Stephan Jahn¹

¹Max-Planck-Institut für Physik, München

Loops and Legs in Quantum Field Theory 2018

April 30, 2018

¹sjahn@mpp.mpg.de

Outline

- ► sector decomposition and pySecDec
- phenomenological applications
- ► ongoing development of pySecDec

GoSam-Xloop

pySecDec

successor of SecDec-3

S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke [1502.06595]

Numerically computes regulated parameter integrals of the form

$$\mathcal{I} \equiv \int_0^1 \mathrm{d}x_1 \dots \int_0^1 \mathrm{d}x_N \prod_{i=1}^m f_i \left(\vec{x}, \vec{a}\right)^{b_i + \sum_k c_{ik} \epsilon_k}$$

where the f_i are polynomials. Typically: $\mathcal{I}|_{\epsilon_k=0} = \infty$.

Example: Loop integrals

after Feynman parametrization

The SecDec collaboration

Sophia Borowka Gudrun Heinrich Stephan Jahn Stephen Jones Matthias Kerner Johannes Schlenk

former members

Thomas Binoth Jonathon Carter

Tom Zirke

Paper

CPC 222 (2018) 313 [1703.09692]

Homepage

http://secdec.hepforge.org/

Other public Implementations

• C. Bogner, S. Weinzierl Sector decomposition [0709.4092]

> supplemented by: J. Gluza, K. Kajda, T. Riemann, V. Yundin CSectors [1010.1667]

• A.V. Smirnov FIESTA 4 [1511.03614]

Flowchart

Loop Integral - Momentum Representation

$$\mathcal{I} = \int d^D k_1 \cdot \ldots \cdot d^D k_L \frac{1}{P_1^{\nu_1} \cdot \ldots \cdot P_N^{\nu_N}}$$

- D: dimensionality
- L: number of loops
- N: number of propagators
- P_i : propagators (< momentum >² [- < mass >²] + i\delta)
- ν_i : propagator powers

Loop Integral - Feynman Representation

$$\mathcal{I} = (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\prod_{j=1}^{N} \Gamma(\nu_{j})} \int_{0}^{1} \prod_{j=1}^{N} dx_{j} x_{j}^{\nu_{i}-1} \delta\left(1 - \sum_{n=1}^{N} x_{n}\right) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}}{\mathcal{F}^{N_{\nu} - LD/2}}$$

- D: dimensionality
- L: number of loops
- N: number of propagators
- ν_i : propagator powers

$$N_{\nu} = \sum_{i=1}^{N} \nu_i$$

 $\mathcal{U} = \mathcal{U}(\vec{x})$: 1st Symanzik polynomial $\mathcal{F} = \mathcal{F}(\vec{x}, p_i \cdot p_j, m_i^2)$: 2nd Symanzik polynomial

Feynman Parametrization with pySecDec

1

8

9

10

12

13

14

15

16

17 18

19

20

21

23

```
>>> from pySecDec.loop_integral import
                LoopIntegralFromPropagators
         \rightarrow 
2
3
      >>> one_loop_bubble =
        \rightarrow
                LoopIntegralFromPropagators(
             propagators=['k^2-m^2', '(k-p)^2'],
4
5
             loop momenta=['k']
6
       ...)
7
8
      >>> one_loop_bubble.exponentiated_U
9
       (+ (1)*x0 + (1)*x1)**(2*eps - 2)
10
11
       >>> one_loop_bubble.exponentiated_F
12
       (+(m**2 - p**2)*x0*x1 +
             (m**2)*x0**2)**(-eps)
        \rightarrow
13
14
       >>> one_loop_bubble.Gamma_factor
15
       gamma(eps)
```

```
>>> from pySecDec.loop_integral import
        LoopIntegralFromGraph, plot_diagram
 \rightarrow
>>> one_loop_bubble = LoopIntegralFromGraph(
     internal_lines=(['m',(1,2)], [0,(1,2)]),
     external_lines=[('p',1), ('q',2)],
     replacement rules=[('q', 'p')]
...)
>>> one loop bubble.exponentiated U
(+ (1)*x0 + (1)*x1)**(2*eps - 2)
>>> one_loop_bubble.exponentiated_F
(+(m**2 - p**2)*x0*x1 +
      (m**2)*x0**2)**(-eps)
 \rightarrow
>>> one loop bubble.Gamma factor
gamma(eps)
>>> plot_diagram(
       one_loop_bubble.internal_lines,
       one_loop_bubble.external_lines,
      filename='bubble1L',
       Gstart=986089
...)
```


Sector Decomposition

or: Resolution of Overlapping Singularities

$$\int_{0}^{1} dx \int_{0}^{1} dy (x + y)^{a + b\epsilon} f(x, y)$$

$$= \int_{0}^{1} dx \int_{0}^{1} dy (x + y)^{a + b\epsilon} f(x, y) [\underbrace{\Theta(x - y)}_{(1)} + \underbrace{\Theta(y - x)}_{(2)}]$$

$$= \int_{0}^{1} dx \int_{0}^{1} dt \times x^{a + b\epsilon} (1 + t)^{a + b\epsilon} f(x, xt) + \int_{0}^{1} dt \int_{0}^{1} dy y y^{a + b\epsilon} (t + 1)^{a + b\epsilon} f(yt, y)$$

Subtraction of Poles

$$\int_{0}^{1} dt t^{-1+b\epsilon} g(t)$$

$$= \int_{0}^{1} dt t^{-1+b\epsilon} (g(0) + g(t) - g(0))$$

$$= \underbrace{\int_{0}^{1} dt t^{-1+b\epsilon} g(0)}_{=\frac{1}{b\epsilon}g(0)} + \underbrace{\int_{0}^{1} dt t^{-1+b\epsilon} (g(t) - g(0))}_{\text{finite for } \epsilon \to 0, \text{ expand integrand in } \epsilon}$$

Basic Usage

$$\int_{0}^{1} dx \int_{0}^{1} dy (x+y)^{-2+\epsilon} = \frac{1}{\epsilon} + (1 - \log{(2)}) + O(\epsilon) \approx \frac{1}{\epsilon} + 0.306853 + O(\epsilon)$$

1

23456789

 $10 \\ 11$

13

Step 1: write input files

generate_easy.py

1

11

1

3

4

```
from pySecDec import make package
23456789
      make_package(
      name = 'easy',
      integration variables = ['x', 'y'].
      regulators = ['eps'],
      requested_orders = [0],
1Ó
      polynomials_to_decompose = ['(x+y)^(-2+eps)'],
      )
```

integrate_easy.py

```
from pvSecDec.integral interface \
    import IntegralLibrary
# load c++ library
easy integral = \
    IntegralLibrary('easy/easy pylink.so')
# integrate
_, _, result = easy_integral()
# print result
print('Numerical Result:')
print(result)
```

Step 2: run pySecDec

```
$ python generate easy.py && make -C easy && python integrate easy.py
<skipped some output>
Numerical Result:
 + (1,00015897181235158e+00 +/- 4,03392522752491021e-03)*eps^-1 + (3,06903035514056399e-01 +/-
  \rightarrow
          2,82319349818329918e-03) + O(eps)
```

Higgs Boson Pair Production

S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke [1608.04798]

Stephan Jahn

Higgs Boson Pair Production

S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke [1608.04798]

Higgs Boson Pair Production

S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke [1608.04798]

Higgs Boson Pair Production

S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke [1608.04798]

Stephan Jahn

Higgs Boson Pair Production

S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke [1608.04798]

Stephan Jahn

Z Boson Pair Production

G. Heinrich, SJ, S. P. Jones, M. Kerner, J. Pires [1710.06294]

► *N*-jettiness subtraction scheme

R. Boughezal et al. [1504.02131], J. Gaunt et al. [1505.04794]

2 loop virtual amplitude from qqvvamp (massless QCD)

- T. Gehrmann et al. [1503.04812]
- \blacktriangleright cross check with calculations in q_T -subtraction scheme

F. Cascioli et al. [1405.2219], M. Grazzini et al. [1507.06257]

 $\textbf{Outlook: top mass effects in pp} \rightarrow \mathsf{ZZ}$

Outlook: Top Mass Effects in pp \rightarrow ZZ

- ▶ last missing piece for NNLO(QCD) cross-section: $q\bar{q} \rightarrow$ ZZ
- ▶ largest scale uncertainty from: $gg \rightarrow ZZ$ (loop-induced)
- ▶ first occurrence of top-quark propagator at two-loop level
- ▶ diagrams (thus integrals) similar to those in HH
- ▶ automated calculation with GoSAM-Xloop
 - Larin-scheme for γ_5 treatment

Stephan Jahn

Loops and Legs in Quantum Field Theory 2018

Symmetry Finder

$$\int_{0}^{1} dx \int_{0}^{1} dy (x + y)^{a+b\epsilon}$$

= $\int_{0}^{1} dx \int_{0}^{1} dt \times x^{a+b\epsilon} (1 + t)^{a+b\epsilon} + \int_{0}^{1} dt \int_{0}^{1} dy y y^{a+b\epsilon} (t + 1)^{a+b\epsilon}$

same up to renaming $x \leftrightarrow y$

Symmetry Finder

- ▶ *n*! possible column permutations with *n* variables
- two optimized algorithms implemented by Ben Ruijl and Stephen Jones:

B. Ruijl, S. P. Jones [to appear in the proceedings of ACAT 2017]

- based on permutations as suggested by Alexey Pak
 A. Pak [1111.0868]
- based on finding graph isomorphisms with dreadnaut
 B. D. McKay, A. Piperno [1301.1493]

▶ outlook: identify matroid symmetries in Loopedia

C. Bogner, S. Borowka, T. Hahn, G. Heinrich, S. P. Jones, M. Kerner, A. von Manteuffel, M. Michel, E.

Panzer, V. Papara [1709.01266]

 \rightarrow talk by Thomas Hahn

Quasi Monte Carlo (QMC) on GPUs

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512]

$$I_{s}[f] \approx \bar{Q}_{s,n,m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_{s,n}^{(k)}[f], \quad I_{s}[f] \equiv \int_{[0,1]^{s}} d^{s} x f(\mathbf{x}), \quad Q_{s,n}^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{iz}{n} + \mathbf{\Delta}_{k}\right\}\right)$$

with $\{\cdot\}$ the fractional part, z the generating vector, $\mathbf{\Delta}_k$ the random shift vector, and f the integrand

Quasi Monte Carlo (QMC) on GPUs

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512]

implementation (within <code>pySecDec</code> and standalone) to be published shortly

figures by Stephen Jones

Stephan Jahn

Quasi Monte Carlo (QMC) on GPUs

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512]

implementation (within pySEcDEc and standalone) to be published shortly

scaling can fluctuate

Quasi Monte Carlo (QMC) on GPUs

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512]

implementation (within pySecDec and standalone) to be published shortly

number of samples	algorithm	CPU	GPU	rel. error
32 × 16,777,213	QMC	19m	2m	$3 imes10^{-4}$
28,754,314	Divonne	14m	-	$2 imes 10^{-4}$
32 × 134,217,689	QMC	2h 30m	15m	$2 imes 10^{-5}$
84,536,102	Divonne	45m	-	$4 imes 10^{-5}$

- \blacktriangleright CPU: 4 \times Intel Xeon Gold 6140
- ► GPU: 1 × Tesla V 100
- comparison against Divonne integrator ("adaptive QMC") from CUBA library
 - T. Hahn [hep-ph/0404043]

Quasi Monte Carlo (QMC) on GPUs

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512]

implementation (within <code>pySecDec</code> and standalone) to be published shortly

scaling can fluctuate

2 loop Vertex Diagram

I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch [1610.07059]

- ▶ did not work in SecDec-3
- ► fixed in pySecDec
- 1 hour integration time on 4x Intel Xeon Gold 6140 4x Tesla V 100 in parallel

Numerical Result eps⁻2: 1.23370055013616997 - 2.28018137283890867e-18*I +/- (1.53371963073975744e-17 + 1.28037129931719179e-17*I) eps⁻1: 2.89025451824806323 + 3.87578459645767159*I +/- (2.12654623448814062e-8 + 1.81276217174111614e-8*I) eps⁻0: 0.778599104098807615 + 4.12351279954185834*I +/- (5.59405711255899905e-7 + 6.09682594018807232e-7*I)

Referen	ce Result						
eps^-2:	1.23370055013617	-	6.20475892887384	*	10^-13	*	Ι
eps^-1:	2.8902545096591976	+	3.875784585038738			*	I
eps^0:	0.7785996083247692	+	4.123512600516016			*	I

2 loop Vertex Diagram

I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch [1610.07059]

2nd Symanzik polynomial:

$$\mathcal{F}/m_Z^2 = x_3^2 x_5 + x_3^2 x_4 + x_2 x_3 x_5 + x_2 x_3 x_4 + x_1 x_3 x_5 + x_1 x_3 x_4 + x_1 x_3^2 + x_1 x_2 x_3 + x_0 x_3 x_4 + x_0 x_3^2 + x_0 x_2 x_3 - x_1 x_2 x_4 - x_0 x_1 x_5 - x_0 x_1 x_4 - x_0 x_1 x_2 - x_0 x_1 x_3$$

- ▶ did not work in SecDec-3
- ▶ essence of the problem:
 - ▶ terms of opposite sign
 - with the same scale

The "x - y" problem

$$\int_0^1 dx \int_0^1 dy \ (x-y)^{a+b\epsilon}$$

- overlapping singularity along the line x = y
- singularity at x = y = 1
 - remap singularities at 1 to 0 by split
- SecDec-3 implemented split at x = y = 1/2
 - remaps onto itself
- ▶ pySecDec splits at $x \neq y$

3 loop Vertex Diagram

J. Ablinger, J. Blümlein, P. Marquard, N. Rana, C. Schneider [1804.07313]

R. N. Lee, A. V. Smirnov, V. A. Smirnov, M. Steinhauser [1804.07310]

- ▶ symmetry finder reduces 310 to 155 sectors
- ▶ plot above with QMC on 4 GPUs in 15m
 - ► 5 digits accuracy
 - ▶ 3 minutes per point and GPU

Summary

► sector decomposition and pySecDec

- phenomenological applications
 - mass corrections in diboson production
- ► ongoing development of pySecDec
 - fewer integrands by exploiting symmetries
 - faster numerical integration with QMC on GPUs
 - improved handling of integrals without Euclidean region

BACKUP

Timings

Table 5

Comparison of timings (algebraic, numerical) using pySecDec, SecDec 3 and FIESTA 4.1.

	pySecDec time(s)	SecDec 3 time (s)	FIESTA 4.1 time (s)	
triangle2L	(40.5, 9.6)	(56.9, 28.5)	(211.4, 10.8)	
triangle3L	(110.1,0.5)	(131.6,1.5)	(48.9, 2.5)	
elliptic2L_euclidean	(8.2, 0.2)	(4.2, 0.1)	(4.9, 0.04)	
elliptic2L_physical	(21.5, 1.8)	(26.9, 4.5)	(115.3, 4.4)	
box2L_invprop	(345.7, 2.8)	(150.4, 6.3)	(21.5, 8.8)	

Sector Decomposition

or: Resolution of Overlapping Singularities

```
1
     >>> import pySecDec as psd
     >>> # define the integration variables
     >>> integration_variables = ['x','y']
     >>> # define the polynomial to be decomposed
     >>> poly = psd.algebra.Expression('(x+y) ** (a+b*eps)', integration_variables)
     >>> # keep track of variable transformations
     >>> x = psd.algebra.Expression('x', integration variables)
     >>> v = psd.algebra.Expression('v', integration variables)
     >>> # initialize the decomposition
     >>> initial_sector = psd.decomposition.Sector([poly], [x,y])
     >>> print(initial_sector)
     Sector:
      Jacobian = + (1)
     cast=[(( + (1))**( + (a + b*eps))) * (( + (1)*x + (1)*y)**( + (a + b*eps)))]
     other=[ + (1)*x, + (1)*v ]
     >>> # perform the decomposition
     >>> for sector in psd.decomposition.iterative.iterative_decomposition(initial_sector):
            print(sector)
            print()
      Sector:
      Jacobian = + (1) * x
     cast=[(( + (1)*x)**( + (a + b*eps))) * (( + (1) + (1)*y)**( + (a + b*eps)))]
      other=[ + (1)*x, + (1)*x*v ]
     Sector:
      Jacobian= + (1)*v
     cast = \left[ \left( (+(1)*y)**(+(a+b*eps)) \right) * \left( (+(1)*x+(1))**(+(a+b*eps)) \right) \right]
     other=[ + (1)*x*y, + (1)*y]
```

Subtraction of Poles

```
>>> import pySecDec as psd
>>> import sympy as sp
>>> # define the essential sumbols
>>> integration variables = ['t']
>>> regulators = ['eps']
>>> symbols = integration variables + regulators
>>> # define "t^(-1 + b*eps)" and "q(t)"
>>> t_monomial = psd.algebra.Expression('t**(-1 + b*eps)', symbols)
>>> g = psd.algebra.Expression('g(t)', symbols)
>>> # pack the monomial (can have more than one in general)
>>> monomials = psd.algebra.Product(t monomial)
>>> # need an initializer for the pole part
>>> polynomial_one = psd.algebra.Polynomial.from_expression(1, symbols)
>>> pole part initializer = psd_algebra.Pow(polynomial one, -polynomial one)
>>> # perform the subtraction
>>> subtraction_initializer = psd.algebra.Product(monomials, pole_part_initializer, g)
>>> subtracted = psd.subtraction.integrate_pole_part(subtraction_initializer, 0)
>>> # pretty representation
>>> for term in subtracted:
       print(sp.sympify(term))
g(0)/(b*eps)
t**(b*eps - 1)*(-g(0) + g(t))
>>> # internal representation
>>> subtracted
[(((+(1))**(+(b)*eps + (-1)))) * ((+(b)*eps) ** (+(-1))) * ((g(+(0)))),
(((+(1)*t)**(+(b)*eps + (-1))))*((+(1))**(+(-1)))*((g(+(1)*t)) + ((+(-1)))*(g(+(0)))))]
```

Basic Usage - Analytical Calculation

$$\int_{0}^{1} dx \int_{0}^{1} dy(x+y)^{-2+\epsilon}$$

$$= 2 \int_{0}^{1} dx x^{-1+\epsilon} \int_{0}^{1} dt (1+t)^{-2+\epsilon}$$

$$= \frac{2}{\epsilon} \left[\int_{0}^{1} dt (1+t)^{-2} + \epsilon \int_{0}^{1} dt (1+t)^{-2} \log (1+t) + O(\epsilon^{2}) \right]$$

$$= \frac{2}{\epsilon} \left[\frac{1}{2} + \epsilon \frac{1}{2} (1 - \log (2)) + O(\epsilon^{2}) \right] = \frac{1}{\epsilon} + (1 - \log (2)) + O(\epsilon)$$

Contour Deformation - A Simple Example

consider the massive one loop bubble

taking $\delta (1 - x_1 - x_2)$ into account:

$$\mathcal{F}(\vec{x}, p_i \cdot p_j, m_i^2) = [m^2 (x_1 + x_2)^2 - p^2 x_1 x_2]_{x_2 = 1 - x_1}$$

= $m^2 - p^2 x_1 (1 - x_1)$

▶ physical threshold $p^2 \ge 4m^2$

▶ can have $\mathcal{F} = 0$ although $x_1 \neq 0$

Stephan Jahn

Contour Deformation

or: Satisfying the Feynman Prescription

$$\begin{aligned} \mathcal{I} &= \int d^{D} k_{1} \cdot \ldots \cdot d^{D} k_{L} \frac{1}{P_{1}^{\nu_{1}} \cdot \ldots \cdot P_{N}^{\nu_{N}}} \\ &= (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\prod_{j=1}^{N} \Gamma(\nu_{j})} \int_{0}^{1} \prod_{j=1}^{N} dx_{j} x_{j}^{\nu_{i}-1} \delta\left(1 - \sum_{n=1}^{N} x_{n}\right) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}}{\mathcal{F}^{N_{\nu} - LD/2}} \end{aligned}$$

 $\begin{array}{l} P_i: \text{ propagators } (<\textit{momentum} >^2 \left[- <\textit{mass} >^2 \right] + \overbrace{\textit{i}\delta}) \\ \mathcal{F} = \mathcal{F}(\vec{x}, p_i \cdot p_j, m_i^2) - \overbrace{\textit{i}\delta}: 2^{nd} \text{ Symanzik polynomial} \end{array}$

Contour Deformation

or: Satisfying the Feynman Prescription

$$\mathcal{F}(\vec{x}, p_i \cdot p_j, m_i^2) - \underline{i\delta}$$

move integration contour to the complex plane

$$\begin{aligned} \vec{z} : \quad [0,1]^n &\longrightarrow \mathbb{C}^n \\ x_k &\to z_k \left(\vec{x} \right) \\ &\equiv x_k - i\lambda_k \, x_k \, (1-x_k) \frac{\partial \, \operatorname{Re} \left[\mathcal{F} \left(\vec{x} \right) \right]}{\partial x_k} \end{aligned}$$

such that

$$\mathsf{Im}\left[\mathcal{F}\left(\vec{z}\left(\vec{x}\right)\right)\right] \leq \ \mathsf{Im}\left[\mathcal{F}\left(\vec{x}\right)\right] \quad \forall \, \vec{x} \in [0,1]^n$$

Contour Deformation

or: Satisfying the Feynman Prescription

$$\mathcal{F}(\vec{z}(\vec{x})) = + \operatorname{Re}\mathcal{F}(\vec{x}) + i\operatorname{Im}\mathcal{F}(\vec{x}) + \sum_{k} \lambda_{k} \left[-i\left(\frac{\partial\operatorname{Re}\mathcal{F}(\vec{x})}{\partial x_{k}}\right)^{2} + \frac{\partial\operatorname{Re}\mathcal{F}(\vec{x})}{\partial x_{k}}\frac{\partial\operatorname{Im}\mathcal{F}(\vec{x})}{\partial x_{k}} \right] x_{k}(1 - x_{k}) + \sum_{k,l} \frac{\lambda_{k}\lambda_{l}}{2} \left[-\frac{\partial^{2}\operatorname{Re}\mathcal{F}(\vec{x})}{\partial x_{k}\partial x_{l}} - i\frac{\partial^{2}\operatorname{Im}\mathcal{F}(\vec{x})}{\partial x_{k}\partial x_{l}} \right] \prod_{i=k,l} \frac{\partial\operatorname{Re}\mathcal{F}(\vec{x})}{\partial x_{i}} x_{i}(1 - x_{i}) + \mathcal{O}(\lambda^{3})$$

- correct sign at $\mathcal{O}(\lambda)$
- indeterminate sign at $\mathcal{O}(\lambda^2)$

correct sign if λ_k "small enough"

Symmetry Finder

represent polynomials as integer arrays

$$x + 2y = 1 \cdot x^{1} \cdot y^{0}$$

$$+ 2 \cdot x^{0} \cdot y^{1} \qquad \equiv \qquad \begin{bmatrix} \text{coefficient} & x & y \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$2x + y = 2 \cdot x^{1} \cdot y^{0}$$

$$+ 1 \cdot x^{0} \cdot y^{1} \qquad \equiv \qquad \begin{bmatrix} \text{coefficient} & x & y \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Symmetry Finder

compare arrays allowing for row- and columnwise permutations

$$\begin{array}{cccc} \text{coefficient} & x & y & \text{coefficient} & y & x \\ \text{term1} & \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} & \text{term2} & \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \\ 2x + y & \stackrel{x \leftrightarrow y}{\longleftrightarrow} & x + 2y \end{array}$$

Quasi Monte Carlo (QMC) on GPUs

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512]

with n: number of integrand evaluations