a(0)|2:

ds
dt

=
ds0

dt

����
a(t)
a(0)

����
2
, (5)

where ds0/dt is the effective Born cross section, including
virtual and soft photons, analogously to Ref. [26], where
small-angle Bhabha scattering at high energy was consid-
ered. The vacuum polarization effect, in the leading photon
t-channel exchange, is incorporated in the running of a and
gives rise to the factor |a(t)/a(0)|2. It is understood that
for a high precision measurement also higher-order radia-
tive corrections must be included. For a detailed discussion
see Refs. [15, 26].

(ii) Given the incoming muon energy Ei
µ , in a fixed-

target experiment the t variable is related to the energy of
the scattered electron E f

e or its angle q f
e :

t = (pi
µ � p f

µ)2 = (pi
e � p f

e )2 = 2m2
e �2meE f

e , (6)

s = (p f
µ + p f

e )2 = (pi
µ + pi

e)
2 = m2

µ +m2
e +2meEi

µ , (7)

E f
e = me

1+ r2c2
e

1� r2c2
e
, q f

e = arccos

0

@1
r

s
E f

e �me

E f
e +me

1

A , (8)

where

r ⌘

q
(Ei

µ)2 �m2
µ

Ei
µ +me

, ce ⌘ cosq f
e ; (9)

The angle q f
e spans the range (0–31.85) mrad for the elec-

tron energy E f
e in the range (1–139.8) GeV (the low-energy

cut at 1 GeV is arbitrary).
(iii) For Ei

µ = 150 GeV, it turns out that s ' 0.164 GeV2

and �0.143 GeV2 < t < 0 GeV2 (i.e. �l (s,m2
µ ,m2

e)/s <
t < 0, where l (x,y,z) is the Källén function). It implies that
the region of x extends up to 0.93, while the peak of the in-
tegrand function of Eq. (2) is at xpeak = 0.914, correspond-
ing to an electron scattering angle of 1.5 mrad, as visible in
Fig. 2 (right).

(iv) The angles of the scattered electron and muon are
correlated as shown in Fig. 3 (drawn for incoming muon en-
ergy of 150 GeV). This constraint is extremely important to
select elastic scattering events, rejecting background events
from radiative or inelastic processes and to minimize sys-
tematic effects in the determination of t. Note that for scat-
tering angles of (2–3) mrad there is an ambiguity between
the outgoing electron and muon, as their angles and mo-
menta are similar, to be resolved by means of µ/e discrimi-
nation.

(v) The boosted kinematics allows the same detector to
cover the whole acceptance. Many systematic errors, e.g. on

‣ MUonE proposal: 150 GeV μ-beam on atomic e
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From the point of view of the integrand decomposition, the integrals occurring in
eq. (4.71) are to be considered as independent. A further IBPs reduction would bring
down to 5 the final number of master integrals.

4.4.1 An application: muon-electron scattering

As an example of the analytic integrand-level decomposition obtained through Aida,
we consider the NLO and NNLO virtual QED corrections to the muon-electron elastic
scattering

µ�
(p1) + e�(p2) ! e�(p3) + µ�

(p4) . (4.73)

The analytic computation of the two-loop master integrals related to this process, which
will be discussed in chapter 8, is possible, at the present time, only in the limit of van-
ishing electron mass. Therefore, although the integrand reduction can be also obtained
by retaining the full dependence on the masses of both leptons, we will assume from
the very beginning m2

e

= 0, in order keep our results more compact. In such limit, the
kinematics of the process is defined by

s = (p1 + p2)
2, t = (p2 � p3)

2, u = �s � t + 2m2 , (4.74)

with p21 = p24 = m2 and p22 = p23 = 0.

Figure 4.5: µe scattering at tree-level in QED.

The QED crossection for µe scattering is expanded in the fine structure constant
↵ = e2/4⇡ as

� = �LO + �NLO + �NNLO + . . . (4.75)

where, schematically,
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with d�
n

being the n-body phase-space. In eq. (4.76), M(`) indicates the `-loop virtual
contribution to the µe scattering amplitude, which is O(↵`+1

), whereas M(`)
�

and M(`)
��
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TheQEDcrossectionforµescatteringisexpandedinthefinestructureconstant
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withd�
n

beingthen-bodyphase-space.Ineq.(4.76),M(`)indicatesthe`-loopvirtual
contributiontotheµescatteringamplitude,whichisO(↵+̀1

),whereasM(`)
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andM(`)
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μ(p1) μ(p4)

e(p2) e(p3)

Hadrons

86 Chapter 4. Adaptive integrand decomposition

�

1211
1235 = � 16m2

(4m2
+ s(d � 2)) ,

�12345 = 4(s � 2m2
)(4m2

+ s(d � 2)) . (4.72)

From the point of view of the integrand decomposition, the integrals occurring in
eq. (4.71) are to be considered as independent. A further IBPs reduction would bring
down to 5 the final number of master integrals.

4.4.1 An application: muon-electron scattering

As an example of the analytic integrand-level decomposition obtained through Aida,
we consider the NLO and NNLO virtual QED corrections to the muon-electron elastic
scattering

µ�
(p1) + e�(p2) ! e�(p3) + µ�

(p4) . (4.73)

The analytic computation of the two-loop master integrals related to this process, which
will be discussed in chapter 8, is possible, at the present time, only in the limit of van-
ishing electron mass. Therefore, although the integrand reduction can be also obtained
by retaining the full dependence on the masses of both leptons, we will assume from
the very beginning m2

e

= 0, in order keep our results more compact. In such limit, the
kinematics of the process is defined by

s = (p1 + p2)
2, t = (p2 � p3)

2, u = �s � t + 2m2 , (4.74)

with p21 = p24 = m2 and p22 = p23 = 0.

Figure 4.5: µe scattering at tree-level in QED.

The QED crossection for µe scattering is expanded in the fine structure constant
↵ = e2/4⇡ as

� = �LO + �NLO + �NNLO + . . . (4.75)

where, schematically,

�LO =

Z
d�2|M(0)|2 ,

�NLO =

Z
d�22Re M(0) ⇤M(1)

+

Z
d�3|M(0)

�

|2 ,

�NNLO =

Z
d�2

✓
2Re M(0) ⇤M(2)

+ |M(1)
�

|2
⌘

+

Z
d�3Re M(0) ⇤

�

M(1)
�

+

+

Z
d�4|M(0)

��

|2 , (4.76)

with d�
n

being the n-body phase-space. In eq. (4.76), M(`) indicates the `-loop virtual
contribution to the µe scattering amplitude, which is O(↵`+1

), whereas M(`)
�

and M(`)
��

86Chapter4.Adaptiveintegranddecomposition

�

1211
1235=�16m2

(4m2
+s(d�2)),

�12345=4(s�2m2
)(4m2

+s(d�2)).(4.72)

Fromthepointofviewoftheintegranddecomposition,theintegralsoccurringin
eq.(4.71)aretobeconsideredasindependent.AfurtherIBPsreductionwouldbring
downto5thefinalnumberofmasterintegrals.

4.4.1Anapplication:muon-electronscattering

Asanexampleoftheanalyticintegrand-leveldecompositionobtainedthroughAida,
weconsidertheNLOandNNLOvirtualQEDcorrectionstothemuon-electronelastic
scattering

µ�
(p1)+e�(p2)!e�(p3)+µ�

(p4).(4.73)

Theanalyticcomputationofthetwo-loopmasterintegralsrelatedtothisprocess,which
willbediscussedinchapter8,ispossible,atthepresenttime,onlyinthelimitofvan-
ishingelectronmass.Therefore,althoughtheintegrandreductioncanbealsoobtained
byretainingthefulldependenceonthemassesofbothleptons,wewillassumefrom
theverybeginningm2

e

=0,inorderkeepourresultsmorecompact.Insuchlimit,the
kinematicsoftheprocessisdefinedby

s=(p1+p2)
2,t=(p2�p3)

2,u=�s�t+2m2,(4.74)

withp21=p24=m2andp22=p23=0.

Figure4.5:µescatteringattree-levelinQED.

TheQEDcrossectionforµescatteringisexpandedinthefinestructureconstant
↵=e2/4⇡as

�=�LO+�NLO+�NNLO+...(4.75)

where,schematically,

�LO=

Z
d�2|M(0)|2,

�NLO=

Z
d�22ReM(0)⇤M(1)

+

Z
d�3|M(0)

�

|2,

�NNLO=

Z
d�2

✓
2ReM(0)⇤M(2)

+|M(1)
�

|2
⌘

+

Z
d�3ReM(0)⇤

�

M(1)
�

+

+

Z
d�4|M(0)

��

|2,(4.76)

withd�
n

beingthen-bodyphase-space.Ineq.(4.76),M(`)indicatesthe`-loopvirtual
contributiontotheµescatteringamplitude,whichisO(↵+̀1

),whereasM(`)
�

andM(`)
��

μ(p1) μ(p4)

e(p2) e(p3)

=
αHad(t)
α(0)

[Lautrup, Peterman, de Rafael 72]



‣ Running coupling from μe-scattering

aμHLO from muon-electron scattering
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‣ LO contribution from QED

�
dσLO
dt = 4πα2 (m2 +m2

e) � su� t2/s
t2λ(s,m2,m2e)
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contributiontotheµescatteringamplitude,whichisO(↵+̀1
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‣ Kinematics s = (p1 + p2)2, t = (p2 � p3)2, u = 2m2 + 2m2
e � s� t

dσHLO

dt =

����
αHad(t)
α(0)

����
2 dσHLO

dt

‣ Measure the cross section, subtract everything but the hadronic vac. pol.

‣ systematics (exp. and th.) must be below 10 ppm 

‣                  estimated statistical uncertainty on aμHLO (0.3%)20� 10�11

‣ Theory goal: Monte Carlo for QED μe at NNLO

λ(x, y,z) = x2 + y2 + z2 � 2xy� 2xz� 2yz

LO



‣ Needed fixed order corrections to  μe-scattering

μe-scattering at NNLO
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‣ given                          , consider massless em2
e/m2 � 2 · 10�5

‣                      unknown (out of reach?)       M(2)(m2
e ,m2)

[Nikishov 61, Eriksson 61, …]σNLO =

�
dLIPS2

�
2ReM(0) �M(1)

�
+

�
dLIPS3|M(0)

γ |2

Virtual Real

dLIPS2 dLIPS3

σNNLO =

�
dLIPS2

�
2ReM(0)�M(2) + |M(1)|2

�
+

�
dLIPS32ReM(0)�M(1)

γ +

�
dLIPS4|M(0)

γγ |2

Double Virtual Real-Virtual Double Real

γdLIPS2 dLIPS3 dLIPS4

M(2)(0,m2)‣                    can be computed, log-dependence on       to be retrieved           m2
e
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].

8.2 System of differential equations

In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T

i

, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s

m2
= x, � t

m2
=

(1 � y)

2

y
, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type

@F

@x
= (A0x(x, y) + A1x(x, y))✏F ,

@F

@y
= (A0 y(x, y) + A1 y(x, y))F . (8.6)
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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+ . . .

M(2)(eμ � eμ) =
�

k
ck(s, t,m2, ε)I(2)

k (s, t,m2, ε)

‣ O
= � 4

3t2ε4 �m2 � s�

+

14G�1; s
m2

�
� 9G

�
0;

2m2�t�
�
t(t�4m2)

2m2

�
+ 18G

�
1;

2m2�t�
�
t(t�4m2)

2m2

�

6t2ε3 �m2 � s�

+ O(ε�2)
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T

i

, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables
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= x, � t
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=

(1 � y)

2
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the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type
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= (A0x(x, y) + A1x(x, y))✏F ,
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T

i

, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s

m2
= x, � t

m2
=

(1 � y)

2
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, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type
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= (A0x(x, y) + A1x(x, y))✏F ,
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M(2)(eμ � eμ) =
�

k
ck(s, t,m2, ε)I(2)

k (s, t,m2, ε)

‣ 69 diagrams+ 1 Loop renormalisation

‣ work at the integrand-level [Ossola, Papadopoulos, Pittau 06]

=
Ni1···ik···im(qj)
D1 · · ·Dk . . .Dm

Dk

Dk�1

p1

p2

pn

q1
qL

Dk+1

‣ adaptive integrand decomposition [Mastrolia, Peraro, AP 16]

‣ Torres’ talk this afternoon

‣ reduction to master integrals via integration-by-parts
[Chetyrkin, Tkachov 81, …, Laporta 01]
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].

8.2 System of differential equations

In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T

i

, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s

m2
= x, � t

m2
=

(1 � y)

2

y
, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type

@F

@x
= (A0x(x, y) + A1x(x, y))✏F ,

@F

@y
= (A0 y(x, y) + A1 y(x, y))F . (8.6)
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T
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, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s

m2
= x, � t

m2
=

(1 � y)

2
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, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type
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= (A0x(x, y) + A1x(x, y))✏F ,
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T
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, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables
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2
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the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T
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, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s

m2
= x, � t
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=

(1 � y)

2
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, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type

@F

@x
= (A0x(x, y) + A1x(x, y))✏F ,
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= (A0 y(x, y) + A1 y(x, y))F . (8.6)
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables
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= x, � t
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2
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the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T
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, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s
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= x, � t
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=
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2
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the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type

@F

@x
= (A0x(x, y) + A1x(x, y))✏F ,
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= (A0 y(x, y) + A1 y(x, y))F . (8.6)
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1 Four-point topologies

In this paper we consider the muon-electron scattering

µ+(p1) + e�(p2) ! e�(p3) + µ+(p4) (1.1)

in the approximation of vanishing electron mass, me = 0, i.e. with the kinematics specified

by

p21 = p24 = m2 , p22 = p23 = 0 ,

s = (p1 + p2)
2 , t = (p2 � p3)

2 , u = (p1 � p3)
2 = 2m2 � t � s , (1.2)

where m is the muon mass. In particular we compute the master integrals for the non-

planar contribution to the two-loop amplitude depicted in fig. 1.
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The calculation involves the evaluation of Feynman integrals in d = 4� 2✏ dimensions

of the type

Z
gddk1 gddk2

1

Dn1
a1 . . . Dn9

a9
. (1.3)

In our conventions, the integration measure is defined as

gddki =
ddki
(2⇡)d

✓
i S✏

16⇡2

◆�1✓m2

µ2

◆✏

, (1.4)
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‣ Four-point topologies for μe-scattering at two loops: 

‣ Most planar integrals known analytically from different processes

‣ BhaBha scattering in QED
‣ tt production in QCD

‣ heavy-to-light quark decay in QCD

[Gehrmann Remiddi 01, Bonciani Mastrolia Remiddi 04, …]

[Bonciani, Ferroglia 08, Asatrian, Greub, Pecjak 08, …]

[Bonciani, Ferroglia, Gehrmann 08, …]

12/27

‣ Unknown integrals with more massive lines
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Differential equations method

�

�xi
�I(�x, ε) = Ai(�x, ε)�I(�x, ε)

‣ Computation of the master integrals: solve PDEs + boundary conditions

‣ Master integrals                             fulfil coupled 1st order PDEs in the kinematics�I = (I1, I2 , . . . , IN)

[Kotikov 91, Remiddi 97,
Gehrmann, Remiddi 00, … ]

13/27St.Goar- 1st  May 2018

‣            are block-triangularAi(�x, ε)

‣           are rational in    and   �x εAi(�x, ε)
�
�
�
� �

�
�

�� � � �

�
Ai(�x, ε) =

�

� �

‣ Master integrals determined by series expansion for 

�I(�x, ε) =
��

k=0
I (k)(�x)εk

ε � 0

‣ PDEs for Taylor coefficients           (mostly) triangular�I(k)(�x)



Amedeo Primo

Canonical differential equations

‣ change of variables: �x � �y(�x)

‣ change of basis: 

‣ Systems of PDEs are not unique

‣ known classes of iterated integrals

d�I(k)(�x) =
m�

i=1
dlogηi(�x)�I(k�1)(�x)

‣ Cast PDEs to canonical (=simplest) form

�

�yi
�I =

�
�xj
�yi

Aj(�y, ε)
�

�I

�

�xi
�J = B�1

�
AiB � �

�xi
B

�
�J�I(�x, ε) = B(�x, ε)�J(�x, ε)

[Henn 13 ]

‣ order-by-order decoupling

d�I(�x, ε) = ε
� m�

i=1
Midlogηi(�x)

�
�I(�x, ε)

14/27St.Goar- 1st  May 2018
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Canonical differential equations

‣ Algorithmic solution in canonical form

[Goncharov 98, Remiddi, Vermaseren 99, Gehrmann, Remiddi 00, … ]

G(�ωn;x) =

� x

0

dt
t�ω1

G(�ωn�1; t)G(�0n;x) =
1
n!
dlogn x

�I(�x, ε) =

�
1 +

��

k=1

�

γ
dA . . .dA

�
�I(�x0, ε)

x

y

γ

(x0, y0)

(x, y)

‣ algebraic        : Chen iterated integralsηi(�x)

‣ rational        : Generalised polylogarithms (GPLs) ηi(�x)

Ai(�x) =
m�

j=1

Mj
xi �ωj

[Chen 77 ]

‣ canonical form: easy to solve but hard to find

St.Goar- 1st  May 2018



Finding the canonical form
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‣ Many strategies

‣ unit leading singularity
‣ magnus exponential

‣ rational Ansätze for basis change
‣ reduction to fuchsian form and eigenvalue normalisation

‣ factorisation of the Picard-Fuchs operator

[Henn 13 ]

[Argeri, Di Vita, Mastrolia et al 14]

[Gehrmann, Von Manteuffel, Tancredi et al 14,…]

[Lee 15, Lee, Smirnov 16]

[Adams, Chaubery, Weinzierl 17]

‣ Some public tools: Canonica, Fuchsia, Epsilon

‣ transcendental homogeneous solutions

‣ Go-condition: at           decoupled 1st PDEs with algebraic homogeneous solutions  ε = 0

‣ iterated integrals over elliptic curves (many talks during L&L!)

‣ Beyond one-loop: irreducible higher order PDEs



‣ If canonical form exists, find the         solution at onceε = 0

‣ ansatz: ε-linear PDEs 

17/27Amedeo Primo

Magnus method

�

�xi
�J = ε

�
B�1A(1)

i B
�
�J

�

�xi
�I =

�
A(0)

i (�x) + εA(1)
i (�x)

�
�I i = 1,2

�

�xi
B(�x) = A(0)

i B(�x)

‣ solve PDEs for ε = 0

‣ rotate to canonical form

‣ Formal solution of matrix differential equation by the Magnus exponential
[Magnus 54]

�I = B�J

St.Goar- 1st  May 2018
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Magnus exponential

Ωk[A](t) =

�
����

����

Ω1[A](t) =
� dt1A(t1)

Ω2[A](t) =
� dt1dt2[A(t1),A(t2)]

Ω3[A](t) =
� dt1dt2dt3[A(t1), [A(t2),A(t3)]](1,3)

. . .

‣ One-variable case
d
dxB(x) = A(0)(x)B(x)

‣ Magnus exponential

B(x) = exp
� ��

k=1
Ωk[A

(0)](x)

�

‣ For Feynman integrals expressible in GPLs                         

Ωk[A
(0)
i ](�x) = 0 k > kmax

‣ analytic change of basis from Magnus exponential
[Argeri, Di Vita, Mastrolia  et al 14]
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Magnus exponential

‣ Multivariate generalisation:

‣ Method applied to several multiscale problems

‣ mixed EW-QCD corrections to Drell-Yan
‣ three-loop H+j
‣ two-loop QED form factor [Argeri, Di Vita, Mastrolia  et al 14]

‣ mixed EW-QCD corrections to WWH, WWZ(γ*) [Di Vita, Mastrolia, AP, Schubert 17]

[Bonciani, Di Vita, Mastrolia, Schubert 16]

[Di Vita, Mastrolia, Schubert, Yundin 14]

‣ Used to compute μe-scattering integrals

�

�xi
B(�x) = A(0)

i B(�x) i = 1, . . . ,n

‣ chained Magnus rotations

B(�x) = eΩ[Â(0)
n ].eΩ[Â(0)

n�1]. . . . eΩ[A(0)
1 ]

[Mastrolia, Passera, AP, Schubert 17]
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Planar integrals for μe-scattering

planar Muon-Electron Scattering
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Figure 4: Two-loop MIs T1,...,34 for the first integral family.

6 Two-loop master integrals

In this section we present the results for the planar two-loop MIs contributing to the NNLO

virtual QED corrections to µe scattering, which are the main results of this work. We first
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Figure 5: Two-loop MIs T1,...,42 for the second integral family.

– 16 –

planar Muon-Electron Scattering
p1

p2 p3

p4
T1

p1

p2 p3

p4
T2

p1

p2 p3

p4
T3

p1

p2 p3

p4
T4

p1

p2 p3

p4
T5

p1

p2 p3

p4
T6

p1

p2 p3

p4
T7

p1

p2 p3

p4
T8

p1

p2 p3

p4
T9

p1

p2 p3

p4
T10

p1

p2 p3

p4
T11

p1

p2 p3

p4
T12

p1

p2 p3

p4
T13

p1

p2 p3

p4
T14

p1

p2 p3

p4
T15

p1

p2 p3

p4
T16

p1

p2 p3

p4
T17

p1

p2 p3

p4
T18

p1

p2 p3

p4
T19

p1

p2 p3

p4
T20

p1

p2 p3

p4
T21

p1

p2 p3

p4
T22

p1

p2 p3

p4
T23

p1

p2 p3

p4
T24

p1

p2 p3

p4
T25

p1

p2 p3

p4
T26

p1

p2 p3

p4
T27

p1

p2 p3

p4
T28

p1

p2 p3

p4

(k2+p1)2

T29

p1

p2 p3

p4
T30

p1

p2 p3

p4

(k2+p1)2

T31

p1

p2 p3

p4
T32

p1

p2 p3

p4

(k1+p1+p2)2

T33

p1

p2 p3

p4

k2
2

T34

Figure 4: Two-loop MIs T1,...,34 for the first integral family.

6 Two-loop master integrals

In this section we present the results for the planar two-loop MIs contributing to the NNLO

virtual QED corrections to µe scattering, which are the main results of this work. We first

– 10 –

p1

p2 p3

p4
T1

p1

p2 p3

p4
T2

p1

p2 p3

p4
T3

p1

p2 p3

p4
T4

p1

p2 p3

p4
T5

p1

p2 p3

p4
T6

p1

p2 p3

p4
T7

p1

p2 p3

p4
T8

p1

p2 p3

p4
T9

p1

p2 p3

p4
T10

p1

p2 p3

p4
T11

p1

p2 p3

p4
T12

p1

p2 p3

p4
T13

p1

p2 p3

p4
T14

p1

p2 p3

p4
T15

p1

p2 p3

p4
T16

p1

p2 p3

p4
T17

p1

p2 p3

p4
T18

p1

p2 p3

p4
T19

p1

p2 p3

p4
T20

p1

p2 p3

p4
T21

p1

p2 p3

p4
T22

p1

p2 p3

p4
T23

p1

p2 p3

p4
T24

p1

p2 p3

p4
T25

p1

p2 p3

p4
T26

p1

p2 p3

p4
T27

p1

p2 p3

p4
T28

p1

p2 p3

p4
T29

p1

p2 p3

p4
T30

p1

p2 p3

p4
T31

p1

p2 p3

p4
T32

p1

p2 p3

p4
T33

p1

p2 p3

p4
T34

p1

p2 p3

p4
T35

p1

p2 p3

p4
T36

p1

p2 p3

p4
T37

p1

p2 p3

p4
T38

p1

p2 p3

p4
T39

p1

p2 p3

p4
T40

p1

p2 p3

p4

(k1+p2)2

T41

p1

p2 p3

p4

(k1-p1)2-m2

T42

Figure 5: Two-loop MIs T1,...,42 for the second integral family.

– 16 –

8.2. System of differential equations 149

e

µ

e

µ

T1

e

µ

e

µ

T2

e

µ

e

µ

T3

e

µ

e

µ

T4

e

µ

e

µ

T5

e

µ

e

µ

T6

e

µ

e

µ

T7

e

µ

e

µ

e

T8

e

µ

e

µ

µ

T9

e

µ

e

µ

T10

Figure 8.1: Two-loop four-point topologies for µe scattering

tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].

8.2 System of differential equations

In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T

i

, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s

m2
= x, � t

m2
=

(1 � y)

2

y
, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type

@F

@x
= (A0x(x, y) + A1x(x, y))✏F ,

@F

@y
= (A0 y(x, y) + A1 y(x, y))F . (8.6)
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].

8.2 System of differential equations

In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T

i

, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
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the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type
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‣ 65 distinct master integrals identified with Reduze 



‣ change of variables: 
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Canonical form 

s = �m2 x t = �m2 (1� y)2
y

B(�x) = exp
�

�

k
Ωk[Â(0)

2 ](�x)

�
. exp

�

�
�

j
Ωj[A(0)

1 ](�x)

�

�

η1 =x
η2 =1+ x
η3 =1� x

η4 =y
η5 =1+ y
η6 =1� y

η7 =x+ y
η8 =1+ xy
η9 =1� y(1� x� y)

‣ Magnus exponential:

‣ Canonical form:

‣ change of basis: �I = B�J

d�J(x, y, ε) = ε
� 9�

i=1
Midlogηi(x, y)

�
�J(x, y, ε)

�

�xi
�I =

�
A(0)

i (�x) + εA(1)
i (�x)

�
�I i = 1,2

‣  ε-linear PDEs in two variables s/m2 , t/m2
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‣ Solution in terms of GPLs
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Boundary conditions

‣ Uniform combinations of constant GPLs fitted to ζk

p2
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• The boundary constants of I2,8,11,23 are fixed by demanding finiteness in the limit
s ! 0.

• In the regular limit s ! 0, I5 and I6 become, respectively,

I5(✏, 0) = 0 ,

I6(✏, 0) = ✏2m2
(2F5(✏, 0) + F6(✏, 0)) . (8.34)

F5(✏, 0) and F6(✏, 0) correspond to two-loop vacuum diagrams which can be re-
duced via IBPs to a single integral that can be analytically computed,

F5(✏, 0) =

2✏(2✏ � 1)

m4
,

F6(✏, 0) = �2(✏ + 1)(2✏ � 1)

m4
. (8.35)

In this way, we obtain the boundary values

I5(✏, 0) = 0 , I6(✏, 0) = �1 � 2⇣2✏
2
+ 2⇣3✏

3 � 9⇣4✏
4
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�
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�
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• The integration constants of I12...16,19,20,26,27,32,33 are fixed by demanding finiteness
in the t ! 4m2 limit and by demanding that the resulting boundary constants
are real.

• The integrals I17 and I18 are regular in the s ! 0 limit. By imposing the regularity
on their DEQs we can only fix the constant of one of them, say I18. The boundary
constants of I17 must be then computed in an independent way. We observe that
the value of I17(✏, 0) can be obtained in the limit p21 ! m2 of a similar vertex
integral with off-shell momentum p21 and s ⌘ (p1 + p2)2 = p22 = 0,

I17(✏, 0) = ✏4m2
lim

p

2
1!m

2
. (8.37)

As we discuss at the end of this section, the limit appearing in the r.h.s of eq. (8.37)
is smooth and gives,

I17(✏, 0) = �27
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4
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�
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. (8.38)
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p1

= lim
p̂21�m2

lim
(p1+p2)2� 0

‣ kinematic limits from auxiliary integrals

lim
ηk�0

Mk�I(�x, ε) = 0

‣ regularity at pseudo-thresholds     of the PDEsηk

‣ external input
‣ Boundary conditions from physical information

�59ζ4 = π2
�
G2�1 � 2G0,�(�1) 13 � 2G0,(�1) 23

�
� 21ζ3 G�1 � G4�1 � 18G0,0,0,�(�1) 13 � 18G0,0,0,(�1) 23

+ 12G0,0,�(�1) 13 ,�1 + 12G0,0,(�1) 23 ,�1 + 12G0,�(�1) 13 ,�1,�1 + 12G0,(�1) 23 ,�1,�1 + 24G0,0,0,2 .
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Figure 4: Two-loop MIs T1,...,34 for the first integral family.
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In this section we present the results for the planar two-loop MIs contributing to the NNLO

virtual QED corrections to µe scattering, which are the main results of this work. We first
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Figure 8.1: Two-loop four-point topologies for µe scattering

tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].

8.2 System of differential equations

In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T

i

, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s

m2
= x, � t

m2
=

(1 � y)

2

y
, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type

@F

@x
= (A0x(x, y) + A1x(x, y))✏F ,

@F

@y
= (A0 y(x, y) + A1 y(x, y))F . (8.6)
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].
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tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].

8.2 System of differential equations

In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies T

i

, i 2 {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables �s/m2 and �t/m2. Upon the change of variables

� s

m2
= x, � t

m2
=

(1 � y)

2

y
, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type

@F

@x
= (A0x(x, y) + A1x(x, y))✏F ,

@F

@y
= (A0 y(x, y) + A1 y(x, y))F . (8.6)

‣  Numerical evaluation (GiNac) validated against SecDec

s/t � 0



Non-planar integrals for μe-scattering

non-planar Muon-Electron Scattering

consist in the following 12 letters:

⌘1 = w , ⌘2 = 1 + w ,

⌘3 = 1� w , ⌘4 = z ,

⌘5 = 1 + z , ⌘6 = 1� z, ,

⌘7 = w + z , ⌘8 = w � z ,

⌘9 = w � z2 , ⌘10 = 1� w + w2 � z2 ,

⌘11 = 1� 3w + w2 + z2 , ⌘12 = w2 � z2 + wz2 � w2 z2 .

(2.5)

Since the alphabet is rational and has only algebraic roots, the solution can be directly

expressed in terms of GPLs.
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Figure 2: First 24 two-loop MIs T1,...,24 for the topology T6.Thin lines represent massless

propagators and thick lines stand for massive ones. Dots indicate squared propagators.

– 3 –

p1

p2 p3

p4
T25

p1

p2 p3

p4
T26

p1

p2

p3

p4
T27

p1

p2

p3

p4
T28

p1

p2

p3

p4
T29

p1

p2

p3

p4
T30

p1

p2

p3

p4
T31

p1

p2

p3

p4
T32

p1

p2

p3

p4
T33

p1

p2

p3

p4

(k2+p1)2

T34

p1

p2 p3

p4
T35

p1

p2 p3

p4

(k2+p1)2

T36

p1

p2 p3

p4
T37

p1

p2 p3

p4

(k2+p1)2

T38

p1

p2 p3

p4

(k1+p1+p2)2

T39

p1

p2 p3

p4

(k2+p1+p2)2

T40

p1

p2 p3

p4
T41

p1

p2 p3

p4

(k1+p4)2

T42

p1

p2 p3

p4

(k1+p3)2-m2

T43

p1

p2 p3

p4

(k1+p4)2((k1+p3)2-m2)

T44

Figure 3: Last 20 two-loop MIs T25,...,44 for the topology T6 with the same convention as

figure 2

3 Two-loop master integrals

We start by considering the following set of 44 MIs, which fulfil an ✏-linear system of DEQ,

F1 = ✏2 T1 , F2 = ✏2 T2 , F3 = ✏2 T3 ,

F4 = ✏2 T4 , F5 = ✏2 T5 , F6 = ✏2 T6 ,

F7 = ✏2 T7 , F8 = ✏3 T8 , F9 = ✏3 T9 ,

F10 = ✏3 T10 , F11 = ✏3 T11 , F12 = ✏2 T12 ,

F13 = ✏3 T13 , F14 = ✏2 T14 , F15 = ✏3 T15 ,

F16 = ✏2 T16 , F17 = ✏2 T17 , F18 = ✏4 T18 ,

F19 = ✏3 T19 , F20 = ✏4 T20 , F21 = ✏2(1 + 2✏) T21 ,

F22 = ✏3 T22 , F23 = ✏4 T23 , F24 = ✏3 T24 ,

F25 = ✏4 T25 , F26 = ✏3 T26 , F27 = ✏3 T27 ,

F28 = ✏2 T28 , F29 = ✏4 T29 , F30 = ✏3 T30 ,
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1 Four-point topologies

In this paper we consider the muon-electron scattering

µ+(p1) + e�(p2) ! e�(p3) + µ+(p4) (1.1)

in the approximation of vanishing electron mass, me = 0, i.e. with the kinematics specified

by

p21 = p24 = m2 , p22 = p23 = 0 ,

s = (p1 + p2)
2 , t = (p2 � p3)

2 , u = (p1 � p3)
2 = 2m2 � t � s , (1.2)

where m is the muon mass. In particular we compute the master integrals for the non-

planar contribution to the two-loop amplitude depicted in fig. 1.
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Figure 1: Two-loop four point topologies for e-µ scattering

The calculation involves the evaluation of Feynman integrals in d = 4� 2✏ dimensions

of the type

Z
gddk1 gddk2

1

Dn1
a1 . . . Dn9

a9
. (1.3)

In our conventions, the integration measure is defined as

gddki =
ddki
(2⇡)d

✓
i S✏

16⇡2

◆�1✓m2

µ2

◆✏

, (1.4)

– 1 –

[Di Vita, Laporta, Mastrolia, AP, Schubert in progress]
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‣ 44 distinct master integrals identified with Reduze 

‣ One single non-planar integral family is missing



‣ change of variables: 

‣ change of basis: 

Canonical form

Amedeo Primo St.Goar- 1st  May 2018

d�J(w,z, ε) = ε
� 14�

i=1
Midlogηi(w,z)

�
�J(w,z, ε)

�I = B�J

‣ Canonical form:

‣ Solution in terms of GPLs

B(�x) = exp
�

�

k
Ωk[Â(0)

2 ](�x)

�
. exp

�

�
�

j
Ωj[A(0)

1 ](�x)

�

�

‣ Magnus exponential:

t = �m2 (1�w)2

w s = m2
�
1+

(1�w)2

w� z2
�

η1 =w
η4 =z
η7 =w+ z
η10 =1�w+w2 � z2

η2 =1+w
η5 =1+ z
η8 =w� z
η11 =1� 3w+w2 + z2

η3 =1�w
η6 =1� z
η9 =w� z2
η12 =w2 � z2 + yz2 � y2z2
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Outlook and conclusions

‣ Experimental results for aμ will improve soon

‣ Proposal for independent determination from μe-scattering

‣ Theory prediction of aμHad  main source of uncertainty

‣ Unknown QED prediction at NNLO are required

‣ Virtual amplitude decomposed to master integrals

‣ All planar master integrals are now available in the            limit 

‣ Non-planar integrals are on the way

me = 0

‣           can be computed with available tools|M(1)
γ |2

‣ Still a lot work need to get a NNLO generator
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‣

Amedeo Primo

Outlook and conclusions

The Evaluation of the Leading Hadronic Contribution 
to the Muon Anomalous Magnetic Moment

https://indico.mitp.uni-mainz.de/event/128/

 

https://agenda.infn.it/conferenceDisplay.py?confId=13774

‣ Padova, 4th-5th September 2017
μe scattering: 

Theory kickoff workshop

‣

‣ Mainz, 19th-23th February 2018

‣ Next: Zürich February 2019
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